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Abstract

Microphone arrays are widely deployed in modern speech communication systems.
With multiple microphones, spatial information is available in addition to spectral cues to
improve speech enhancement, speaker separation and robust automatic speech recognition
(ASR) in noisy-reverberant environments. Conventionally, —multi-microphone
beamforming followed by monaural post-filtering is the dominant approach for multi-
channel speech enhancement. This approach requires an accurate estimate of target
direction, and power spectral density and covariance matrices of speech and noise. Such
estimation algorithms usually cannot achieve satisfactory accuracy in noisy and
reverberant conditions. Recently, riding on the development of deep neural networks
(DNN), time-frequency (T-F) masking and spectral mapping based approaches have been
established as the mainstream methodology for monaural (single-channel) speech
separation, including speech enhancement and speaker separation. This dissertation
investigates deep learning based microphone array processing and its application to speech
separation and localization, and robust ASR.

We start our work by exploring various ways of integrating speech enhancement and
acoustic modeling for single-channel robust ASR. We propose a training framework that

jointly trains enhancement frontends, filterbanks and backend acoustic models. We also
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apply sequence-discriminative training for sequence modeling and run-time unsupervised
adaptation to deal with training and testing mismatches.

One essential aspect of multi-channel processing is sound localization. We utilize deep
learning based T-F masking to identify T-F units dominated by target speaker and only use
these T-F units for speaker localization, as they contain much cleaner phases that are
informative for localization. This approach dramatically improves the robustness of
conventional cross-correlation, beamforming and subspace based approaches for speaker
localization in noisy-reverberant environments.

Building upon speaker localization, we next tightly integrate complementary spectral
and spatial cues for deep learning based multi-channel speaker separation in reverberant
environments. The key idea is to localize individual speakers and use the localization
results to design spatial features that can indicate whether each T-F unit is dominated by
the speech arriving from the estimated speaker direction. The spatial features are combined
with spectral features in an enhancement network to extract the speaker from an estimated
direction and with trained spectral structure. Strong separation performance has been
observed on reverberant talker-independent speaker separation tasks.

Before addressing multi-channel speech enhancement, we explore various magnitude
based phase reconstruction algorithms for monaural speaker separation. We also study
complex spectral mapping based phase estimation, where we directly predict the real and
imaginary components of target speech. We find that deep learning based magnitude
estimates clearly benefit phase reconstruction, and complex spectral mapping leads to

better phase estimation.
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We then apply complex spectral mapping to multi-channel speech dereverberation and
enhancement, where phase estimation is used to improve sound localization, time-invariant
and time-varying beamforming, and post-filtering. State-of-the-art performance has been
obtained on the enhancement and recognition tasks of the REVERB corpus and the
CHiME-4 dataset.

Finally, for fixed-geometry arrays, we propose multi-microphone complex spectral
mapping for speech dereverberation, where DNNs are used for time-varying non-linear
beamforming. We find that concatenating multiple microphone signals for complex
spectral mapping is a simple and effective way of integrating spectral and spatial

information for fixed-geometry arrays.
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Chapter 1. Introduction

1.1. Motivation

Recent years have witnessed a dramatic demand in voice-based interfaces for speech
communication, thanks in part to the wide adoption of deep learning. Amazon Echo and
Google Home, which feature an intelligent voice-controlled assistant, have been sold to
tens of millions of customers over the last five years. As such devices are deployed in
homes and offices, major technical challenges arise including how to reliably localize and
enhance a target speaker, separate competing speakers, and recognize their speech in
everyday environments with room reverberation and environmental noises. Far-field ASR,
for instance, is a widely acknowledged difficulty due to reverberation and noise.

Driven by Moore’s law in the past decades, modern electronic devices have gained
more and more computing capability. It is nowadays very common for a modern smart
device to have more than one microphone. For example, Amazon Echo features seven
microphones, Google Home two, and iPhone-7 has four microphones. An array of
microphones produces multiple recordings at the same time. Similar to the human auditory
system, spatial origins of the underlying sound sources can be computed from these
recordings as, for each source, the signal arrives at each microphone at a different time.

Such time difference of arrival (TDOA) information provides an informative cue



complementary to spectral (monaural) information for speech enhancement and separating
multiple speakers; for example, one can enhance or maintain signals from a particular
direction and suppress signals arriving from other angles.

Classical methods for multi-channel speech enhancement are mainly focused on using
beamforming to combine multiple signals and utilizing post-filtering for further noise and
reverberation reduction [40]. The beamforming approach designs a linear filter to boost or
maintain the signal from the target direction, while attenuate interferences from other
directions [157], [83], [40]. It requires accurate direction of arrival (DOA) estimation, and
speech and noise covariance matrix estimation. However, conventional DOA algorithms
such as generalized cross correlation with phase transform (GCC-PHAT) [80] and multiple
signal classification (MUSIC) [134] localize sound sources based on signal energy, and are
not robust to noise and reverberation. In addition, spatial covariance matrices are computed
based on silence intervals detected by conventional voice activity detectors. Such voice
activity detectors make strong stationarity assumptions on noise and usually fail to produce
satisfactory performance in real-world conditions where a variety of highly non-stationary
intrusions occur.

Multi-talker separation has been an active research area in the past two decades. Earlier
research efforts were mainly focused on multi-channel separation, as it was considered a
very difficult problem separating multiple speakers based on only spectral information.
The major cue exploited in multi-channel multi-talker separation is inter-channel phase
patterns, as they naturally form clusters within each frequency for spatially separated
directional sources with different time delays to the array [124]. This observation leads to

the popular narrow-band and wideband spatial clustering algorithms [70], [102], [131], and



independent component analysis based methods [78]. However, these algorithms only
utilize spatial information and do not offer a clear and promising mechanism to leverage
spectral information.

In recent years, DNNs [133] have been firmly established as the state-of-the-art
approach for single-channel speech enhancement [165], [161]. In this approach, a DNN is
typically trained to estimate a real-valued T-F mask to attenuate T-F units dominated by
reverberation and noise. Build upon the first DNN study on speech enhancement [165], a
subsequent study [55] found that DNN based monaural speech enhancement algorithms
led to, for the first time, substantial speech intelligibility improvements for hearing-
impaired listeners. Breakthroughs have also been made in single-channel talker-
independent speaker separation in [57] and [206], where novel neural network training
mechanisms are introduced to solve the label-permutation problem. These studies suggest
that magnitude estimation can be substantially improved using deep learning based T-F
masking, and point to new directions for single-channel speech enhancement and speaker
separation.

