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On the Compensation Between Magnitude and
Phase in Speech Separation
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Abstract—Deep neural network (DNN) based end-to-end op-
timization in the complex time-frequency (T-F) domain or time
domain has shown considerable potential in monaural speech sepa-
ration. Many recent studies optimize loss functions defined solely in
the time or complex domain, without including a loss on magnitude.
Although such loss functions typically produce better scores if
the evaluation metrics are objective time-domain metrics, they
however produce worse scores on speech quality and intelligibility
metrics and usually lead to worse speech recognition performance,
compared with including a loss on magnitude. While this phe-
nomenon has been experimentally observed by many studies, it
is often not accurately explained and there lacks a thorough under-
standing on its fundamental cause. This letter provides a novel view
from the perspective of the implicit compensation between esti-
mated magnitude and phase. Analytical results based on monaural
speech separation and robust automatic speech recognition (ASR)
tasks in noisy-reverberant conditions support the validity of our
view.

Index Terms—End-to-end optimization, speech enhancement,
speaker separation, phase estimatiion, deep learning.

I. INTRODUCTION

D EEP learning has elevated the performance of speech sepa-
ration in the past decade. Early DNN based approaches op-

erated in the magnitude domain, where DNNs were trained based
on magnitude features to predict target magnitudes directly or via
estimating T-F masks, and the mixture phase was used for signal
re-synthesis [1]. Popular T-F masks include the ideal binary/ratio
mask [1], ideal amplitude mask (IAM) [2], and phase-sensitive
mask (PSM) [3]. To obtain better phase for re-synthesis, subse-
quent studies estimated it by using DNN-estimated magnitudes
to drive iterative phase reconstruction (IPR) algorithms [4]–[7].
Building upon deep learning based end-to-end optimization, re-
cent studies implicitly estimate phase by predicting the real and
imaginary (RI) components of target speech from the mixture
RI components [8]–[14], or predicting target waveforms from
the mixture waveform [15]–[19]. This end-to-end approach has
shown large improvements over magnitude-domain approaches.
Many studies along this line define their loss functions only in
the time domain to optimize for example SI-SDR [17], or in
the complex domain to minimize an Lp-norm distance between
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predicted and target RI components [10], [20]. Some studies
add a loss on the magnitude of the predicted RI components or
waveforms [5], [9], [11]–[14], [18], [19], [21]–[26]. This loss
is reported to produce clear improvements in speech quality,
intelligibility, and ASR scores with slightly worse SI-SDR re-
sults [11]–[14]. Although this phenomenon has been experimen-
tally observed in many studies, its fundamental cause is often
misinterpreted or not thoroughly analyzed.

Our study provides a novel explanation to this observation.
Our insight is that, since phase is always difficult to estimate
accurately, if the loss is defined solely in the complex or time
domain, the magnitude of the estimated speech will tend to
compensate for an inaccurate phase estimate, leading to a less ac-
curate magnitude compared with the one obtained by including
a magnitude loss, or, alternatively, training a magnitude-domain
model for direct magnitude estimation. We shall point out that
many techniques in this letter have been proposed before. Our
contribution is a novel view on why they work well and under
what conditions they would work less well. Such a view can
facilitate understanding and guide algorithmic design in speech
separation.

II. END-TO-END SPEECH SEPARATION

We review two popular end-to-end approaches for speech
separation. Given a monaural mixture, the physical model re-
lating the mixture y, target s, and non-target signals v can be
formulated in the time domain as y[n] = s[n] + v[n], where
n indexes discrete time. In the short-time Fourier transform
(STFT) domain, the physical model is formulated as

Y (t, f) = S(t, f) + V (t, f), (1)

where Y , S, and V respectively denote the STFT spectra of y,
s, and v, and t and f index time and frequency.

A. Complex-Domain Separation

Complex spectral mapping [8]–[12] predicts target RI com-
ponents from the mixture RI components, simultaneously mod-
eling magnitude and phase. A typical loss is

LRI = ‖R̂− Real(S)‖1 + ‖Î − Imag(S)‖1, (2)

where R̂ and Î are the predicted RI components, Real(·) and
Imag(·) extract RI components, and ‖ · ‖1 computes the L1

norm. The separation result is Ŝ = R̂+ jÎ , where j is the
imaginary unit. Inverse STFT (iSTFT) is then applied for signal
re-synthesis. In [11]–[14], it is suggested that STFT(iSTFT(Ŝ))
is very close to Ŝ, meaning that the magnitude and phase of the
estimated complex spectrogram produced by complex spectral
mapping are almost consistent with each other.
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Fig. 1. Complex-plane illustration of magnitude-phase compensation.

