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ABSTRACT

Automatic Speech Recognition systems suffer from severe
performance degradation in the presence of myriad compli-
cating factors such as noise, reverberation, multiple speech
sources, multiple recording devices, etc. Previous challenges
have sparked much innovation when it comes to designing
systems capable of handling these complications. In this spirit,
the CHiME-3 challenge presents system builders with the task
of recognizing speech in a real-world noisy setting wherein
speakers talk to an array of 6 microphones in a tablet. In order
to address these issues, we explore the effectiveness of first
applying a model-based source separation mask to the output
of a beamformer that combines the source signals recorded by
each microphone, followed by a DNN-based front end spectral
mapper that predicts clean filterbank features. The source sepa-
ration algorithm MESSL (Model-based EM Source Separation
and Localization) has been extended from two channels to
multiple channels in order to meet the demands of the chal-
lenge. We report on interactions between the two systems,
cross-cut by the use of a robust beamforming algorithm called
BeamformIt. Evaluations of different system settings reveal
that combining MESSL and the spectral mapper together on
the baseline beamformer algorithm boosts the performance
substantially.

Index Terms— Robust Automatic Speech Recognition,
Deep Neural Networks, Spectral Feature Mapping, Multi-
channel Model-based Source Separation, Beamforming

1. INTRODUCTION

State-of-the-art ASR systems seem to be performing satisfac-
torily in clean environments. However, modern systems can
perform rather poorly in the presence of factors like additive
noise and reverberation delays. As a result, most of the re-
search in the field has shifted towards making more robust ASR
systems which can perform well even in noisy scenarios. The
field has set for itself challenges with increasing difficulty in
the last few years: In the CHiME-2 challenge [1], clean binau-
ral speech was corrupted with simulated noise corresponding
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to different SNR levels inside a family living-room setting.
Many groups, including ours, have worked with this dataset to
improve performance. The CHiME-3[2] dataset extends the
difficulty by providing not only artificially noisy speech, made
by combining clean speech with recorded background noise,
but also noisy speech recorded in public environments, like a
cafe, a bus, a street junction and pedestrian areas. The latter
data comes from people talking to a tablet with an array of six
microphones, giving rise to important challenges like how to
account for change of phase and signal strength across differ-
ent microphones, noise suppression, dealing with attenuated
speech within the signal. Systems are also exposed to different
kind of noises that have never been dealt with before.

In this work, we have extended MESSL (Model-Based
EM Source Separation and Localization), a source separation
algorithm for two-microphone recordings, to multiple micro-
phones, as required by the challenge. We have also attempted
to make good use of the CHiME-3 stereo data with the help of
a Deep Neural Network (DNN) based spectral mapper. Since
MESSL uses both temporal and spatial information, and the
front-end spectral mapper uses spectral information for enhanc-
ing the features, it seemed interesting to investigate whether
combining the two approaches might be complimentary and
bring about a gain in performance. Therefore, we compared
the interactions of these two with different beamforming al-
gorithms — the baseline enhancement beamformer provided
by the CHiME-3 challenge (Minimum-Variance Distortionless
Response Beamformer, or MVDR) and BeamformIt [3], a
beamformer from ICSI. Our experiments show that MESSL
performs well in both cases, whereas the spectral mapper
shows improvements only when used in conjunction with the
baseline beamformer enhancement algorithm.

The remainder of this paper is organized as follows: we
outline related work in Section 2. Subsequently in Section 3 we
describe how we integrated our previous model-based source
separation technique with both the baseline MVDR and Beam-
formIt beamformers, requiring an extension of the MESSL
algorithm to multiple microphones. We also discuss the ad-
dition of a spectral mapper trained to transduce beamformed
output into clean filterbank features. Section 4 reports on the
evaluation of our systems. We conclude with a brief discussion
(Section 5) of the evaluation of our systems and their potential
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Fig. 1. System diagram for combining beamforming, multi-channel MESSL, and spectral feature mapping.

to serve as a basis for future investigations.

