Cross-Talk Reduction

Zhong-Qiu Wang¹, Anurag Kumar², and Shinji Watanabe³

¹Southern University of Science and Technology, China

²Meta Reality Labs Research, USA

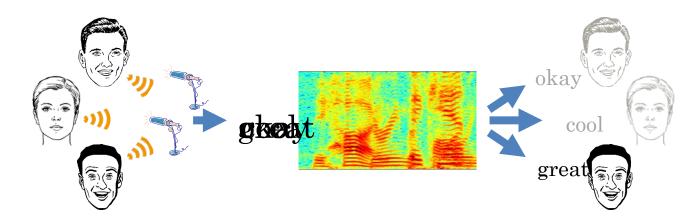
³Carnegie Mellon University, USA

http://zqwang7.github.io/

IJCAI JEJU 2024

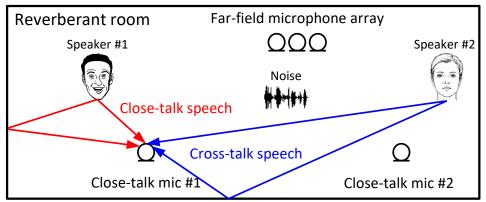
Introduction I

- ☐ In many ML / Al applications
 - Sensors usually capture a mixture of target and non-target signals
 - Non-target signals dramatically degrade machine perception
- \square Multi-speaker audio source separation (a.k.a., the cocktail party problem)
 - Separate mixed speaker signals to individual speaker signals
 - Cross-talk reduction falls into this domain



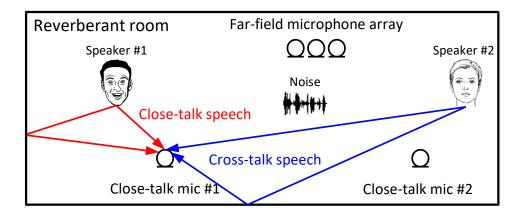
Introduction II

- During data collection, close-talk mixtures are often recorded along with far-field mixtures using close-talk microphones
 - o e.g., binaural / lapel microphones
- ☐ Close-talk mixture = close-talk speech + cross-talk speech + non-speech signals (e.g., noises)
 - Close-talk speech is often very strong
 - Cross-talk speech by other speakers could also be strong



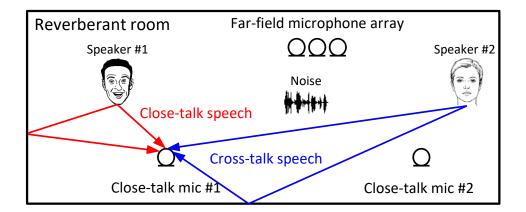
Introduction III

- ☐ We propose a novel task: cross-talk reduction (CTR)
 - Reduce cross-talk speech and enhance close-talk speech in each close-talk mixture
- ☐ CTR could enable many applications
 - Generate pseudo-labels for real-recorded far-field mixtures
 - o Generate pseudo-reference signals for metric computation
 - Reduce labeling efforts of annotators



Introduction IV

- Supervised CTRnet on simulated data?
 - Leverage room simulators
 - Train supervised DNNs on simulated pairs of close-talk mixtures and clean speech
 - Usually have limited generalizability to real-recorded mixtures
- ☐ We propose unsupervised / weakly-supervised CTRnet
 - Can be trained directly on real data, potentially realizing better generalizability



Physical model

Assuming P far-field mics, and C speakers (each wearing a close-talk mic)

close-talk mixture c: $Y_c(t,f) = \sum_{c'=1}^{C} X_c(c',t,f) + \varepsilon_c(t,f)$ Image of speaker c' at close-talk mixture p: $Y_p(t,f) = \sum_{c=1}^{C} X_p(c,t,f) + \varepsilon_p(t,f)$ Image of speaker c Image of speaker c Image of speaker c