These studies also reveal new opportunities for multi-channel processing, since the
mask or magnitude estimation provides a powerful means for multi-channel tasks such as
acoustic beamforming, sound source localization and post-filtering. If a mask value at a T-
F unit is close to one, the phase at that unit is little contaminated, meaning that the inter-
channel phase patterns are relatively well manifested. Such T-F units can be utilized to
extract reliable spatial information for multi-channel speech enhancement and speaker

separation.



The rest of this chapter is organized as follows. Section 1.2 gives a more detailed review
of the technical background, defines the objectives of this dissertation, and introduces the

roadmap to achieve the objectives. Section 1.3 presents the organization of this dissertation.

1.2. Background, Objectives and Roadmap

Given a P -microphone time-domain mixture signal y[n] = [yl [n], ..., yp [n]]T €
RP*1 recorded in a reverberant and noisy enclosure, the physical model in the short-time

Fourier transform (STFT) domain is formulated as
Y(&,f) =S+ NG [f)=clt f;0S,¢ )+ N, f), (1.1)

where S, (t, f) € Cis the complex STFT coefficient of the direct-path signal of the target

speaker captured by a reference microphone q at time t and frequency f, and c(¢t, f; q) €
CP*! is the relative transfer function with the g™ element being one. S(t,f) =
c(t,f5q)S,(t, f), N(t, f) and Y (t, ) € CP**, respectively, represent the STET vectors of
the direct-path signal of a target source (i.e. target speech), non-target signals, and received
mixture at a T-F unit. Note that N denotes any non-target signals we aim to remove, such
as reverberation, noise or competing speakers.

One popular approach for multi-channel speech enhancement is multi-channel Wiener

filtering (MCWF) [40], which computes a linear filter per T-F unit to project the mixture

STFT vector to target speech by minimizing the following error function

£ (wmewd (e, £)) = E [[wmewd(e, )Y (&, £) = Syt O ], (12)



where wmWh (¢, £) € CP*1 denotes the oracle linear filter, Sq(t, f) € C represents the
STFT coefficient of the target speech captured by a reference microphone g at time t and
frequency f, (1) computes conjugate transpose, and |-| extracts magnitude. The
expectation operation is performed by assuming that N(t, f) and S(t, f) respectively
follow a zero-mean complex Gaussian distribution. The closed-form solution of this

optimization problem is

w0 (t, £) = (6002, ) SO, g

= (09N + o0& ) PO g (1.3)

(IS . NI°ett, fi et fi @) + D)) @O g

where ®E(t,f) , ®M(t,f) , and DPX(L, ) = dO(t, ) + dD(t, f) € CP*P
respectively denote the speech, noise and mixture spatial covariance matrices, respectively,
and u, is a one-hot vector with the q™ element being one. Since the target speaker is

directional (i.e. from a specific direction), the speech covariance matrix can be computed

as ®O)(t,f) = |Sq(t,f)|zc(t, ;e f;9)H, where |Sq(t, f)|2 € R denotes power
spectral density.

Under Woodbury matrix identity, Eq. (1.3) can be formulated as a product of a
minimum variance distortion-less response (MVDR) beamformer [40] and a Wiener filter

based real-valued post-filter

w(mewi) (t, f) = wy(mvdr) (t, f)PF(t, f) (1.4)



PO, ) et fi @) (1.5)
c(t, f; DR (t, ) ret, fiq)

w(mvdr) tf) =

PE(, f)

B W(mvdr) (t, f)H CD(S) (t, f)w(mvdr) (t, f) (16)
- w(mvdr) (t, f)Hq)(s) (t, f)w(mvdr) (t, f) + w(mvdr) (t, f)HcD(v) (t, f)w(mvdr) (t, f)

The post-filter PF(t, f) can be considered as a Wiener filter based on the energy of
beamformed speech and the energy of beamformed noise. The classic MVDR
beamforming results from solving the following constrained quadratic optimization

problem

wmvaD (¢, £) = argminy, 5y w(t, ¥ OO (L, (L, f)
subjectto w(t, )fc(t,f;q9) =1

(1.7)
The idea is to find a linear filter by minimizing noise energy while maintaining the signal
from the target direction.

The meaning of Eq. (1.4) is that the MVDR beamformer points a beam towards the
target speaker of interest and constructively combines multiple signals into a single one so
that the target speech is maintained distortionlessly while non-target signals from other
directions are suppressed. The post-filter is necessary to further reduce the residual noise
or reverberation in the beamformed signal, as linear beamforming is fundamentally limited

when room reverberation is strong, when speech and noise sources are spatially close, or

when the number of microphones is small.
In practical systems, all the statistics including ®©) (¢, f), @ (¢, f), |Sq tf )|2 and

c(t, f; q) need to be estimated based on the multi-channel mixture input Y.



The relative transfer function c(t,f;q), also known as the steering vector, is
traditionally computed based on sound localization algorithms such as GCC-PHAT [80],
steered-response power with phase transform (SRP-PHAT) [28], and MUSIC [134]. These
algorithms are originally designed for narrow-band antenna arrays and are not robust when
dealing with wideband speaker localization in noisy and reverberant environments.

The speech and noise covariance matrices, & (t,f) and ®@(t,f) , are
conventionally computed using voice activity detection (VAD), where a voice activity
detector is utilized to identify noise-only segments for noise covariance matrix
computation, or simply using the beginning and ending silence intervals of the mixture
signal for estimation [40]. However, VAD algorithms usually assume that environmental
noise is stationary, which is unrealistic as real-world noises are typically non-stationary.

The post-filter PF(t, f) is usually computed based on multi-channel signal statistics as
in Eq. (1.6), conventional single-channel speech enhancement algorithms [93], [40], or
spatial filters computed using phase information [118], [136], [149], [40]. These algorithms
usually cannot achieve high-quality noise reduction in reverberant multi-source
environments.

Recently, deep learning based T-F masking has substantially advanced monaural
speech separation [161]. The key idea is to train a DNN to estimate the ideal binary mask
(IBM) [162] or the ideal ratio mask (IRM) [113] for enhancement. Deep learning
dramatically improves mask (or magnitude) estimation, and the separated speech exhibits
large speech intelligibility and quality improvements over conventional enhancement

methods [55], [166].