2. RELATED WORK

Source separation and noise suppression have a long history in
automatic speech recognition. While early systems [4] were
only able to suppress stationary noise like those from fans and
ventilation systems, more recent results are able to suppress
or separate non-stationary noise [5], including simultaneous
talkers [6]. One popular recent approach is to predict a spec-
tral mask that indicates the degree to which speech or noise
dominates individual time-frequency points of a spectrogram
[7]. These mask-based separation approaches can be driven
by spectral [5] or spatial [8] information, and both have been
shown to reduce WERs significantly [5]. Model-based EM
Source Separation and Localization (MESSL) [9] predicts
these masks based on spatial information. Once a mask is esti-
mated, the simplest way to utilize it in ASR is to simply apply
it as a gain to the spectrogram and apply subsequent processing
unchanged. Such an approach has been shown to work well
if cepstral mean and variance normalization are applied [10].
More sophisticated approaches include treating the regions
where the mask is 0 as uncertain, but not silent, and imputing
the missing spectral information [11, 12] or accounting for this
uncertainty in the recognition process [13, 14].

More recently, deep neural network based approaches are
shown to be effective for feature learning and robust to envi-
ronment variations, particularly suited to using spectral infor-
mation for improving noise robustness in ASR as well as for
speech enhancement systems. DNNs can be used for acoustic
modeling that are trained directly with filterbank features in
conjunction with simple noise estimates [15]. Time-frequency
masks for speech separation can also be estimated with DNNs
using spectral information [5], which can further be jointly
trained with the acoustic model in a single DNN framework
[16, 17]. Alternatively, one can learn a spectral mapper to
transform noisy features into clean features and use them di-
rectly as inputs to ASR, which can be denoising auto-encoders
[18, 19, 20], or deep/recurrent neural networks [21, 22, 23, 24].
The transformed features can also be used to reconstruct the
speech waveform [25, 22]. These approaches have been shown
to work well where stereo (noisy and clean) data are available.

3. SYSTEM DESIGN

Our system tests out two major components, MESSL enhance-
ment and Spectral Mapping, in the context of two different

standard beamforming techniques. Figure 1 gives a block di-
agram of the overall system. In this section, we step through
the different components of the system.

3.1. Beamformers

The CHiME-3 challenge provided a baseline enhancement
system (minimum-variance distortionless-response, MVDR),
which performs tracking and smoothed estimation of dominant
source location over time, and then, with a noise spatial covari-
ance estimate, creates a subband minimum-variance distortion-
less response (MVDR) beamformer. The MVDR beamformer
uses its modeling power to both preserve the signal coming
from the target direction and to cancel noise signals coming
from other directions, as captured in the spatial covariance
matrix.

We also experimented with BeamformIt [3], a well-
engineered source tracker and delay-and-sum beamformer. It
tracks the dominant source in a mixture over time using cross-
correlations between microphone pairs and then performs a
Viterbi decoding to eliminate spurious time delay estimates. It
uses these estimates to perform delay-and-sum beamforming
in the identified target direction.

While the MVDR beamformer should provide better can-
cellation performance, we found that the source localization
of the baseline system was less robust than that of Beamfor-
mIt, leading to incorrect look directions, and severe signal
degradation. As we discuss in the next section, we used the
beamforming output to initialize MESSL. Therefore, a failed
localization often led to a failed separation, although MESSL
could sometimes recover from such a failure.

3.2. MESSL Enhancement

We augmented the beamforming systems (baseline MVDR and
BeamformIt) with a post-filter based on the output of Model-
based EM Source Separation and Localization (MESSL) [9].
Because MESSL was developed for binaural recordings, we
extended it to the multichannel case by modeling every pair
of channels with its own MESSL model, combining them in
the E-step of the EM algorithm. This required some care
in initialization, but mathematically the extension to the EM
algorithm is relatively straightforward.

MESSL performs source separation by clustering time-
frequency points based on their interaural phase and level
differences (IPD and ILD). It includes a latent variable repre-
senting interaural time difference (ITD) that connects the IPD
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models across frequency, solving the source permutation prob-
lem common to similar sub-band localization approaches. In
addition, this ITD latent variable allows MESSL to overcome
limitations imposed by spatial aliasing on similar systems,
because even though the IPD-to-ITD mapping is ambiguous
in the face of IPD phase wrapping at high frequencies, the
ITD-to-IPD mapping used by MESSL is unambiguous at all
frequencies.