A magnitude loss can be added [11]–[14]:

LRI+Mag = LRI + ‖|R̂+ jÎ| − |S|‖1, (3)

where | · | extracts magnitude. One can also train through iSTFT
and define the loss in the time domain [5], [6], [20]:

LRI-iSTFT = ‖iSTFT(Ŝ)− s‖1. (4)

Note that iSTFT(Ŝ) is the final signal listened to by end users
and used for metric computation. To improve its magnitude, a
magnitude loss can be included [21]–[24]:

LRI-iSTFT+Mag = LRI-iSTFT +
∥∥|STFT

(
iSTFT

(
Ŝ
))

| − |S|∥∥
1
.

(5)

An alternative computes the magnitude loss before iSTFT:

LMag+RI-iSTFT = ‖|R̂+ jÎ| − |S|‖1 + LRI-iSTFT. (6)

Some studies apply a power compression on the predicted
magnitude before computing the loss [22], [27], use a weight
between the time- and magnitude-domain loss, or define the
loss on magnitude features [28], [29] or on multi-resolution
magnitudes [19]. They are out of the scope of this letter.

B. Time-Domain Separation

Time-domain approaches predict the target waveform directly
from the mixture waveform [15]–[19], [30]. They implicitly
model magnitude and phase through end-to-end optimization.
The loss is typically defined solely in the time domain, in the
form of mean absolute/square error (or their log-compressed
versions and SI-SDR [31]) as

LWav = ‖ŝ− s‖1, (7)

where ŝ denotes the predicted waveform. Later studies [18], [19]
incorporate a magnitude-domain loss

LWav+Mag = LWav + ‖|STFT(ŝ)| − |S|‖1. (8)

III. COMPENSATION BETWEEN MAGNITUDE AND PHASE

This section describes the compensation problem, and loss
functions that lead to better magnitude or phase estimation.

A. The Compensation Problem

Training a model using (2) or (7) essentially tries to find an
estimated speech Ŝ(t, f) that can approximate clean speech
S(t, f) at each T-F unit. See Fig. 1(a) for an illustration.
Because phase is generally difficult to estimate, ∠Ŝ(t, f) is
typically very different from ∠S(t, f), especially in T-F units
with low signal-to-noise ratio (SNR). In such cases, the closest
approximation of S(t, f) is the projection of S(t, f) onto the di-
rection determined by∠Ŝ(t, f). This approximation, however, is
incapable of recovering the clean magnitude, and the difference

between the two becomes larger as ∠Ŝ(t, f) gets away from
∠S(t, f). If ∠Ŝ(t, f) is more than π/2 away from ∠S(t, f), the
best approximation would lead to a zero magnitude, as illustrated
in Fig. 1(b).

By including a loss on magnitude in (3) or (8), the DNN
prediction is encouraged to find a balance between complex-
and magnitude-domain approximations. This balance explains
why adding a loss on magnitude leads to better perceptual eval-
uation of speech quality (PESQ) [32] and extended short-time
objective intelligibility (eSTOI) [33] scores, because they favor
an estimated target time-domain signal that has an accurate
magnitude, rather than a compensated, less accurate one. We
point out that eSTOI and STOI [33] only look at the magnitude
envelope of the predicted signal, and PESQ [32] first time-aligns
the predicted signal with the reference segment-wisely, forgiving
any segmental time delays, and then looks at their short-time
Bark-scale power spectra. This balance also suggests that the
degradation in time-domain metrics, such as SI-SDR [31], is due
to the magnitude loss pushing Ŝ(t, f) away from the closest ap-
proximation of S(t, f) along the direction of ∠Ŝ(t, f). Indeed,
SI-SDR [31] measures the quality of time-domain sample-level
predictions, and hence favors estimated speech with a magnitude
spectrogram that compensates for its inaccurate phase spectro-
gram.

This compensation view is motivated by the PSM (defined
as |S|/|Y |cos(∠S − ∠Y )) [3], proposed to find the magnitude
closest toS(t, f) along the direction of∠Y (t, f) for magnitude-
domain speech enhancement. The PSM explicitly considers the
compensation so that the SNR of the target estimate can be
maximized when ∠Y is used for signal re-synthesis. Our key
contribution is to show that this compensation problem, often
neglected, implicitly exists in many end-to-end approaches,
which usually improve upon the mixture phase but still can-
not perfectly reconstruct the clean phase. Our study is also
the first to comprehensively analyze the consequences of this
compensation problem on multiple popular evaluation metrics,
and emphasizes the effectiveness of including a magnitude loss.
Such an analysis does not exist in [3] and other previous works.