In this context, we investigate deep learning for microphone array processing and its

application to speech separation and localization, and robust ASR. Motivated by the

formulation of multi-channel Wiener filtering, this dissertation addresses the following

issues in multi-channel processing.

Robust speaker localization. Localization determines the direction of the target
speech. Better localization leads to better estimation of the relative transfer function
c(t, f; q). Our study performs robust speaker localization by using DNN based T-
F masking to identify T-F units dominated by a single source, and only utilizing
these T-F units for localization;

Acoustic beamforming. Similar to localization, we utilize DNN based T-F masking
to identify T-F units dominated by speech and noise to compute speech and noise
covariance matrices, @) (t, f) and @@ (¢, f). We also use enhanced speech and
noise complex spectra to compute the covariance matrices. Better covariance
matrix estimation leads to better beamforming;

Post-filtering. PF(t, f) in Eq. (1.6) is a real-valued mask bounded in the range
[0,1]. Tt can be readily improved using deep learning based T-F masking. In
addition, based on localization results, we explore spatial features, which can
indicate whether the dominant source at each T-F unit is from the estimated
direction, and combine them with spectral features to extract the target speech from
a particular direction and with specific spectral structure;

Phase estimation. Better phase estimation can lead to better covariance matrix
estimation for beamforming and better phase difference estimation for sound

localization. It can also help post-filtering to improve the phase produced by linear



beamforming. Our study proposes multiple magnitude based phase reconstruction
algorithms. We also investigate complex-domain ratio masking and mapping for
phase estimation, following [39], [146], [192];

e Non-linear time-varying beamforming. Conventional beamforming techniques are
linear and based on second-order statistics. Based on a fixed-geometry array, we
investigate DNN based multi-microphone modeling to exploit non-linear spatial
information contained in multi-channel inputs for non-linear time-varying
beamforming;

o  Multi-channel speech dereverberation, enhancement and speaker separation. We
apply the above ideas to enhance target speech in noisy and reverberant conditions
where only a single speaker is assumed active, and also to multi-talker separation
tasks where all the speakers need to be separated and enhanced;

o Single- and multi-channel robust ASR. A key application of speech enhancement
and source separation is to improve modern DNN based ASR systems. This
dissertation addresses not only single- but also multi-channel robust ASR in noisy-
reverberant conditions, based on deep learning based T-F masking and multi-
channel processing.

It is highly desirable to make trained models directly applicable to microphone arrays
with various numbers of microphones arranged in diverse layouts. This is especially useful
for cloud-based services, where client setup can vary significantly in terms of microphone
array configuration. This demand poses challenges to supervised separation, which
requires fixed input and output dimensions, and has potentially limited generalization

capability to novel array geometries. On the other hand, modern electronic devices such as



Amazon echo and Google Home use a fixed array geometry. It is therefore of interest to

develop algorithms for a fixed geometry.

1.3. Dissertation Organization

The rest of this dissertation is organized as follows.

Chapter 2 explores ways of integrating speech enhancement frontends and ASR
backends for single-channel robust ASR in noisy-reverberant conditions. We propose a
joint training approach that jointly trains frontends, filterbanks and acoustic models. We
also apply sequence-discriminative training and unsupervised adaptation to further
improve the performance on the CHiME-2 dataset.

Chapter 3 studies robust speaker localization, a key step towards multi-channel speech
enhancement and source separation. The idea is to utilize a DNN to identify T-F units
dominated by direct sound and only use these T-F units for sound localization. This
approach dramatically improves the robustness of conventional cross-correlation,
beamforming and subspace based approaches for speaker localization in noisy-reverberant
environments.

Chapter 4 integrates complementary spectral and spatial features for deep learning
based multi-channel speaker separation in reverberant environments. The main idea is to
localize individual speakers so that an enhancement DNN can be trained on spatial as well
as spectral features to extract the speaker from an estimated direction and with specific
spectral structure. To determine the direction of the speaker of interest, we identify T-F
units dominated by that speaker and only use them for direction estimation. The T-F unit

level speaker dominance is determined by a two-channel separation network, which

10



integrates spectral and inter-channel phase patterns at the input feature level. In addition,
T-F masking based beamforming is tightly integrated in the system by leveraging the
magnitudes and phases produced by beamforming.

Chapter 5 investigates STFT-domain monaural magnitude-based phase reconstruction
for talker-independent speaker separation. For a two-source mixture, with the magnitude
of each source accurately estimated and under a geometric constraint, the absolute phase
difference between each source and the mixture can be uniquely determined. In addition,
the source phases at each T-F unit can be confined to only two candidates. In order to pick
the correct candidate, we propose three algorithms based on iterative phase reconstruction,
group delay estimation, and phase-difference sign prediction. State-of-the-art results are
obtained on the publicly available wsj0-2mix and 3mix corpus at the time of publication.

Chapter 6 leverages a complex spectral mapping approach for phase estimation and
proposes a target cancellation algorithm for multi-channel speech dereverberation. For
single-channel processing, we extend magnitude-domain masking and mapping based
dereverberation to complex-domain mapping, where DNNs are trained to predict the real
and imaginary (RI) components of the direct-path signal from reverberant (and noisy) ones.
For multi-channel processing, we first compute a beamformer to cancel the direct-path
signal, and then feed the RI components of the cancelled signal, corresponding to a filtered
version of non-target signals, as additional features to perform dereverberation. Our models
outperform other state-of-the-art models on the test set of the REVERB challenge in terms
of speech dereverberation and recognition performance.

Chapter 7 applies complex spectral mapping to multi-channel speech enhancement,

building upon Chapter 6. A novel time-varying beamforming algorithm is proposed to deal

11



with highly nonstationary environmental noise. State-of-the-art robust ASR performance
is obtained on the CHiME-4 corpus.

Chapter 8 combines the RI components of multiple microphones for DNN training. The
proposed approach essentially amounts to non-linear time-varying beamforming. It is
evaluated on multi-channel dereverberation and robust ASR, and contrasted with single-
microphone modeling and conventional dereverberation algorithms.

Chapter 9 concludes this dissertation and discusses future directions.