Reverberant room

Speaker #1

Noise

Close-talk speech

Close-talk mic #1

Close-talk mic #2

at far-field mic p

Physical model

• Assuming *P* far-field mics, and *C* speakers, each wearing a close-talk mic

close-talk mixture
$$c$$
: $Y_c(t,f) = \sum_{c'=1}^C X_c(c',t,f) + \varepsilon_c(t,f)$ far-field mixture p : $Y_p(t,f) = \sum_{c=1}^C X_p(c,t,f) + \varepsilon_p(t,f)$ Each speaker's image at each mic can be reproduced by linearly $Y_c(t,f) = Z(c,t,f) + \sum_{c'=1,c'\neq c}^C X_c(c',t,f) + \varepsilon_c(t,f)$ $Y_c(t,f) = Z(c,t,f) + \sum_{c'=1,c'\neq c}^C X_c(c',t,f) + \varepsilon_c(t,f)$ $Y_c(t,f) = Z(c,t,f) + \sum_{c'=1,c'\neq c}^C Z_c(c',f) = Z(c,t,f) + \sum_{c'=1,c'\neq c}^C Z_c(c',f) = Z(c,t,f) + \varepsilon_c(t,f)$

- Physical model
 - Assuming P far-field mics, and C speakers, each wearing a close-talk mic

close-talk mixture
$$c$$
: $Y_c(t,f) = \sum_{c'=1}^C X_c(c',t,f) + \varepsilon_c(t,f)$ far-field mixture p : $Y_p(t,f) = \sum_{c=1}^C X_p(c,t,f) + \varepsilon_p(t,f)$ Each speaker's image at each mic can be reproduced by linearly

• Let $Z(c) = X_c(c)$ denotes close-talk speech of speaker c filtering its close-talk speech $Y_c(t,f) = Z(c,t,f) + \sum_{c'=1,c'\neq c}^{C} X_c(c',t,f) + \varepsilon_c(t,f)$

$$= Z(c,t,f) + \sum_{\substack{c'=1,c'\neq c}}^{C} \mathbf{g}_{c}(c',f)^{\mathrm{H}} \widetilde{\mathbf{Z}}(c',t,f) + \varepsilon_{c}'(t,f)$$

$$= Z(c,t,f) + \sum_{\substack{c'=1,c'\neq c}}^{C} \mathbf{g}_{c}(c',f)^{\mathrm{H}} \widetilde{\mathbf{Z}}(c',t,f) + \varepsilon_{c}'(t,f)$$

$$Y_{p}(t,f) = \sum_{\substack{c=1}}^{C} \mathbf{g}_{p}(c,f)^{\mathrm{H}} \widetilde{\mathbf{Z}}(c,t,f) + \varepsilon_{p}'(t,f) \quad \longleftarrow$$

8

$$\underset{\mathbf{Z}(\cdot,\cdot,\cdot),\ \mathbf{g}.(\cdot,\cdot)}{\operatorname{argmin}} \sum_{c=1}^{C} \sum_{t,f} \left| Y_c(t,f) - \mathbf{Z}(c,t,f) - \sum_{c'=1,c'\neq c}^{C} \mathbf{g}_c(c',f)^{\mathsf{H}} \, \widetilde{\mathbf{Z}}(c',t,f) \right|^2$$
 Find source and filter most consistent with physical model
$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \mathbf{g}_p(c,f)^{\mathsf{H}} \, \widetilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$\text{Let } \boldsymbol{Z}(c) = \boldsymbol{X}_c(c) \text{ denotes close-talk speech of speaker } c$$

$$Y_c(t,f) = \boldsymbol{Z}(c,t,f) + \sum_{\substack{c'=1,c'\neq c}}^{C} \boldsymbol{X}_c(c',t,f) + \varepsilon_c(t,f)$$

$$= \boldsymbol{Z}(c,t,f) + \sum_{\substack{c'=1,c'\neq c}}^{C} \boldsymbol{g}_c(c',f)^{\text{H}} \, \boldsymbol{\tilde{Z}}(c',t,f) + \varepsilon'_c(t,f)$$

