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1. Motivation 2. Formulating CTR as blind deconvolution
Close-talk mixture has a high input SNR of target speaker, but often |dPhysical model
contains significant cross-talk speech * Assuming P far-field mics, and C speakers, each wearing a close-talk mic
C
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dLet Z(c) = X.(c) denotes close-talk speech of speaker ¢
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JCross-talk reduction (CTR) aims at reducing cross-talk speech and Yp(t,f) = c=1gp(c’ OV Z(c,t, )+ eyt f)

enhancing close-talk speech
* Could enable many applications, e.g.,

JCTR via blind deconvolution
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o Generate pseudo-labels for rc?al-recorded fa.r-field mixtu.res argmin Z Z Y.(t, ) = Z(c,t, f) — ZC g.c . OHHZc e, )

o Generate pseudo-reference signals for metric computation 20, 8.0) b 4= ¢'=1c"%c

o Reduce labeling efforts of annotators o P - 5

J Supervised CTRnet on simu. data? + Z Z Y,(t, f) — Z - gy(c AR Zct, )
e Suffers from generalization issues, as simu. data often mismatches real data p=1 t,f c=1
d We propose un_/Weakly_Supervised CTRnet  Not SOIVable, If not assuming priOr knOWIGdge about filter or source
« Can be trained directly on real data, realizing better generalizability dOur solution: model speech patterns via unsupervised deep learning
v 3. Unsupervised CTRnet
! dlnput: real & imag. of all close-talk and far-field mixtures
——;:3‘9 'ﬁr:;:~ JOutput: real & imag. of close-talk speech of each speaker
o ' y % Loss: mixture-constraint loss
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dLinear filter g.(:,-) is estimated via FCP [Wang+2021]
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[ DItIN ] ~ ( f) ] Ya(t;f)_ga(c;f)H Z(C;tif)|
g,(c, f) = arg min z
{ : ga(c.f) “ 1Y, (t, f)I?
Y. forc € {1,...,C}; Y, forp € {1, ..., P}] » a indexes all P far-field and C close-talk mics
4. Weakly-supervised CTRnet 5. Experiments
dRealistic speaker overlap is sparse and time-varying JOn a simu. dataset (2-speaker, reverb, weak noise, fully-overlapped)
 Unsupervised CTRnet works, better than spatial clustering (SC) and IVA
Spe:lzerz Systems I J C P Masking/Mapping « H/L SI-SDR (dB) 1 SDR (dB) 1 PESQ 1 eSTOI 1
+ Unprocessed mixture - - - - - - - 14.7 14.7 2.92 0.875
: : Unsupervised CTRnet 30 0 2 6 Mapping 1/P 1/ — 26.5 26.8 3.88 0.973
Speaker C |
SC [Boeddeker, 2019] - - - 6 - - - —1.9 7.1 2.27 0.561
I . . IVA [Scheibler and Saijo, 2022] - - - 6 - - - 22.6 23.7 3.66  0.948
ture ﬁ'Processing i Table 1: Averaged separation results of unsupervised CTRnet on SMS-WSJ-FF-CT.
- —>! . .
L ceemen __, dOn real-recorded CHIME-7 (4-speaker, reverb, noisy, sparse overlap)
dUnsupervised CTRnet often under-/over-separates mixed speakers DA-WER (%) |
* Like clustering, assuming more clusters =2 smaller clusters, but some should be | Row Systems Muting? I J C P Val.  Test ,
, Weakly-supervised CTRnet
merged 0 Unprocessed mixture - - - 4 - 283 278 ,
. C e L , better than (1) unsupervised
1 Our solution: leverage speaker-activity timestamps I Unsupervised CTRnet - 191 4 4225 251 . and ded
N ] ] , 2 Weakly-supervised CTRnet X 191 4 4 79.1 73.0 CTRnet; an (2) guliaea source
 Letd(c) € {0,1}" denote timestamps of speaker ¢, with N denoting #samples 3 Weakly-supervised CTRnet v 19 1 4 4 20.5 22.6 separation (GSS)
* Muting during training: avoid using predictions in silent ranges for FCP 4 GSS [Boeddecker eral.. 2018] - - - 4 4 26.2 26.6
Z(c,t, ) :=27(ctf) X D(c,t) X E(c) Table 3: ASR results of CTRnet on CHiME-7 close-talk mixtures.
Speaker ¢ active Speaker ¢ active in the 6_ Concl usion
at frame t? training segment?

JCTRnet can be trained on real data and can effectively reduce cross-

A talk speech on real data

Lop, = 12(c)0 — d(e)ll, N — lld()ll dThe proposed un-/weakly-supervised learning based methodology for
| 1y.©(1 = d(c))lly N blind deconvolution works on challenging real data such as CHIME-7

* Speaker-activity loss: predictions in silent ranges should be zero