12



Chapter 2. Single-Channel Speech Enhancement and
Robust ASR

This chapter investigates the integration of deep learning based single-channel speech
enhancement and acoustic modeling, which lays a foundation for later multi-channel robust
ASR. The key idea is to jointly train enhancement frontends with backend ASR models.
This work has been published in Interspeech 2015 [171] and IEEE/ACM T-ASLP in 2016

[172].

2.1. Introduction

DNN-HMM hybrid methods [65] have become the dominant approach in ASR,
producing large improvements over conventional GMM-HMM methods. Although a lot of
progress has been made in ASR on clean speech, the performance drops sharply in the
presence of reverberation, mismatched noises and low SNR conditions. Improving the
robustness of ASR systems in such environments remains a challenge.

Although DNN based acoustic models are robust to noisy input with small variations
[207], speech separation algorithms are able to significantly improve recognition
performance even when DNNs are used for acoustic modeling [25]. Recently, different

DNN based speech separation methods, such as T-F masking [167], [168], [165] and

13



spectral mapping [6], [52], [202], are developed and shown to perform surprisingly well
even in highly adverse environments.

When incorporating speech separation into ASR, there are three commonly used
strategies. The first one is to conduct acoustic modeling on clean speech, and at run time,
a separation frontend is used to enhance noisy speech before recognition [114], [31]. A
disadvantage would occur when the separation frontend introduces distortions unseen by
the acoustic model trained on clean speech [114]. The second strategy alleviates the
distortion problem to some extent by using a separation frontend to enhance both training
and test set, and conducts acoustic modeling on the enhanced training set. It may be able
to improve the recognition performance since the features may become cleaner after
enhancement. The third strategy performs acoustic modeling on noisy speech and at the
test stage, noisy or enhanced features are fed to the acoustic model for decoding. The
resulting multi-condition training strategy is shown to be very effective [159] but gives
unimpressive performance in matched conditions [89]. Clearly, different strategies have
their own advantages and disadvantages. Which strategy to adopt highly depends on the
situation.

Speech separation and recognition are not two independent tasks and they can clearly
benefit from each other. Previous studies [42], [43], [171], proposed to integrate speech
separation and acoustic modeling via joint adaptive training. This chapter further develops
this approach and proposes various techniques to elevate the performance. The present
work makes the following four contributions. First, we concatenate a DNN based speech
separation frontend, a trainable mel-filterbank and a DNN based acoustic model together

to build a larger and deeper DNN, and jointly adjust the weights in each module via the

14



back-propagation algorithm. With joint training, the separation frontend and filterbank are
able to provide enhanced features expected by the acoustic model. In addition, the linguistic
information contained in the acoustic model is allowed to flow back to influence the
separation frontend and filterbank. Furthermore, the filterbank can be trained according to
the separation frontend and acoustic model [128]. Second, concatenating the separation
frontend and acoustic model to form a bigger DNN naturally leads us to sequence-
discriminative training applied to the jointly trained DNN for further improvement. This
way, at the training stage, the information from language models can be flowed back to
influence not only the acoustic model but also the separation frontend by optimizing
sequence-discriminative criterion. Third, utterance-level unsupervised adaptation is
performed at run time to adapt the jointly trained DNN to potentially mismatched
conditions or new speakers. Fourth, we find that adding additional features, which are
robust to noise and reverberation, for acoustic modeling significantly improves the
robustness.

The proposed sequence-discriminative jointly-trained models trained with additional
robust features achieves 10.63% average WER on the test set of the noisy and reverberant
CHiME-2 dataset (task-2) [159]. This represented the best result on this dataset at the time
of publication.

The rest of this chapter is organized as follows. We describe our joint training approach
in Chapter 2.2, followed by experiments and evaluations in Chapter 2.3 and conclusions in

Chapter 2.4.
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Figure 2-1. Schematic diagram of the proposed joint training framework. The layer shown
in gray means that the weights or operations of that layer are fixed. Solid and dotted arrows
respectively indicate the directions of forward pass and backward pass. See text for more
details.

2.2. System Description

Our system is built in a step-by-step way. We first train a separation frontend and an
acoustic model separately, both using DNNs. Then we concatenate the separation frontend,
mel-filterbank and acoustic model together to construct a deeper and larger DNN, and
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jointly adjust the weights in all modules. After that, we replace the cross-entropy criterion
used at the joint training stage with sequence-discriminative criterion for sequence training.
Finally, we perform utterance-level unsupervised adaptation at run time. The overall

framework of our system is shown in Figure 2-1.

2.2.1. Deep Learning Based T-F Masking

Originated in computational auditory scene analysis (CASA) [163], T-F masking has
shown considerable potential for removing additive noise in noisy speech. The key idea is
to estimate the IBM [162] that identifies speech dominant and noise dominant T-F units,
or the IRM [113], which represents the ratio of speech energy to the sum of speech energy
and noise energy within each T-F unit. This framework formulates speech separation as a
supervised mask estimation problem. Recently, DNN is employed for mask estimation,
and achieves very promising separation performance in both matched and un-matched test
conditions [165]. Recent listening tests show that DNN based IBM estimation produces
substantial speech intelligibility improvements of noisy utterances for both hearing-
impaired and normal-hearing listeners [55]. In addition, different training targets are
carefully analyzed recently [166], and it is suggested that the IRM is likely to be a better
training target for supervised speech separation. Therefore, we utilize DNNs to estimate
the IRM in this study.

The ideal mask can be defined in different T-F representation domains. In line with

later joint training, the IRM in this study is defined in the power spectrogram domain [166]

1S(t, )I? .
1S, HIZ+ NG OIZ (2.1)

M(t, f) =
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where M is the IRM of a noisy signal created by mixing a noise-free utterance with a noise
signal at a specific SNR level, and |S(t, f)|? and |N(t, f)|? respectively denote the power
spectrograms of the noise-free utterance and the noise signal at time t and frequency f.
At run time, the IRM must be estimated from noisy utterances. We employ a DNN as
the learning machine for IRM estimation. The DNN has four hidden layers each with 1,024
rectified linear units (ReLUs) [43]. There are 161 sigmoidal units in the output layer,
corresponding to the dimension of each frame in the power spectrogram. Starting from
random initialization, the network is trained to minimize the cross-entropy loss function

within each T-F unit. The loss function is

L(M) = —%Z [M(t. F)logM(t ) + (1 - Mt H)log (1- M. )| (22
t.f

where M is the estimated mask.