B. Magnitude Spectrogram Approximation

This compensation view suggests that, in cases where we only
need a good estimated magnitude and do not have to estimate
or leverage phase, it may be better not modelling magnitude
and phase simultaneously. One such scenario is robust ASR
based on monaural speech enhancement [34], where the recog-
nition model typically only considers magnitude features. In
such cases, direct target magnitude spectrogram approximation
(MSA) [3] would likely lead to better magnitude estimation and
produce better performance, as the resulting magnitude is not a
compensated one. The typical loss function is

LMSA = ‖M̂ − |S|‖1, (9)

where M̂ denotes estimated magnitude. Eq (9) can be consid-
ered as a teacher-forcing technique [7], [35], assuming that the
estimated speech has the same phase as target speech, i.e.,

LMSA = ‖M̂ej∠S − |S|ej∠S‖1. (10)

This way, the implicit compensation between magnitude and
phase is avoided, because the best approximation of S(t, f)
along the direction of ∠S(t, f) is |S(t, f)|. One potential issue
with MSA is that when signal re-synthesis is needed, the mixture

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 03,2022 at 21:41:42 UTC from IEEE Xplore.  Restrictions apply. 



2020 IEEE SIGNAL PROCESSING LETTERS, VOL. 28, 2021

phase is typically used together with the estimated magnitude.
This usually leads to sub-optimal SI-SDR, as the best approx-
imation of S(t, f) along ∠Y (t, f) should have a compensated
magnitude. In addition, due to the phase inconsistency issue [6],
[22], [36], [37], the magnitude of the re-synthesized signal
|STFT(iSTFT(M̂ej∠Y ))| would not be as good as M̂ . This is
likely the reason why it is observed in [34] that extracting ASR
features directly from estimated magnitudes, rather than from
re-synthesized signals by using the mixture phase, produces
better ASR results.

An alternative formulation of MSA uses the RI model of (5),
but uses a weight of zero on the time-domain loss [38]:

L(RI-iSTFT)×0+Mag =
∥∥|STFT

(
iSTFT(Ŝ)

)
| − |S|∥∥

1
. (11)

We can also do this for the time-domain model in (8) [39]:

LWav×0+Mag = ‖|STFT(ŝ)| − |S|‖1. (12)

Essentially, the models are trained to produce a time-domain
signal with a good magnitude. This signal is likely to have
a phase not strictly aligned with the clean phase [38], hence
would have worse SI-SDR, but would still have reasonable
PESQ, STOI, and WER scores, as its magnitude is good. Such a
signal could still be good for human listening [38], as the human
auditory system is not sensitive to slight signal shift.

C. Phase Spectrogram Approximation

The previous sections assume that phase cannot be estimated
perfectly. Magnitude also cannot be estimated perfectly. In cases
where only phase estimates are needed, one could avoid the
influence of inaccurate magnitude estimates by supplying oracle
magnitudes and define a phase loss such as

LPhase = ‖Real(|S|ej∠(R̂+jÎ))− Real(S)‖1
+ ‖Imag(|S|ej∠(R̂+jÎ))− Imag(S)‖1. (13)

IV. EXPERIMENTAL SETUP

We validate our ideas on monaural speech enhancement,
speaker separation, and ASR tasks. This section describes the
datasets, system configurations, and evaluation metrics.

For speech enhancement, we use the WHAMR! corpus [40],
designed for noisy-reverberant 2-speaker separation. We tailor
the task to noisy-reverberant speech enhancement by removing
the second speaker in each mixture. We use the min and 16 kHz
version of the corpus, and the first channel for training and evalu-
ation. We use the target direct sound as the reference for training
and metric computation, and perform joint dereverberation and
denoising.

For speaker separation, we use the SMS-WSJ dataset [41],
sampled at 8 kHz. It contains simulated reverberant 2-speaker
mixtures. The first channel is used for training and evaluation.
We use the direct sound as the training target and perform joint
dereverberation, denoising, and separation. For ASR, we use the
default Kaldi-based backend trained on single-speaker noisy-
reverberant speech data plus its corresponding direct sound data.
The window length (WL) and hop length (HL) for ASR feature
extraction are 25 ms and 10 ms.

