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ABSTRACT 

 
Speech separation or enhancement algorithms seldom exploit 

information about phoneme identities. In this study, we propose a 

novel phoneme-specific speech separation method. Rather than 

training a single global model to enhance all the frames, we train a 

separate model for each phoneme to process its corresponding 

frames. A robust ASR system is employed to identify the phoneme 

identity of each frame. This way, the information from ASR 

systems and language models can directly influence speech 

separation by selecting a phoneme-specific model to use at the test 

stage. In addition, phoneme-specific models have fewer variations 

to model and do not exhibit the data imbalance problem. The 

improved enhancement results can in turn help recognition. 

Experiments on the corpus of the second CHiME speech separation 

and recognition challenge (task-2) demonstrate the effectiveness of 

this method in terms of objective measures of speech intelligibility 

and quality, as well as recognition performance. 

 

Index Terms— speech separation, robust ASR, deep neural 

networks, ideal ratio mask, signal approximation 

 

1. INTRODUCTION 

 
Speech separation and recognition are not two independent tasks. 

They can clearly benefit from each other. It is intuitive that 

improved speech separation can boost the performance of robust 

ASR, and many studies in robust ASR are therefore focusing on 

improving speech separation [10]. Speech recognition can also 

elevate speech separation. One can imagine that if the performance 

of speech recognition is perfect, we can leverage recognized 

speech to assist speech separation [7].  But currently, the 

performance of speech recognition is still far from perfect, 

especially in low SNR conditions and reverberant environments. In 

some recent studies, first pass recognition results or outputs from 

acoustic models are used as augmented features to improve speech 

separation [31][11] or de-reverberation [12]. In [15][5][29], novel 

frameworks which jointly optimize separation frontends and 

acoustic models are proposed, while only ASR improvement is 

observed. In [13], constraints from language models are utilized to 

restrict separation frontends to produce semantically plausible 

enhancement.  

We believe that high-level information from language models 

can help speech separation just like in the ASR decoding.  

However, language models are about the relationships among 

words, or in a wider sense, among phonemes or states, and speech 

separation is traditionally done at the signal level or in the time-

frequency domain. There is clearly a gap between them that is not 

easily bridged. To bring the information of language models to 

bear on speech separation, one has to address the issue of how to 

improve speech separation if we somehow know the underlying 

word, phoneme or state identities of a corrupted utterance.  

In this study, we propose to train a separate separation 

frontend for each phoneme based on deep neural networks 

(DNNs). At the test stage, a strong robust ASR system based on 

the DNN-HMM hybrid approach is utilized to obtain the phoneme 

identity of each frame, from which a phoneme-specific model is 

selected to perform enhancement.  

The motivation for training phoneme-specific models is that, 

if we train a separate separation frontend for each phoneme, the 

performance of speech separation should be improved since each 

individual model has fewer variations to model. In addition, speech 

data is highly unbalanced in terms of phoneme distribution. If only 

one global model is trained on all the data, under-represented 

phonemes may not be properly modeled. Obviously, the 

performance of the ASR system is critical in our method. Although 

recognizers make errors, especially on utterances in low SNR 

conditions or corrupted by nonstationary noises and reverberation, 

modern ASR systems can still recognize most words or phonemes 

correctly. 

We want to mention that a similar phoneme-dependent non-

negative matrix factorization (NMF) approach was proposed in 

[19]. Unlike the proposed approach, it employs NMF models and 

weaker ASR methods. In addition, no quantitative enhancement 

results are presented in their paper. The motivation of our study is 

to utilize the information from ASR systems and language models 

to help speech separation. From a general viewpoint, our approach 

is also similar to the mixture of experts method [8] in some sense, 

where the input space is partitioned into different sub-regions, each 

of which is processed by a local expert. 

The rest of this paper is organized as follows. We describe our 

system in section 2. Experimental setup and results are presented in 

sections 3 and 4.  We conclude this paper in section 5.  

 

2. SYSTEM DESCRIPTION 

 
Our system is developed in a step-by-step manner. We first build a 

T-F masking based speech separation frontend using DNNs. We 

further improve the separation frontend by switching to a better 

loss function. The refined separation frontend is then used as the 

initialization for training phoneme-specific models. Finally, we 

build a robust ASR system to identify phoneme identities at the test 

stage. 