The feature used for mask estimation is log-compressed power spectrogram. We splice
a large context window of 19 frames centered at the current frame as the input to DNN.
The frame length is 20 ms and frame shift 10 ms. For a signal with 16 kHz sampling rate,
the input dimension corresponding to one frame is 3,059 (161X 19). The log power
spectrogram feature is globally mean-variance normalized before splicing.

At run time, we multiply M point-wisely with the power spectrogram of noisy speech

to get the enhanced power spectrogram
X=MQIXP (2.3)

where X is the resulting enhanced power spectrogram, |X|? denotes the noisy power

spectrogram, and &) represents point-wise matrix multiplication.
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2.2.2. Acoustic Modeling

The DNN-HMM hybrid approach is dominant in ASR today. We utilize a DNN with 7
hidden layers each with 2,048 ReLUs for acoustic modeling. The DNN is trained to
estimate the posterior probability of each senone state by minimizing the cross-entropy
criterion.

Log mel-spectrogram is widely used as the only feature for acoustic modeling.
However, mel-spectrogram itself is not robust to noise and reverberation. We incorporate
robust features for acoustic modeling as different features contain different and perhaps
complementary information for senone state discrimination. We consider a subset of the
following features.

¢ 40-dimensional log mel-spectrogram together with its delta and double deltas (MEL).
We perform sentence level mean normalization before splicing an 11-frame context
window;

e 256-dimensional multi-resolution cochleagram (MRCG) [17] with its delta and
double deltas. This feature is shown to be relatively robust to additive noise for mask
estimation;

¢ 31-dimensional power-normalized cepstral coefficients (PNCC) [74] together with
their deltas and double deltas. Sentence level mean normalization is performed before
splicing an 11-frame context window. The PNCC feature is found to be robust to
reverberation and additive noise;

¢ 13-dimensional RASTA-PLP [56]. The context window is set to 7,

¢ 15-dimensional amplitude modulation spectrogram (AMS) [82] extracted from each

of 26 channels;
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¢ 31-dimensional narrowband mel-frequency cepstral coefficients (MFCC) with the
analysis window of 20 ms. The context window is set to 7;
¢ 31-dimensional wideband MFCC with the analysis window of 200 ms. The context
window size is 7.
The last four features, denoted as Fset, are shown to have complementary power for mask
estimation [169]. This study directly uses Fset features for acoustic modeling. With the
features mentioned above, the input dimension is 4,026 (40x3X11+256x3+31x3x11
+13x7+15%26+31x7+31%7). They are globally mean-variance normalized before DNN

training. To facilitate comparison, we always include MEL for acoustic modeling.

2.2.3. Joint Training

As illustrated in Figure 2-1, the key idea of joint training is to concatenate an acoustic
model DNN and a speech separation DNN to form a larger and deeper neural network, and
jointly adjust the weights in all modules. The link for concatenating the separation frontend
and the acoustic model is a trainable filterbank layer and a set of layers with fixed
operations, which represent the extraction of the enhanced MEL features (with delta and
double deltas and an 11-frame context window) (see also [115], [116], [171]). More
specifically, after obtaining the estimated IRM from the separation frontend based on the
log power spectrogram of a noisy utterance, we multiply it point-wisely with the noisy
power spectrogram to get the enhanced power spectrogram. The enhanced power
spectrogram is then fed into the trainable filterbank layer to get the enhanced filterbank
feature. Afterwards, we compress it logarithmically, add delta and double deltas, perform
sentence-level mean normalization, conduct global mean-variance normalization, and

splice 11 frames to yield the enhanced MEL features. The enhanced MEL features, together
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with other robust features, are finally passed to the acoustic model to estimate state
posterior probabilities. The joint training framework can be performed in a single neural
network because the point-wise multiplication, filtering, sentence- and global-level
normalization, adding delta and double deltas are all linear transformations. Therefore, we
can flow the error signal from the acoustic model back to the filterbank layer and the
separation frontend, and jointly train all modules using back-propagation.

A similar frontend and backend joint training approach was presented by Gao et al.
[41], where feature mapping is employed as the frontend. It has been suggested that
masking is likely a better approach than mapping for speech separation [166]. In addition,
the output dimension of their frontend is equal to the input dimension, which consists of
many consecutive frames and is large. In contrast, we obtain enhancement results per single
frame. Furthermore, their frontend obtains enhanced MEL features by direct mapping
instead of using a trainable filterbank layer and fixed layers to transform the enhanced
power spectrogram.

Parameter initialization is critical before joint training. Here we use the weights in a
separately trained acoustic model and a separately trained separation frontend to initialize
the corresponding parts of the DNN before joint training. Following [128], we initialize

the parameters in the trainable filterbank (FB) layer using
WEB = exp(W*), (2.4)
where W™ is initialized to

W* = log (max (Mel_FB, eps)) (2.5)
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Here Mel_FB denotes the standard 40-dimensional mel-filterbank and eps is a small
constant (1073 in this study). With Eq. (2.4), every time W* is updated, all the parameters
in the filterbank are ensured to be non-negative.

The whole network is trained to minimize the cross-entropy criterion from the acoustic
model alone. We tried to put a weight between the loss of the acoustic model and the loss
of the separation frontend. However, no clear improvement on the ASR performance was
observed. The sentence-level mean of each utterance and global mean and variance are

updated at the beginning of each epoch in the forward pass.

2.2.4. Sequence-Discriminative Training

The previous sections describe how the DNN-based acoustic models are trained to
minimize the cross-entropy criterion at the frame level. As ASR is a sequence classification
problem, it is sensible to optimize sequence-discriminative criterion to better capture the
essence of this problem. It is widely known that sequence training is helpful for GMM-
HMM systems. In recent studies, sequence training is also found to be useful for DNN-
HMM hybrid systems [158], [116]. Here, we investigate the effectiveness of sequence
training criterion on the joint training system. We replace the frame-wise cross-entropy
criterion with the state-level minimum Bayes risk (sMBR) [75] and back-propagate the
error signal from this criterion to adjust the weights in the acoustic model, filterbank and
separation frontend. This method is expected to improve recognition performance. We
believe that this method may also benefit mask estimation since the error signal from the
sequence training criterion contains information from language models, which is rarely

exploited in speech separation research.
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2.2.5. Unsupervised Adaptation

Adaptation is commonly performed on well-trained acoustic models to compensate the
differences between training and test conditions. It can be supervised or unsupervised,
depending on whether the labels of adaptation data are available. Many adaptation methods
have been proposed for DNN based acoustic models, such as linear transformation [135],
[114], conservative training [208], and subspace based methods [129]. In [105], it is
suggested that the linear input network (LIN) and linear hidden network based approaches
are better than linear output network, factorization and KL-divergence based adaptation.