For STFT, our separation models use regular 32/8 ms WL/HL
for WHAMR!, but 25/10 ms WL/HL for SMS-WSJ to align with
the ASR backend. For complex spectral mapping and MSA, we
use the DenseUNet-TCN architecture [13]. For MSA, we use |Y |
as features to directly predict |S|. The same architecture is also

TABLE I
SI-SDR (dB), PESQ, ESTOI (%), MSNR (dB), AND PSNR (dB) ON WHAMR!

(ENH)

used for phase-sensitive spectrogram approximation (PSA) [3].
The feature is |Y | and the loss is

LPSA = ‖M̂ − |S|T1
0 (cos(∠S − ∠Y )) ‖1, (14)

where T1
0(·) truncates the values to the range [0,1]. For time-

domain approaches, we employ Conv-TasNet [17], where the
WL/HL are 5/2.5 ms. For speaker separation, the loss functions
follow (2)-(14), but we additionally use permutation free (a.k.a.
invariant) training [42]–[44].

Our evaluation metrics include SI-SDR [31], eSTOI [33],
[45], PESQ [32], [46], and word error rates (WER). We point
out that SI-SDR is very sensitive to signal shift, while the other
measures are not, as magnitude is not sensitive to slight signal
shifts. Additionally, we use magnitude SNR (mSNR) [43] to
measure the quality of estimated magnitude,

mSNR = 10 log10

∑
t,f |S(t, f)|2∑

t,f

∣∣|S(t, f)| − |Ŝ(t, f)|∣∣2
, (15)

and phase SNR (pSNR) to measure that of estimated phase,

pSNR = 10 log10

∑
t,f |S(t, f)|2∑

t,f

∣∣S(t, f)− |S(t, f)|ej∠Ŝ(t,f)
∣∣2 , (16)

where oracle magnitude is supplied for metric computation.

V. EVALUATION RESULTS

Table I reports the results on WHAMR!’s enhancement task.
The magnitude loss in RI-iSTFT+Mag, Mag+RI-iSTFT, and
Wav+Mag is computed using 32/8 ms WL/HL. Comparing RI
and RI+Mag, RI-iSTFT and RI-iSTFT+Mag, RI-iSTFT and
Mag+RI-iSTFT, and Wav and Wav+Mag, we observe clear im-
provement in PESQ and eSTOI, better mSNR, and slight degra-
dation in SI-SDR, when a magnitude-domain loss is included
and signal re-synthesis is performed. This observation indicates
that the estimated magnitude would implicitly compensate for
the inaccurate phase estimate when the loss is defined only in the
complex- or time-domain, and adding a loss on magnitude would
alleviate such compensation. With signal re-synthesis, Mag+RI-
iSTFT shows worse performance than RI-iSTFT+Mag.
MSA with re-synthesis shows worse SI-SDR than complex-
domain models, likely because MSA uses the mixture phase
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Fig. 2. 2D histograms for various models. The x-axis is the phase difference
cos(∠S(t, f)− ∠Y (t, f)), which gets smaller as ∠Y (t, f) gets away from
∠S(t, f), and the y-axis is the magnitude ratio M̂(t, f)/|S(t, f)| (truncated
to the range [0,2]). For RI and RI+Mag, M̂ = |R̂+ jÎ| (i.e., no re-synthesis).
For Wav and Wav+Mag, M̂ is extracted from the re-synthesized signal. In this
example, the mixture mSNR is -2.3 dB, and the output mSNRs are 12.4, 11.0,
12.1, 10.7 and 11.3 dB for the MSA, RI, RI+Mag, WA and WA+Mag models,
respectively. Before plotting, we throw away T-F units whose energy in |S| is
more than 60 dB weaker than the highest-energy T-F unit.

for re-synthesis. However, MSA without re-synthesis obtains the
best mSNR at 10.9 dB. This suggests that to obtain a good magni-
tude, one can consider avoiding modelling magnitude and phase
at the same time. Similarly, the Phase model trained with (13)
obtains the best pSNR at 12.4 dB. Adding a magnitude loss de-
grades pSNR (for example 10.8 vs. 10.4 dB for RI vs. RI+Mag).
This indicates the improvement over the mixture phase comes
from using a strong DNN model for direct complex- or time-
domain prediction, rather than from adding the magnitude loss,
a key point that is not discussed in [18]. By only optimizing
the magnitude loss, (RI-iSTFT)×0+Mag shows better PESQ,
eSTOI and mSNR than RI-iSTFT+Mag, and worse but still good
SI-SDR and pSNR scores, even though no time-domain loss is
included. This indicates the complex-domain model implicitly
figures out a reasonably-good phase that can produce a good
magnitude. (RI-iSTFT)×0+Mag produces worse mSNR than
MSA (12.9 vs. 13.1 dB), possibly because the magnitude has
to be extracted from a time-domain signal, which may limit
the model’s capability at magnitude estimation. Wav×0+Mag
obtains good mSNR, PESQ, and eSTOI, but much worse SI-SDR
and pSNR scores. This degradation might be due to the small
WL in Conv-TasNet. The Wav×0+Mag results provide a strong
experimental evidence showing that PESQ and eSTOI scores
largely depend on the magnitude of the estimated signal.