$$Y_p(t,f) = \sum_{\substack{c=1}}^{C} \boldsymbol{g}_p(c,f)^{\text{H}} \, \boldsymbol{\tilde{Z}}(c,t,f) + \varepsilon'_p(t,f)$$

$$\underset{\mathbf{Z}(\cdot,\cdot,\cdot), \mathbf{g}.(\cdot,\cdot)}{\operatorname{argmin}} \sum_{c=1}^{C} \sum_{t,f} \left| Y_{c}(t,f) - \mathbf{Z}(c,t,f) - \sum_{c'=1,c'\neq c}^{C} \mathbf{g}_{c}(c',f)^{\mathsf{H}} \, \widetilde{\mathbf{Z}}(c',t,f) \right|^{2} + \sum_{p=1}^{P} \sum_{t,f} \left| Y_{p}(t,f) - \sum_{c=1}^{C} \mathbf{g}_{p}(c,f)^{\mathsf{H}} \, \widetilde{\mathbf{Z}}(c,t,f) \right|^{2}$$

A blind deconvolution problem [Levin+2011]

(not solvable if not assuming prior knowledge about the filter or source)

Our solution:

model speech pattern via unsupervised deep learning

Unsupervised CTRnet

Unsupervised CTRnet

$$\mathcal{L}_{\text{MC}} = \sum_{c=1}^{C} \sum_{t,f} \left| Y_c(t,f) - \hat{\boldsymbol{Z}}(c,t,f) - \sum_{c'=1,c'\neq c}^{C} \hat{\boldsymbol{g}}_c(c',f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c',t,f) \right|^2$$
Optimizing mixture-constraint (MC) loss
$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$\hat{\boldsymbol{Z}}(1), \dots, \hat{\boldsymbol{Z}}(C)$$

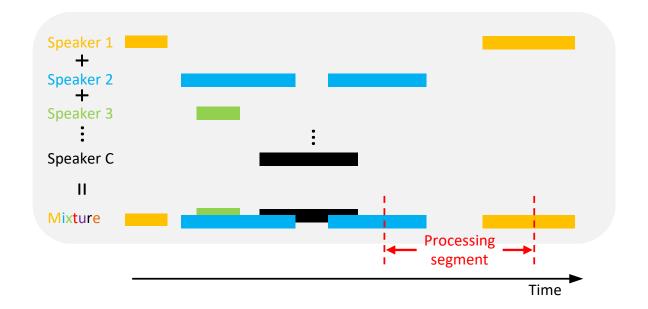
$$\text{ONN}$$

$$\text{ONN}$$

$$| Y_1, \dots, Y_C; Y_1, \dots, Y_P |$$

Unsupervised CTRnet

- Often over-/under-separate mixed speakers, because
 - #active speakers is time-varying
 - Hypothesized #speakers does not match true #speakers



Weakly-supervised CTRnet

$$\mathcal{L}_{\text{MC}} = \sum_{c=1}^{C} \sum_{t,f} \left| Y_c(t,f) - \hat{\boldsymbol{Z}}(c,t,f) - \sum_{c'=1,c'\neq c}^{C} \hat{\boldsymbol{g}}_c(c',f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c',t,f) \right|^2$$
Optimizing mixture-constraint (MC) loss
$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,f) \right|^2$$

$$= \sum_{t,f} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,f) \right|^2$$

$$= \sum_{t,f} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,f) \right|^2$$

$$= \sum_{t,f} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{Z}}(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,f) \right|^2$$

$$= \sum_{t,f} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{Z}}(c,f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c,f) \right|^2$$

$$= \sum_{t,f} \sum_{t$$

Weakly-supervised CTRnet

$$\mathcal{L}_{\text{MC}} = \sum_{c=1}^{C} \sum_{t,f} \left| Y_c(t,f) - \hat{\boldsymbol{Z}}(c,t,f) - \sum_{c'=1,c'\neq c}^{C} \hat{\boldsymbol{g}}_c(c',f)^{\mathsf{H}} \, \tilde{\boldsymbol{Z}}(c',t,f) \right|^2$$
Optimizing mixture-constraint (MC) loss
$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{p=1}^{C} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\boldsymbol{g}}_p(c,f)^{\mathsf{H}} \tilde{\boldsymbol{Z}}(c,t,f) \right|^2$$

$$= \sum_{t,f} \sum_{t,f} \left| Y_p(t,f) - \sum_{t,f} \sum_{t,f} \left| Y_p(t,f) - \sum_{t,f}$$