We perform unsupervised adaptation to our jointly trained acoustic models following
the LIN approach. At run time, given a single test utterance, we first use the un-adapted
jointly-trained sequence-discriminative model to generate initial decoding results. The
first-pass decoded state sequence is then used as the labels for learning a linear
transformation of the input features of the separation frontend by minimizing the cross-
entropy criterion calculated from the acoustic model, with all the other parameters fixed.

The linear transformation is defined as follows:
ft,f = fot,f + bf’ (26)

where x; denotes the globally mean-variance normalized log power spectrogram,
corresponding to the un-adapted input of the separation frontend, X, ; denotes the adapted
features, and wy and by are the parameters to be learned. For a test utterance, the number

of parameters to learn is 322 (161+161), which is approximately in the same range of the

number of frames in the test utterance.

23



For each utterance, the adaptation process is run for 20 epochs with a mini-batch size
equal to the length of the utterance. We simply adopt the learned parameters at the last
epoch due to the lack of a development set. After obtaining all the linear transformation for
each test utterance, we re-generate the likelihood and run a second-pass decoding to obtain
the final results.

A similar adaptation method was proposed in [114]. One key difference is that we
perform adaptation on the input of the separation frontend rather than on the output of the
separation frontend. We think that our strategy is better since, if we perform adaptation on
the input of the separation frontend, the enhancement results would be changed in a highly
non-linear way rather than in a simple linear fashion.

This unsupervised adaptation technique with the learned linear transformation can also

adapt a well-trained separation frontend to new test environments to some extent.

2.3. Experimental Setup

We evaluate the proposed algorithms on the reverberant and noisy CHiME-2 dataset
(task-2) [159]. The CHiME-2 dataset is created by first convolving clean utterances in the
WSJO0-5k dataset with time-varying binaural room impulse responses (BRIRs) and then
mixing with reverberant noises at six SNR levels equally spaced from -6 to 9 dB. The
BRIRs and reverberant noises are recorded with the same microphone and living room
setup. The recorded noises contain major noise sources in a typical kitchen or living room,
such as competing speakers, electronic devices, footsteps, laughter, and distant noises. The
multi-conditional training set (si_tr_s) contains 7,138 utterances (~14.5h), the development

set (si_dt_05) contains 409 utterances at each SNR level (~4.5h), and the test set (si_et 05)
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contains 330 utterances at each SNR level (~4h). The CHiME-2 dataset provides
reverberant noises, and reverberant noise-free utterances corresponding to the multi-
conditional training set. With the noises, clean speech, reverberant noise-free utterances,
and noisy-reverberant utterances available, we can readily evaluate the recognition
performance together with speech separation performance of our system.

Our system is monaural in nature. We simply average the signals from the left and right
channel before extracting features. This technique shows better performance than only
using one of these two channels. A GMM-HMM system is built using the Kaldi toolkit
[121] on the clean utterances in the WSJO-5k to get the senone state for each frame of the
corresponding noisy-reverberant utterances. Following the common pipeline in the Kaldi
toolkit, the GMM-HMM system is first built using the MFCC feature. Then we concatenate
13-dimensional MFCC feature within a 7-frame context window, and utilize linear
discriminant analysis (LDA) to compress the concatenated feature to 40 dimensions. After
that, we de-correlate it via maximum likelihood linear transform (MLLT) and use feature-
space maximum likelihood linear regression (fMLLR) to reduce speaker variance, which
is estimated by speaker adaptive training. The resulting cross-word tied-state tri-phone
GMM-HMM system contains 1,965 senone states. The initial clean alignments are
obtained by performing forced alignment on the clean utterances. To refine the initial clean
alignments, we further train a DNN-based acoustic model using the MEL features of the
clean utterances, and re-generate clean alignments. Such clean alignments are used as the
labels for training all the acoustic models in this study. Note that the DNN-HMM hybrid
system built on the clean utterances is a powerful recognizer. It achieves 2.15% word error

rates (WER) on the clean test set of the WSJ0-5k dataset. Therefore, we believe that these
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high-quality labels can guide the DNN-based acoustic model to perform well on
discriminating different senone states even when the input features are very noisy and the
input SNR very low. We use the CMU pronunciation dictionary and the official 5k close-
vocabulary tri-gram language model in our experiments. This language model is used for
decoding at run time and generating the lattices of the training utterances at the sequence
training stage.

The training data for mask estimation is obtained from parallel noisy-reverberant and
reverberant noise-free data. The mixed noise signals can be obtained by direct subtraction.
With these datasets, we train a separation frontend to remove additive noise in noisy-
reverberant utterances. The noisy-reverberant dataset, i.e. the multi-conditional training
data, is used for both mask estimation and acoustic modeling.

Our experiments are done in an incremental manner. We first build our acoustic
models using feature subsets selected according to the performance on the development
set. Then we jointly train the acoustic models with the separation frontend. Afterwards, we
perform sequence training on the jointly trained DNN. Finally, we perform unsupervised

adaptation to the sequence-discriminative jointly-trained DNN at run time.

2.3.1. Expanded Feature Set for Acoustic Modeling

We first report the results of incorporating robust features for acoustic modeling. In
this experiment, no speech enhancement or separation is performed. We simply train
acoustic models multi-conditionally by adding robust features and do not tune the network
structure or training recipes for each feature set. To push up the baselines, we perform
sequence training on the multi-conditionally trained acoustic models, followed by run-time

unsupervised adaptation. The WER results are presented in Table 2-1.
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Table 2-1. Performance (% WER) using multi-condition training with robust features for
acoustic modeling.