 



2.1. Mask Estimation 

 
Originated from computational auditory scene analysis [24], 

supervised T-F masking based methods have shown substantial 

potential for speech separation [32] and robust ASR [29][14][27]. 

The key idea is to train a powerful learning machine to estimate an 

ideal mask at the training stage. With the estimated mask, 

enhancement results can be obtained by point-wise multiplication 

at the test stage. In [28], it is shown that the ideal ratio mask (IRM) 

[16], a mask that represents the ratio of speech energy over sum of 

speech energy and noise energy within each T-F unit, is likely to 

be a better target over other ideal masks. Recently, DNNs are 

employed for mask estimation and have shown promising 

separation performance in matched or unmatched conditions 

[32][25]. In this context, we use DNNs to estimate IRMs in this 

study as our first speech separation baseline. 

The IRM in this study is defined in the power spectrogram 

domain: 

 

 
𝑀(𝑡, 𝑓) =

𝑆(𝑡, 𝑓)

𝑆(𝑡, 𝑓) + 𝑁(𝑡, 𝑓)
 (1) 

 

where 𝑀 is the ideal ratio mask of a noisy utterance created by 

mixing a clean utterance with a noise signal at a specific SNR 

level, 𝑆 is the power spectrogram of the clean utterance, 𝑁 is the 

power spectrogram of the noise signal, and 𝑡 and 𝑓 index time and 

frequency, respectively. 

The IRM must be estimated at the test stage. We utilize a 

DNN with four hidden layers each with 1024 rectified linear units 

(ReLUs) for mask estimation. Sigmoid units are used in the output 

layer. The input to the DNN is log compressed power spectrogram 

with a 19-frame context window, and the output corresponds to the 

label of the central frame. For signals with 16 kHz sampling rate 

and 20 ms window length, the input dimension would be 3059 

(161*19) and the output dimension be 161. Note that the log power 

spectrogram feature is globally mean variance normalized before 

splicing. The network is trained to optimize the mean square error 

frame-wisely using mini-batch stochastic gradient descent with 

momentum and Adagrad [3] starting from random initialization. 

The dropout rates for the input layer and all the hidden layers are 

set to 0.3. A development set is used for parameter tuning and 

early stopping. 

After obtaining the estimated mask of a noisy utterance, we 

use the following method to get the enhanced power spectrogram: 

 

 𝑋∗ = (𝑀∗)𝛼 ⊗𝑋 (2)   

 

where 𝑋∗ is the enhanced power spectrogram, 𝑀∗ is the estimated 

mask, 𝑋 represents the power spectrogram of the noisy utterance, 

and ⊗ stands for pointwise matrix multiplication. A tunable 𝛼 

term is used to scale the estimated mask according to a power law 

[17]. In this study, we always set 𝛼 to 1.0 when resynthesizing 

enhanced time-domain signals. The phase of the noisy utterance is 

directly utilized for re-synthesis. 

 

2.2. Signal Approximation 

 
One problem of the mask estimation method presented in the 

previous section is that even if we can estimate the mask perfectly, 

we cannot reconstruct the exact spectrogram of clean speech using 

Eq. (2). In addition, direct mask estimation considers all the T-F 

units equally important, without considering the underlying 

mixture energy or clean speech energy within each T-F unit. To 

directly obtain the power spectrogram of clean speech, [33] and [6] 

propose to directly learn a mapping from corrupted speech to clean 

speech. However, the output is not naturally bounded in a 

reasonable range, such as between 0 and 1, which can be well 

estimated. In [31][4][30], a tradeoff between these two methods 

called signal approximation is proposed. The key idea is to use the 

square error between enhanced power spectrogram and target clean 

power spectrogram as the new loss function, i.e. 