The total log likelihood that MESSL maximizes is

Lp(Θ;φ, α) =
∑
ωt

log p(φ(ω, t), α(ω, t) |Θ) (1)

=
∑
ωt

log
∑
kτ

[
p(zkτ (ω, t) |Θ) (2)

· p(φ(ω, t), α(ω, t) | zkτ (ω, t),Θ)
]

where φ(ω, t) represents the IPD observations at each TF point,
α(ω, t) the ILD observations in dB, Θ the model parame-
ters, and zkτ (ω, t) the hidden variable representing which
source and delay each TF point comes from. The likeli-
hood p(φ(ω, t), α(ω, t) | zkτ (ω, t),Θ) is Gaussian, making
this a Gaussian mixture model. MESSL then performs sep-
aration using an EM algorithm. In the E-step, it estimates
p(zkτ (ω, t) |φ(ω, t), α(ω, t),Θ), the posterior probability of
each TF point coming from each source model. This provides
the time-frequency mask that can be used to separate each
source from the mixture. In the M-step, it re-estimates the IPD,
ILD, and ITD parameters for each model, Θ, from the masks
and the IPD and ILD observations.

In order to separate mixtures observed with more than
two microphones, we employ the pair-wise model on every
pair of channels. Thus, multichannel MESSL maximizes the
following total log likelihood

L(Θ;φ, α) =
2

N

N∑
i<j=1

Lp(Θij ;φij , αij) (3)

Adding together the pairwise log likelihoods is perhaps the
simplest way to combine these models and makes the assump-
tion that they are independent of one another. Because for
N microphones there are

(
N
2

)
= N(N − 1)/2 microphone

pairs, but onlyN−1 independent sources of pairwise informa-
tion, the assumption that all

(
N
2

)
observations are independent

causes an over-counting of evidence by a factor of N
2 . The

normalization of 2
N in (3) aims to correct this over-counting.

We then use an EM algorithm that coordinates the pairwise
models through their masks, as shown in Figure 2. The E-step
computes global, τ -independent masks

νk(ω, t) ∝
∏
i<j

(∑
τ

p(φij , αij | zkτ ,Θij)
)2/N

(4)

where the dependence of φij , αij , and zkτ on (ω, t) has been
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Fig. 2. System diagram showing E and M steps of multi-
channel MESSL.

omitted. These then modify the pairwise, τ -dependent masks

ν
(ij)
kτ (ω, t) ∝ p(φij , αij | zkτ ,Θij) · νk(ω, t) (5)

which are used to update the parameters of the pairwise models
in the M-step.

This approach makes no use of array geometry information,
making it robust to array mis-calibration and even completely
novel array configurations, but possibly limiting its perfor-
mance when the array geometry is known, as in CHiME3.
Without knowledge of array geometry, it is difficult to find a
correspondence between the parameters of the models of dif-
ferent microphone pairs. The time-frequency mask dominated
by each source, however, should be very consistent across all
microphones, and thus across microphone pairs.

Initializing the multi-channel model requires initializing
the pair-wise models and coordinating the source models
across microphone pairs. While there are many possibilities,
we explored initialization from ITDs derived from pairwise
cross-correlations and initialization from masks derived from
level differences between the beamformer output and the rear-
facing microphone 2. In pilot experiments, the mask-based
initialization performed best, and also had the advantage of
aligning the source models across microphone pairs without
a separate alignment step. Because the CHiME3 data con-
sists of a single target talker against distant background noise,
we model two sources: the target speaker, which is modeled
as a point source, i.e., having a single dominant ITD, and
everything else, which is modeled as approximately diffuse,
having a uniform distribution across ITD and a zero-mean,
wide-variance Gaussian for ILD.

We also utilize the recently introduced extension to
MESSL of inserting Markov random field mask smoothing
between the E and M steps [26] using the sum-product variant
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of loopy belief propagation (LBP). We furthermore introduce
here the use of the max-product variant of LBP to find the
maximum a posteriori binary mask in the same Markov
random field model after the last EM iteration, estimating a
globally consistent binary mask for each source from the soft
masks estimated by MESSL.

Preliminary experiments showed that using all pairs of
microphones led to higher quality separations than designating
a single microphone as reference. For the CHiME3 setup,
designating the rear-facing microphone 2 as the reference led
to more useful ILD cues, but less useful IPD cues. Similarly,
designating one of the front-facing microphones as reference
led to more reliable IPD cues, but less reliable ILD cues. A
model using all pairs of microphones is able to take advantage
of all of these varied relationships.