. . Dev. Set Test Set

Features for Acoustic Modeling | (o000 | 6dB  -3dB 0dB 3dB 6dB  9dB  Average
MEL 1940 | 2677 2049 16.14 1280 1067 10.11 _ 16.16
+sMBR 1724 | 2387 1735 1364 1130 910 828  13.92
+adaptation 1681 | 2264 1685 1278 1044 8.69 779 1320
MEL+PNCC 1854 | 2513 1857 1494 1173 951 857  14.74
+sMBR 1652 | 2322 1659 1246 10.52 824 749  13.09
+adaptation 1610 | 2203 1633 1222 1029 7.66 736  12.65
MEL+PNCC+MRCG 1799 | 2333 1792 1420 1136 895 805  13.97
+sMBR 1597 | 2201 1562 1218 10.59 818 7.12  12.62
+adaptation 1557 | 2117 1521 1183 10.55 7.77 680  12.22
MEL+PNCC+MRCGFset | 1793 | 23.09 17.17 1332 1041 871 807 1346
+sMBR 1563 | 2117 1496 1224 983 7.68 714  12.17
+adaptation 1548 | 2051 14.68 1177 970 749 7.02 1186

If we only train our acoustic models using the cross-entropy criterion, with the
commonly used MEL features alone, we obtain 16.16% average WER on the test set. Note
that if we just use the default DNN code for the CHIME-2 dataset in the Kaldi toolkit, we
only obtain 17.49% average WER on the test set. This is consistent with the results obtained
in [53]. The major differences are that we use ReLUs, dropout and Adagrad for training,
while the default DNN code uses sigmoidal units, pre-training and stochastic gradient
descent. By adding PNCC, the average WER can be reduced to 14.74%. After appending
MRCQG, the WER is brought down to 13.97%. The performance is further pushed to
13.46% average WER after we add Fset. Note that this result is already better than our
previous best result [171] using the same set of features on this dataset, mainly because
better clean alignments are generated using the Kaldi toolkit.

We then apply sequence training to the multi-conditionally trained acoustic models.
We observe that sequence training leads to large improvement for all the input features,
and the relative improvement becomes smaller if more features are used for acoustic

modeling.
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Finally, we apply utterance-level unsupervised adaptation to the sequence-
discriminative acoustic models. Similar to Chapter 2.2.5, given a test utterance, we first
decode it to obtain a hypothesized state sequence, from which we learn a linear
transformation of the input features. To reduce the number of parameters to learn and make
a fair comparison with later experiments, we only learn a linear transformation for the MEL
features. Learning linear transformations for other features may decrease the performance,
simply because too many parameters are learned. Thus, the total number of parameters to
be learned is 240 (40x3+40x3) for each test utterance. From Table 2-1, we see that
unsupervised adaptation leads to consistent improvement, while the relative improvement
for acoustic models with more features becomes smaller as well.

Compared with only using the MEL features, adding all the extra robust features for
acoustic modeling reduces the average WER by 2.7% (16.16% to 13.46%), 1.75% (13.92%
to 12.17%), and 1.34% (13.20% to 11.86%) without sequence training or adaptation, with
sequence training but no adaptation, and with sequence training and adaptation,
respectively. These considerable improvements occur probably because features are
extracted from different domains using different filterbanks, compression operations and
environmental compensations, and therefore they likely complement each other for
acoustic modeling on multi-conditional data. This suggests that relying on the DNN to
learn optimal non-linear features from relatively raw input, e.g. the MEL features, may not
be the optimal strategy for robust ASR. Combining the feature learning ability of DNNs
and domain knowledge may be a better way for improving the robustness of ASR systems.

As shown in Table 2-1, the average WER on the development set keeps decreasing as

we add more and more features. Therefore, in the following experiments, we add the
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Table 2-2. Performance (%WER) comparison of proposed approach without extra robust

features
. dev. set test set

Approaches Acoustic Model Average | -6dB -3dB 0dB  3dB  6dB 9dB Average
MEL 1822 |23.58 18.53 14.85 12.42 9.68 9.56 14.77
Plug-and-Play +sMBR 16.63 |22.72 16.12 13.81 10.84 8.61 839 1342
+adaptation 16.05 [21.18 15.82 12.16 10.54 8.14 7.88 12.62
Enhanced MEL 18.67 |25.85 19.20 1593 12.52 9.96 921 1545
Re-training +sMBR 17.08 |24.38 17.19 13.66 11.10 8.69 820 13.87
+adaptation 16.59 [23.54 1640 12.76 10.55 837 7.66 13.21
Enhanced MEL + MEL 1831 |25.31 18.83 15.69 11.94 9.23 8.89 1498
Re-training +sMBR 16.50 |24.10 16.68 14.18 10.42 8.63 7.88 13.65
+adaptation 16.07 [22.70 16.14 1332 996 7.88 740 129
Jointly training Jointly enhanced MEL 17.63 [22.55 17.65 14.42 1136 9.23 874 13.99
frontend, +sMBR 1528 |20.44 14.66 12.39 9.81 7.73 738 12.07
AM and filterbank +adaptation 1456 |18.72 13.77 1136 932 732 6.86 11.23
Jointly training frontend Jointly enhanced MEL 17.62 |23.15 17.69 14.72 1138 9.30 9.15 14.23
and AM +sMBI_{ 1530 |20.61 14.89 1248 9.81 7.85 749 12.19
+adaptation 1460 |19.13 13.67 1140 9.19 7.51 7.08 11.33

Directly training a large | Log power spectrogram +

DNN MEL 19.06 |24.88 1891 15.15 12.57 10.44 925 152

PNCC, MRCG and Fset features for acoustic modeling. Note that we do not perform any
kind of enhancement on these extra features since they are considered to be inherently
robust. To facilitate comparisons, we also report the results based on the MEL features

alone.

2.3.2. Plug-and-Play and Re-Training Approaches

Before presenting the results of the joint training approach, we explore two alternative
strategies when incorporating speech separation into ASR systems.