 

 𝐿𝑆𝐴1(𝑀∗) =∑(𝑀∗(𝑡, 𝑓)𝑋(𝑡, 𝑓) − 𝑆(𝑡, 𝑓))2

𝑡,𝑓

 (3)   

In this study, we use a slightly different loss function as shown in 

Eq. (4). We think that performing a log compression is necessary 

since it greatly compresses the dynamic range of the loss function 

and hence the gradient would not be unfavorably large. In addition, 

after log compression, the distribution of clean power spectrogram 

at each channel is more Gaussian-like, and therefore can be 

reasonably modeled using the square loss function [1]. 

 

  𝐿
𝑆𝐴2(𝑀∗) =∑(log[𝑀∗(𝑡, 𝑓)𝑋(𝑡, 𝑓)] − log[𝑆(𝑡, 𝑓)])2

𝑡,𝑓

 (4)   

The parameter initialization strategy of DNNs for signal 

approximation is important. The performance of signal 

approximation is worse than mask estimation if both models are 

trained starting from random initialization. Following [31], only 

changing the loss function, we train the signal approximation DNN 

starting from a well-trained mask estimation DNN until 

convergence. The resulting model gives us much better results than 

the mask estimation DNN with the same number of parameters. 

We also use the method in Eq. (2) for resynthesizing time-domain 

signals. 

 

2.3. Phoneme-specific Speech Separation 

 
After obtaining a global separation frontend based on the signal 

approximation loss function in Eq. (4), we then use this model as 

the initialization for training each phoneme-specific model. There 

are 40 phonemes (including silence) in our system. We cut the 

training data into 40 pieces based on each frame’s phoneme 

identity, and further train each model using the loss function in Eq. 

(4) until convergence. The mean and variance of the training data 

for each phoneme-specific DNN are calculated only from the 

corresponding frames of each phoneme. The DNN setup and 

training recipes follow the DNN training in previous sections. 

 

2.4. Acoustic Modeling 
 

The performance of the ASR system is critical in our system. 

Higher ASR performance leads to better selections of phoneme-

specific DNNs. In this study, we use a DNN with 7 hidden layers 

each with 2048 ReLUs for acoustic modeling. The acoustic models 

are trained to estimate the posterior probabilities of senone states 

by minimizing the cross-entropy criteria. Following our previous 

study [29], in addition to the commonly used log mel filterbank 

feature, we add more robust features for acoustic modeling. The 

resulting multi-stream ASR system uses the following features: 



 40-dimensional log mel spectrogram (MEL) together with its 

deltas and double deltas. Sentence level mean normalization is 

performed before splicing 11 frames; 

 31-dimensional power normalized cepstral coefficients 

(PNCC) [9] together with its deltas and double deltas. We 

further splice 11 frames. The PNCC feature is found to be 

relatively robust to reverberation and noise; 

 256-dimensional multi-resolution cochleagram (MRCG) [2] 

together with its deltas and double deltas. The MRCG is 

shown to be good at handling additive noise and mask 

estimation; 

 A 915-dimensional feature set [26] which combines RASTA-

PLP, amplitude modulation spectrogram (AMS), narrowband 

MFCC and wideband MFCC. This feature set is found to have 

complementary power for mask estimation [26]. It also leads 

to improvement for acoustic modeling in [29]. We denote it as 

“Fset” in this study. 

If we concatenate all the features mentioned above for acoustic 

modeling, the input dimension would be 4026 

(40*3*11+31*3*11+256*3+915). All the features are globally 

mean variance normalized before DNN training.  

 

3. EXPERIMENTAL SETUP 

 
We validate our method on the reverberant and noisy CHiME-2 

dataset (task-2) [23]
1
. The reverberant utterances are created by 

convolving the clean utterances in the WSJ0-5k corpus with 

various binaural room impulse responses measured from a 

domestic living room. The reverberant utterances are then digitally 

mixed with a rich set of realistic noises recorded from the same 

room setup, such as children’s laughter, competing speakers, 

footsteps, background music, distant noises, and sounds from 

electronic devices, to create reverberant and noisy utterances at six 

                                                 
1
Available at http://spandh.dcs.shef.ac.uk/chime_challenge/chime2013/WSJ0/.    

SNR levels linearly spaced from -6dB to 9dB. The multi-

conditional training set contains 7138 utterances in total (~14.5h). 

The development set has 409 utterances at each SNR level (~4.5h). 