3.3. Spectral Mapping

In addition to the spatial patterning learned by MESSL, utiliz-
ing spectral mapping can also improve performance by learn-
ing the mapping of spectral patterns to filterbank outputs. We
train a DNN-based spectral mapper for feature denoising. In
our previous work [21], we have shown that a DNN-based
spectral mapper, which takes noisy spectrogram as input to
predict clean filterbank features for ASR, yields good results
on the CHiME-2 noisy and reverberant dataset. In order to test
the performance of this technique on a more real-world setting,
we use it in conjunction with various beamforming and mask
estimation systems in CHiME-3.

We extract spectrogram features from noisy speech as the
input to the spectral mapper. Specifically, we first divide the in-
put time-domain signals into 25-ms frames with a 10-ms frame
shift, and then apply short time Fourier transform (STFT) to
compute log spectral magnitudes in each time frame. For a 16
kHz signal, each frame contains 400 samples,and we use 512-
point Fourier transform to compute the magnitudes, forming a
257-dimensional log magnitude vector. Temporal dynamics
and feature splicing are known to improve performance, so we
use deltas and double-deltas with a splice context window of 5.
Hence the dimensionality of the input is 257 x 3 x 5 = 3855.

The output target of the spectral mapper is the clean fil-
terbank features of 40 channels for the central frame of the
context window. The objective function for optimization is
mean square error (MSE). We use the entire CHiME-3 training
set consisting of 7138 simulated noisy utterances and 1600 real
noisy utterances to train the spectral mapper. For the simulated
utterances, we can extract the ground truth from the parallel
clean Wall Street Journal (WSJ0) corpus SI84 training set. For
the real utterances, we use the close microphone channel as an
approximation to the clean ground truth.

The architecture of the network is shown in Figure 3. We
use 2 hidden layers and 4096 sigmoid neurons in each layer.
The input features are globally normalized to have zero mean
and unit variance over all feature vectors in the training set,

Fig. 3. Architecture of the DNN-based spectral mapper. The
inputs are the noisy log spectra of 5-frame context window
with deltas and double deltas, and the outputs are the clean
filterbank features of the central frame.

and filterbank training labels are normalized into the range of
[0,1] matched by the output layer sigmoid units. Training uses
back-propagation with mini-batch stochastic gradient descent,
and the optimization technique uses adaptive gradient descent
along with a momentum term. After training the spectral
mapper, we apply it to both training and test sets to generate
filterbank features as input to the backend ASR DNN system.

4. EVALUATION

4.1. Description of Acoustic Model

We have used the CHiME-3 recipe of the KALDI toolkit [27]
to build the ASR system. We have first trained a GMM-HMM
acoustic model. We have applied deltas and double-deltas on
13-dimensional MFCC features and used 7 frames of splic-
ing context window. These features are then decorrelated and
compressed into 40 dimensions using Linear discriminant anal-
ysis (LDA). Further decorrelation was done using Maximum
Likelihood Linear Transform (MLLT). Feature-space maxi-
mum likelihood linear regression (fMLLR) was applied on
the resulting features, which is estimated by speaker adaptive
training(SAT), reducing speaker variance. The GMM-HMM
system was a triphone system with around 2000 senone (tied
triphone state) targets.
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Dev WER Test WER
Beamformer MESSL SpecMap Sim Real Sim Real

None No No 13.4 14.6 17.7 28.1
None No Yes 16.0 18.5 22.4 35.5

MVDR No No 8.5 19.4 11.6 39.4
MVDR No Yes 9.2 17.2 11.9 34.7
MVDR Yes No 10.4 13.7 13.2 31.2
MVDR Yes Yes 11.4 14.0 16.3 30.3

BeamformIt No No 11.2 9.4 21.1 18.1
Beamformit No Yes 12.9 11.1 22.2 21.9
BeamformIt Yes No 11.5 9.0 21.0 16.3

Table 1. Experimental results on the CHiME3 development
and test sets, broken down across simulated and real recordings.
Bold indicates the best performing system for each evaluation
subset.

The DNN-HMM hybrid system was trained using the align-
ment generated by the GMM-HMM system. The DNN has 7
hidden layers, with 2048 sigmoid neurons in each layer and a
softmax output layer. Splicing context size for the filter-bank
features was fixed at 11, with the minibatch-size being 256.
Following [28], after DNN training, we realign the data with
the trained DNN and retrain the DNN using the new alignment.
We repeat this process for three times until the performance
become saturated. After that, we train the DNN with sMBR
sequence training to achieve better performance. We regen-
erate the lattices after the first iteration and train for 4 more
iterations. Note that we used the improved sequence training
proposed in [29] in the latest Kaldi version.

