

The 33rd International Joint Conference on Artificial Intelligence, 3 – 9 August 2024, Jeju Island, South Korea

SUSTech Cross-Talk Reduction

JCA

Southern University of Science and Technology

Meta University

Carnegie Mellon

Zhong-Qiu Wang¹, Anurag Kumar², and Shinji Watanabe³

¹Southern University of Science and Technology, China ²Meta Reality Labs Research, USA ³Carnegie Mellon University, USA

1. Motivation

Close-talk mixture has a high input SNR of target speaker, but often contains significant cross-talk speech

2. Formulating CTR as blind deconvolution

Physical model

- Assuming P far-field mics, and C speakers, each wearing a close-talk mic
- Close-talk mixture *c*: $Y_c(t, f) = \sum_{\substack{c'=1 \\ C}}^{C} X_c(c', t, f) + \varepsilon_c(t, f)$ Far-field mixture *p*: $Y_p(t, f) = \sum_{\substack{c=1 \\ C}}^{C} X_p(c, t, f) + \varepsilon_p(t, f)$ indexes mics

 \Box Let $Z(c) = X_c(c)$ denotes close-talk speech of speaker c

Cross-talk reduction (CTR) aims at reducing cross-talk speech and enhancing close-talk speech

- Could enable many applications, e.g.,
 - Generate pseudo-labels for real-recorded far-field mixtures
 - Generate pseudo-reference signals for metric computation
 - Reduce labeling efforts of annotators
- Supervised CTRnet on simu. data?
 - Suffers from generalization issues, as simu. data often mismatches real data \bullet
- We propose un-/weakly-supervised CTRnet
 - Can be trained directly on real data, realizing better generalizability ullet

$Y_c(t,f) = Z(c,t,f) + \sum_{c'=1,c'\neq c}^C X_c(c',t,f) + \varepsilon_c(t,f)$ $= Z(c,t,f) + \sum_{c'=1,c'\neq c}^{C} g_c(c',f)^{\mathrm{H}} \widetilde{Z}(c',t,f) + \varepsilon_c'(t,f)$

$$Y_p(t,f) = \sum_{c=1}^{C} \boldsymbol{g}_p(c,f)^{\mathrm{H}} \, \boldsymbol{\tilde{Z}}(c,t,f) + \varepsilon_p'(t,f)$$

CTR via blind deconvolution

• Not solvable, if not assuming prior knowledge about filter or source

Our solution: model speech patterns via unsupervised deep learning

Output: real & imag. of close-talk speech of each speaker

Table 1: Averaged separation results of unsupervised CTRnet on SMS-WSJ-FF-CT.

Unsupervised CTRnet often under-/over-separates mixed speakers

- Like clustering, assuming more clusters \rightarrow smaller clusters, but some should be ulletmerged
- Our solution: leverage speaker-activity timestamps
 - Let $d(c) \in \{0,1\}^N$ denote timestamps of speaker c, with N denoting #samples
 - Muting during training: avoid using predictions in silent ranges for FCP

$$\hat{Z}(c,t,f) := \hat{Z}(c,t,f) \times D(c,t) \times E(c)$$

Speaker *c* active in the Speaker *c* active at frame *t*? training segment?

Speaker-activity loss: predictions in silent ranges should be zero

$$\mathcal{L}_{\text{SA},c} = \frac{\|\hat{z}(c) \odot (1 - d(c))\|_1}{\|y_c \odot (1 - d(c))\|_1} \times \frac{N - \|d(c)\|_1}{N}$$

On real-recorded CHiME-7 (4-speaker, reverb, noisy, sparse overlap)

							DA-WER (%) \downarrow		
Row	Systems	Muting?	Ι	J	C	P	Val.	Test	 Weakly-supervised CTRnet bottor than (1) unsupervised
0	Unprocessed mixture	-	-	_	4	-	28.3	27.8	
1	Unsupervised CTRnet	_	19	1	4	4	22.5	$\frac{1}{22.5}$ $\frac{25.1}{25.1}$ (TPneti and (2) guided	- Detter than (1) unsupervised
2	Weakly-supervised CTRnet	×	19	1	4	4	79.1	73.0	CIRIEL, and (Z) guided source
3	Weakly-supervised CTRnet	\checkmark	19	1	4	4	20.5	22.6	separation (GSS)
4	GSS [Boeddecker et al., 2018]	-	_	-	4	4	26.2	26.2 26.6	
Table 3: ASR results of CTRnet on CHiME-7 close-talk mixtures.									
6. Conclusion									
ICT talk	Rnet can be traine	ed on ata	rea	al	da	ata	a ar	id can	effectively reduce cross-

The proposed un-/weakly-supervised learning based methodology for blind deconvolution works on challenging real data such as CHiME-7