The test set consists of 330 utterances at each SNR level (~4h). 

With the parallel clean, reverberant noise-free and noisy-

reverberant data available, we can readily evaluate the performance 

of speech separation together with recognition.  

Our system is monaural. We average all the binaural signals 

in the dataset. Note that this is the same as the delay-and-sum 

beamforming since the speaker is facing the microphones with 

azimuth approximately 0 degrees in the CHiME-2 setup. We first 

use the Kaldi toolkit [18] to build a GMM-HMM system on the 

clean utterances from the WSJ0-5k corpus to obtain the senone 

label of each frame in the multi-conditional dataset. Then we 

perform forced alignment on the clean utterances to get the initial 

clean alignments. The initial alignments are used to train a DNN 

based acoustic model using the MEL feature extracted from clean 

utterances, from which better alignments are obtained by 

performing forced alignment again. The resulting refined 

alignments are used to train all the other acoustic models in this 

study. There are 1965 senone states in total in our system. The 

acoustic models are trained on noisy speech directly since it lets 

the acoustic models see more variations at the training stage [21]. 

We think that the high-quality alignments generated from clean 

utterances can guide the acoustic models to better discriminate 

senone states even if input features are highly corrupted. We use 

the CMU pronunciation dictionary that contains 40 phonemes and 

the official 5k close-vocabulary trigram language model in our 

experiments. Note that the clean alignments are additionally used 

to cutting the training data for training phoneme-specific DNNs by 

simply transforming the state sequences to phoneme sequences. 

The separation frontends are trained using the parallel noisy-

reverberant and reverberant noise-free data. The mixed noise 

signals can be obtained by direct subtraction. With these data 

available, we can train a separation frontend based on mask 

estimation, a frontend based on signal approximation and 

TABLE I 

ASR PERFORMANCE (% WER) USING MULTI-CONDITION TRAINING WITH DIFFERENT FEATURES FOR ACOUSTIC MODELING 

Features for Acoustic Modeling 
dev. set test set 

Average -6dB -3dB 0dB 3dB 6dB 9dB Average 

MEL 19.40 26.77 20.49 16.14 12.80 10.67 10.11 16.16 

MEL+PNCC+MRCG+Fset 17.93 23.09 17.17 13.32 10.41 8.71 8.07 13.46 

Weninger et al.[30] 17.87 23.48 17.02 13.71 10.72 8.95 8.67 13.76 

 

TABLE II 

ASR PERFORMANCE (% WER) USING ENHANCED MEL+PNCC+MRCG+FSET FEATURE FOR DECODING 

Separation Frontends 𝛼 
dev. set test set 

Average -6dB -3dB 0dB 3dB 6dB 9dB Average 

Signal Approximation 1.0 18.28 23.65 17.21 13.75 10.46 8.63 8.14 13.64 
Signal Approximation 0.5 17.24 21.93 15.09 12.55 9.98 8.11 7.32 12.50 

Phoneme-Specific Enhancement (decoding results) 0.5 17.05 21.54 15.15 12.44 10.05 7.86 7.40 12.41 

Phoneme-Specific Enhancement (forced alignments) 0.5 13.79 16.68 11.68 9.79 8.24 6.93 6.73 10.01 

 

TABLE III 

PERFORMANCE COMPARISON AMONG DIFFERENT SEPARATION FRONTENDS IN TERMS OF STOI AND PESQ SCORES 

Separation Frontends 
test set 

-6dB -3dB 0dB 3dB 6dB 9dB 
STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ 

Unprocessed 0.737 2.138 0.778 2.327 0.813 2.492 0.852 2.662 0.881 2.854 0.909 3.049 

Mask Estimation 0.834 2.539 0.862 2.693 0.886 2.831 0.909 2.979 0.925 3.138 0.942 3.305 
Signal Approximation 0.849 2.699 0.878 2.849 0.899 2.979 0.918 3.114 0.931 3.254 0.946 3.404 

Phoneme-Specific Enhancement 0.861 2.731 0.886 2.884 0.905 3.011 0.922 3.146 0.935 3.284 0.949 3.430 

 

 

http://spandh.dcs.shef.ac.uk/chime_challenge/chime2013/WSJ0/


phoneme-specific models using the methods detailed before. Note 

that these separation frontends are built to only remove additive 

noise. 