Weakly-supervised CTRnet

$$\mathcal{L}_{\text{MC}} = \sum_{c=1}^{C} \sum_{t,f} \left| Y_c(t,f) - \hat{Z}(c,t,f) - \sum_{c'=1,c'\neq c}^{C} \hat{\mathbf{g}}_c(c',f)^{\mathsf{H}} \, \tilde{\mathbf{Z}}(c',t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

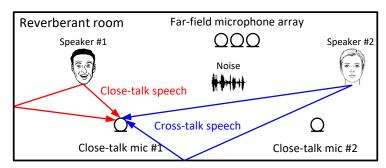
$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g}}_p(c,f)^{\mathsf{H}} \tilde{\mathbf{Z}}(c,t,f) \right|^2$$

$$+ \sum_{p=1}^{P} \sum_{t,f} \left| Y_p(t,f) - \sum_{c=1}^{C} \hat{\mathbf{g$$

Evaluation Results – Simulated Data

- ☐ On a simulated dataset based SMS-WSJ
 - 2-speaker mixtures
 - Reverb + weak noise
 - fully-overlapped speakers

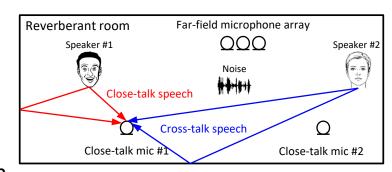


Systems	SI-SDR (dB) ↑	SDR (dB) ↑	PESQ ↑	eSTOI↑
Unprocessed mixture	14.7	14.7	2.92	0.875
Unsupervised CTRnet	26.5	26.8	3.88	0.973
SC [Boeddeker, 2019] IVA [Scheibler and Saijo, 2022]	-1.9 22.6	$7.1 \\ 23.7$	2.27 3.66	$0.561 \\ 0.948$

- Unsupervised CTRnet works almost perfectly in simulated cases
- ☐ Better than spatial clustering (SC) and independent vector analysis (IVA)

Evaluation Results – Real Data

- ☐ CHiME-7 close-talk mixtures
 - 4-speaker mixtures
 - Noisy-reverb
 - Sparse speaker overlap
 - Conversational setup
- ☐ Use speech recognition performance for comparison



							DA-WER (%) ↓		
Row	Systems	Muting?	I	J	C	P	Val.	Test	
0	Unprocessed mixture	-	-	-	4	-	28.3	27.8	
1	Unsupervised CTRnet	-	19	1	4	4	22.5	25.1	
2	Weakly-supervised CTRnet	X	19	1	4	4	79.1	73.0	
3	Weakly-supervised CTRnet	1	19	1	4	4	20.5	22.6	
4	GSS [Boeddecker et al., 2018]	-	-	-	4	4	26.2	26.6	

- Weakly-supervised CTRnet better than unsupervised CTRnet
- Better than guided sourceseparation (GSS)

Conclusion

- □ CTRnet
 - Can be trained directly on real data
 - Can effectively reduce cross-talk speech on real data
- ☐ Our learning based methodology for blind deconvolution shows strong potential on challenging real data such as CHiME-7

Thanks!

Definition of $\tilde{Z}(c,t,f)$

$$\tilde{\overline{Z}}(c,t,f) = \begin{bmatrix} \hat{Z}(c,t-I,f), \\ \dots \\ \hat{Z}(c,t,f), \\ \dots \\ \hat{Z}(c,t+J,f) \end{bmatrix} \in \mathbb{C}^{I+1+J}, \operatorname{stack} I+1+J \operatorname{nearby} T-F \operatorname{units}$$