4.2. Results

Table 1 shows the results of experiments that combine vari-
ations in beamforming (none,1 MVDR, Beamformit), use of
MESSL, and use of Spectral Mapping; we report word error
rates broken down on the development and test sets between
real recordings and simulations. Results on real and simulated
data are quite negatively correlated with one another, i.e., tech-
niques that help one tend to hurt the other. In particular, this
can be seen in the performance of the different beamformers
without any other augmentation. The baseline MVDR beam-
former reduces WER on simulated test data by 6.1 percentage
points, but increases WER on the real test recordings by 11.3
percentage points over a single channel. BeamformIt, on the
other hand, increases WER on the simulated data by 3.5 per-
centage points, and reduces WER on real recordings by 10.2
percentage points. When additional processing is applied on
top of the beamformed results, the trend continues for the most
part. The real recordings test the abilities of these systems to
function in the real world, as they would be in a product, thus
we focus on those results as our ultimate measure of success.
Performance on the synthetic mixtures, compared to the real

1Here, none means that we take a single channel as reference and ignore
all other channels.

recordings, seems to suggest that the simulations are not very
reflective of reality.

Because the shortcomings of the baseline MVDR beam-
former and the advantages of BeamformIt only became appar-
ent late in the evaluation process once the test set was released,
we did not have time to run a full combination of systems on
top of BeamformIt. Results with the baseline beamformer,
which are consistent between development and test sets, show
that the addition of both MESSL and spectral mapping de-
crease WER, and that these performance improvements are
somewhat complementary, leading to the best performance on
real test data of 30.3% WER for the combined system: 9.1
percentage points lower than the WER of the baseline beam-
former alone, but still 2.2 percentage points higher than using
a single noisy microphone. On top of BeamformIt, MESSL
was able to improve performance on the real test data by an
absolute 1.8 percentage points, although there is no noticeable
improvement in the simulated test utterances. It is interesting
that the front-end spectral mapper makes matters worse when
used on top of Beamformit, increasing WER by 3.8 % in the
real test set and 1.1% in the simulated test set. We also ran the
spectral mapper on the single channel data, and found that this
also increases error, indicating that there may be significant
mismatch between our ground truth and the source signal.

Table 2 shows the WERs for BeamformIt alone and Beam-
formIt+MESSL, the best system, broken down by noise con-
dition and across the various datasets. In terms of conditions,
the bus seemed to be consistently the most difficult in the real
data. The bus recordings were also most difficult for MESSL,
which gave much larger improvements on the other conditions.
This might be because MESSL assumes sources are spatially
stationary throughout an entire utterance, while on the bus
there could have been more movement of the talker relative to
the microphones. Utilizing an online EM [30] implementation
of MESSL would relax this assumption and might improve
performance on the bus recordings.

5. DISCUSSION

While the overall trend of MESSL masks and spectral map-
ping improving performance separately and together was more
or less expected, the trends between beamformers, between
real and synthetic data, and between development and test sets
were not. In particular, as shown in Tables 1 and 2, the test
data turned out to be much harder than the development data,
especially for the baseline beamformer. It is not entirely clear
why this would be the case, but it could have to do with the
nature of the subjects who were recruited for each dataset. An-
other possibility is that the baseline beamformer was optimized
for the development set, and then had difficulty generalizing
to the test set. This issue was only discovered when the test
set was released, and it took some time to identify the prob-
lem and a solution for it, leaving less time to run extensive
experimentation on top of the BeamformIt output.
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System Recordings Set BUS CAF PED STR Average

BeamformIt Simulated Dev 9.8 13.8 9.2 12.2 11.2
BeamformIt + MESSL Simulated Dev 13.4 12.2 10.0 10.5 11.5
BeamformIt Simulated Test 14.9 22.2 23.4 24.1 21.1
BeamformIt + MESSL Simulated Test 23.1 17.3 18.8 24.9 21.0

BeamformIt Real Dev 11.5 9.0 6.8 10.2 9.4
BeamformIt + MESSL Real Dev 12.5 7.8 6.1 9.7 9.0
BeamformIt Real Test 24.8 17.8 16.3 13.3 18.1
BeamformIt + MESSL Real Test 24.7 14.0 13.7 12.9 16.3

Table 2. Comparison of WERs for BeamformIt by itself (baseline) and followed by MESSL (best system) on real and simulated
recordings in both dev and test sets broken down by environment: bus (BUS), café (CAF), pedestrian (PED), and street (STR).