To illustrate the compensation of estimated magnitudes when
mixture phase ∠Y (t, f) is different from clean phase ∠S(t, f),
we provide two-dimensional (2D) histograms of phase differ-
ence vs. magnitude ratios in Fig. 2, based on a test mixture
of WHAMR!. See the caption for the definitions of the axes
and other details. Comparing MSA and RI, we observe that
the magnitude ratios by MSA are overall closer to the dashed
line, which denotes the case of perfect magnitude estimation.
This indicates that MSA produces better magnitude estimation.
In addition, for RI, many estimated magnitudes are much smaller
than the clean magnitudes (i.e., near the bottom of the plot),
while the magnitude ratios in MSA are much less dense near
the bottom. This suggests that when ∠Y (t, f) is different from
∠S(t, f) and hence ∠Ŝ(t, f) likely differs from ∠S(t, f), RI
compresses (or sacrifices) the estimated magnitude to better
approximate S(t, f), while MSA does not because MSA as-
sumes that∠Ŝ(t, f) = ∠S(t, f). Adding a magnitude loss to RI,
RI+Mag improves the magnitude estimation, but still produces
less accurate magnitude than MSA, as the magnitude ratios
are more spread out than MSA when ∠Y (t, f) is different
from ∠S(t, f). Similar trends are observed in the WA and
WA+Mag plots. These histograms indicate the validity of the

TABLE II
SI-SDR (dB), PESQ, ESTOI (%), MSNR (dB), AND WER (%) ON SMS-WSJ

magnitude-phase compensation phenomenon, and that direct
MSA produces better magnitudes.

Table II reports the results on SMS-WSJ. In this setup, the
magnitude loss in RI-iSTFT+Mag and Wav+Mag is computed
based on 25/10 ms WL/HL. Adding a magnitude loss leads to
clearly better WER for RI, RI-iSTFT, and Wav. MSA exhibits
strong WER with no re-synthesis at 33.87%, and competitive
WER with re-synthesis at 32.84%, possibly because ∠Y used
for re-synthesis does not dramatically degrade the magnitude.
The trend on the other metrics is similar to that in Table I.

In both tables, we report oracle real-valued T-F mask-
ing scores of IAM (|S|/|Y |) [2] and PSM [3], both using
∠Y for re-synthesis. IAM makes an aggressive step |S(t, f)|
along ∠Y (t, f), while PSM makes a less aggressive step
|S(t, f)|cos(∠S(t, f)− ∠Y (t, f)), considering that ∠Y (t, f)
is different from ∠S(t, f). PSM shows better SI-SDR, as the
masked mixture spectrum is closer to the clean one. IAM with
re-synthesis shows better mSNR and WER than PSM, likely
because the magnitude used for re-synthesis is oracle and the
re-synthesized signal still has a reasonable magnitude, even
though ∠Y is used for re-synthesis. Comparing MSA and PSA,
we observe that PSA obtains better SI-SDR while worse scores
on the other metrics that favor a good magnitude. The PSA model
shows worse performance than end-to-end models.

VI. CONCLUSION

We have provided a novel view on the implicit compensation
between estimated magnitude and phase in DNN based speech
separation. This view provides a fundamental understanding of
the performance differences between including and not includ-
ing a magnitude-domain loss for training. This understanding
can benefit the design of many source separation algorithms and
has broad implications. For example, when using time-domain
models as benchmarks and PESQ, STOI, or WER as the evalu-
ation metrics, a study should consider training its time-domain
models with a magnitude-domain loss in combination with a
time-domain loss. Another such example is monaural sound
event detection that performs separation before detection, where
many studies train the separator to optimize SI-SDR [47], [48].
One could train the separator by including a magnitude loss, as
the detector is usually trained on energy features, or train the
separator jointly with the detector to only optimize the detection
loss, similarly to the joint frontend and backend training [49],
[50] in robust ASR.
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