 

4. EVALUATION RESULTS 

 

4.1. ASR Performance 
 

We first report the performance on ASR tasks. As shown in Table 

I, adding more robust features for acoustic modeling significantly 

reduces word error rates (WER). The 13.46 percent average WER 

is already absolute 0.3 percentage point better than the best result 

[30] reported by other studies to date. We think that it is because 

we use extra robust features, better DNNs for acoustic modeling, 

and better clean alignments. In the rest of this paper, we always use 

the acoustic model trained on the MEL+PNCC+MRCG+Fset feature 

for decoding. 

We then incorporate the separation frontend based on signal 

approximation into the robust ASR system. We first employ the 

separation frontend to get the enhanced power spectrogram using 

Eq. (2), which is then passed to the mel filterbank to obtain the 

enhanced MEL feature. Together with other robust features, the 

enhanced MEL feature is passed to the acoustic model for 

decoding. Note that we do not enhance other robust features since 

they are considered to be inherently robust. The results are 

presented in Table II. If we set the 𝛼 in Eq. (2) to 1.0 when 

generating enhanced power spectrogram, the performance is even 

worse than the baseline without any enhancement. This is probably 

because the separation frontend tries to suppress noise 

aggressively, therefore some information critical for senone states’ 

discrimination may be totally lost. Following [15], we set the 𝛼 to 

0.5 to preserve more energy in the enhanced power spectrogram. 

This way, we can obtain 0.96 percent (13.46% vs. 12.50%) average 

WER improvement on the test set. Since this model obtains the 

best ASR results, we use it to generate the phoneme sequences for 

choosing phoneme-specific models in later experiments. 

 

4.2. Speech Separation Performance 

 
We utilize the widely used Perceptual Estimation of Speech 

Quality (PESQ) [20] metric and Short-Time Objective 

Intelligibility (STOI) [22] score to measure the objective 

performance in terms of speech quality and intelligibility, 

respectively. We use the averaged reverberant noise-free signals as 

the references when calculating these two scores since the 

separation frontends in this study only try to remove additive noise. 

Note that, again, we set the 𝛼 in Eq. (2) to 1.0 when resynthesizing 

enhanced signals. The results are shown in Table III. We can see 

that, compared with unprocessed speech, both mask estimation and 

signal approximation based methods significantly improve STOI 

and PESQ scores. The signal approximation method gets better 

results than the mask estimation method especially in low SNR 

conditions. We then use the decoding results generated from our 

current best ASR model (the second entry in Table II) to select 

phoneme-specific models for enhancement. The results are 

presented in the last entry of Table III. Compared with using a 

global separation frontend, phoneme-specific processing 

consistently improves STOI and PESQ scores in all SNR 

conditions, even though the ASR system makes errors.  

An interesting question to ask is whether the improved 

separation results can further improve recognition. Note that we 

use the decoding results to select phoneme-specific frontends to 

obtain the enhanced MEL feature, which is then fed into the 

acoustic model for decoding. However, we only get slight 

improvement on the development set and test set, as shown in the 

third entry of Table II. This may be due to the false selection of 

phoneme-specific models resulting from the erroneous first pass 

decoding results. Nonetheless, we want to point out that if we have 

the correct phoneme sequences according to which we can select 

phoneme-specific models perfectly, the ASR performance can be 

improved significantly, as reported in the last entry of Table II. The 

perfect phoneme sequences are obtained by performing forced 

alignment on the clean utterances of the development and test set 

in the WSJ0-5k corpus. 

 

5. CONCLUDING REMARKS 
 

In this paper, we have proposed a novel phoneme-specific 

processing method for speech separation. Consistent improvement 

in objective measures of speech intelligibility and quality, and 

recognition rate is observed. To incorporate the information from 

language models into speech separation, one important issue is 

what to do when we know the word, phoneme or state identities of 

a test utterance. Training phoneme-specific models is one such 

method. Future research should focus on other alternative methods. 
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