In addition, the output of BeamformIt differed in at least
two ways from that of the baseline beamformer, which made
running additional systems on top of it more complicated.
Specifically, it applies a time-varying (and utterance-specific)
gain to its output, and appears to introduce an utterance-
specific delay of several milliseconds between its output and
the mic signals, including the reference close-talking mic.
Both of these differences make it difficult to use the spec-
tral mapper. For the delay, the spectral mapper is essentially
expected to predict an arbitrary delay of a frame in either direc-
tion. Utilizing a context of multiple neighboring frames around
an input frame helped to deal with this problem, but could not
solve it because of the seemingly random nature of the delays.
For the gain, the spectral mapper is expected to predict the
original gain of the reference signal from a gain-normalized in-
put file. We did not have time to find a solution to this problem,
hence the worse results in Table 1 for BeamformIt+SpecMap.

These differences in BeamformIt output also created a
difficulty for MESSL’s initialization. In particular, because
MESSL was initialized using a mask calculated from the ILD
between the beamformer output and the rear-facing mic 2,
gain variations in the beamformer output led to shifts of this
ILD derived from it. To overcome this issue, we switched
from generating the mask from an absolute ILD threshold to a
relative threshold: the 70th percentile of ILD values.

Another unforseen difficulty that only arose on the output
of BeamformIt was MESSL’s introduction of musical noise
and spectral coloring. In applying the binary mask derived
from MESSL’s estimates to the signal, we originally enforced
a maximum suppression of 40 dB. This turned out to be much
too harsh for subsequent ASR processing, and reducing this
maximum suppression to 9 dB, at which artifacts just started
to be audible, significantly improved ASR performance. This
number was not tuned, and we plan further experiments to find
the optimal value. This result implies that more suppression
might be possible if we were to use a more sophisticated
combination of the mask with the ASR process, such as the
analysis-by-synthesis approach proposed in [31].

The original design of our system utilized an additional set

of robust ASR features [17] on top of the output of the beam-
former+MESSL+spectral mapping. Adding robust features
to the system, including PNCC [32], MRCG [33], AMS [34],
RASTA-PLP [35] and MFCC features, has been shown to im-
prove spectral mapping performance in CHiME-2 [17, 36, 37].
Due to time constraints, we were only able to augment one
system with these features, with surprisingly equivocal results.
We plan to investigate why these supplemental features failed
to produce additional improvements on the CHiME-3 dataset.

6. CONCLUSION

This paper has described the combination of three system com-
ponents for increasing the noise robustness of an ASR front
end: beamforming, a mask-based post-filter, and spectral map-
ping. For beamforming, we found that BeamformIt led to
much lower word error rates than the baseline beamformer and
a single noisy microphone. For post-filtering, we introduced a
multi-channel variant of MESSL, which generates a spectral
mask by spatially clustering time-frequency points, and found
that it reduced WERs on top of all beamformers. For spectral
mapping, we found that a DNN-based front end spectral map-
per that predicts clean filterbank features from noisy spectra
reduced WERs on top of the baseline beamformer, in a way
that was complementary to MESSL. This improvement did
not hold on top of BeamformIt, most likely because of a data
mismatch problem, an unknown gain or delay present in the
output of BeamformIt.
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ment based on physiological and psychoacoustical mod-
els of modulation perception and binaural interaction,”
J. Acous. Soc. Am., vol. 95, no. 3, pp. 1593–1602, 1994.

[35] Hynek Hermansky and Nelson Morgan, “Rasta process-
ing of speech,” IEEE Tr. SAP, vol. 2, no. 4, pp. 578–589,
1994.

[36] Yuxuan Wang, Kun Han, and DeLiang Wang, “Exploring
monaural features for classification-based speech segre-
gation,” IEEE Tr. ASLP, vol. 21, no. 2, pp. 270–279,
2013.

[37] Arun Narayanan and DeLiang Wang, “Improving robust-
ness of deep neural network acoustic models via speech
separation and joint adaptive training,” IEEE/ACM
Tr. ASLP, vol. 23, no. 1, pp. 92–101, 2015.

503