The first strategy, denoted as plug-and-play, is to train our acoustic models using the
MEL features alone or the MEL+PNCC+MRCG+Fset features. At run time, we use the
trained separation frontend to get the enhanced power spectrogram which is then passed to
the mel-filterbank to get the enhanced MEL features. Finally, together with other robust

features, the enhanced MEL features are passed to the acoustic model for decoding. As
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shown in the first entry of Table 2-2, if we only use the MEL features for acoustic
modeling, the frontend leads to 1.39% (16.16% to 14.77%), 0.5% (13.92% to 13.42%), and
0.58% (13.20% to 12.62%) absolute improvement without sequence training or adaptation,
with sequence training but no adaptation, and with sequence training and adaptation,
respectively. We can see that the relative improvement of using our frontend becomes
much smaller if the acoustic model has been sequence-trained. Note that for unsupervised
adaptation, we learn a linear transformation of the enhanced MEL features. The first-pass
decoding results for adaptation are obtained by applying the plug-and-play approach to the
sequence-discriminative acoustic model. Again, the number of parameters to be learned is
240 (40x3+40x%3). Performing unsupervised adaptation on the enhanced MEL features
leads to 0.8% (13.42% to 12.62%) average WER reduction. Similar observations can be
found in the first entry of Table 2-3, in which we use the MEL+PNCC+MRCG+Fset
features for acoustic modeling.

The second alternative, denoted as re-training, is to train our acoustic models using the
enhanced MEL features alone or the enhanced MEL+PNCC+MRCG+Fset features. At run
time, after obtaining the enhanced MEL features, together with other robust features, we
feed all of them to the acoustic model for decoding. Note that, again, Fset, MRCG and
PNCC are directly extracted from the original noisy-reverberant utterances. The results are
shown in the second entries of Table 2-2 and Table 2-3, respectively. Motivated by deep
stacking [27], [191], the unenhanced MEL features are additionally incorporated for
acoustic modeling. The results are reported in the third entry of Table 2-2 and Table 2-3,
without and with extra robust features, respectively. We can see that adding the unenhanced

MEL features for acoustic modeling brings some gains for the re-training approach.

30



Table 2-3. Performance (% WER) comparison of proposed approach with extra robust

features.

. dev. set test set
Approaches Acoustic Model Average| -6dB -3dB 0dB 3dB 6dB 9dB Average
MEL+PNCC+MRCG+Fset 16.90 |21.32 15.26 12.52 10.11 7.83 7.44 1241
Plug-and-Play +sMBR 1534 (20,04 13.64 11.56 9.56 7.64 7.08 11.59
+adaptation 14.98 [19.65 13.49 1132 9.30 7.34 691 11.34
Enhanced MEL+PNCC+MRCG+Fset 16.98 |23.20 16.72 12.89 10.37 8.24 7.57 13.17
Re-training +sMBR 15.80 [22.96 16.16 12.55 9.55 7.86 7.34 12.74
+adaptation 15.28 [22.04 1549 12.16 921 7.66 7.12  12.28
Enhanced MeltMEL+PNCC+MRCG+Fset | 17.08 |22.60 16.53 12.74 10.14 8.24 738 12.94
Re-training +sMBR 15.52 |22.87 15.58 12.61 9.40 7.70 6.76 12.49
+adaptation 14.97 [20.85 14.68 12.07 9.06 7.42 6.61 11.78
Jointly training frontend, | '™t enhanced MEL+PNCCHMRCG +Fset| 15,58 [20.23 1440 1173 973 738 745 1182
M o fleorbnt +sMBR 14.33 {19.20 13.30 10.74 8.76 6.89 6.84 10.96
+adaptation 13.81 [18.23 13.02 10.39 8.67 6.86 6.61 10.63

Comparing the results from plug-and-play and re-training, we find that the former
strategy typically scores higher. One possible reason is that, when re-training is used, the
separation frontend significantly reduces the variations seen by the acoustic model at the
training stage [137]. In addition, the distortion it introduces for the training utterances may
be different from that for the test utterances. Another possible explanation is related to
overfitting. Since the separation frontend is also trained on the multi-conditional training
data, we can reasonably assume that the separation frontend performs better on the training
set than on the development and test set. Therefore, if the enhanced training data is
subsequently used to re-train the acoustic models, overfitting would likely happen. This is
exactly what we encountered in our experiments. For the re-training approach, the loss of
the acoustic model on the development set is much better than that of the plug-and-play or
the direct multi-condition training approach; however it gives us worse performance after

decoding.

31



2.3.3. Joint Training

Considering that more variations are seen by the acoustic models trained on noisy-
reverberant utterances and the plug-and-play approach normally gets better performance
on the development set as shown in Table 2-2 and Table 2-3, we use the parameters in the
acoustic models from this approach, together with the separation frontend, to initialize the
corresponding parameters in the joint-training DNN, and then perform joint training. When
joint training is done, SMBR training and run-time adaptation are conducted. Note that for
the run-time adaptation, we learn a linear transformation of the input of the separation
frontend. The number of parameters to be learn is 322 (161+161) for each utterance.

As reported in Table 2-2, after joint training, the performance can be improved from
14.77% to 13.99% average WER. After sMBR training, the performance is improved to
12.07%. The performance is further pushed up to 11.23% after run-time unsupervised
adaption, which is helpful especially in low SNR conditions. For example, when the input
SNR is -6 dB, the WER is reduced from 20.44% to 18.72%.

If we do not use extra robust features for acoustic modeling, compared with plug-and-
play, we reduce the average WER by absolute 0.78% or relative 5.3% (14.77% to 13.99%)
if only the cross-entropy criterion is used for joint training. The performance gap is
enlarged to absolute 1.35% or relative 10.06% (13.42% to 12.07%) after sequence training
is applied. If we further perform run-time unsupervised adaptation, the performance
difference is further increased to absolute 1.39% or relative 11.01% (12.62% to 11.23%).
Interestingly, the relative improvement becomes larger after sequence training and
unsupervised adaptation are applied to the joint-training DNN. This trend can also be

observed by comparing the first entry with the fourth one in Table 2-3, where more features
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are used for acoustic modeling. This is desirable since, in joint modeling, the noise
compensation module can be seamlessly combined with other ASR techniques, such as
sequence training and adaptation, to obtain further improvement.

As presented in the fourth and fifth entries of Table 2-2, co-adapting the filterbank with
the separation frontend and acoustic model leads to slightly better results. If the parameters
in the filterbank are co-adapted, the performance is 0.24% (14.23% to 13.99%) average
WER better after joint training, 0.12% (12.19% to 12.07%) better after sSMBR training, and
0.1% (11.33% to 11.23%) better after run-time adaptation.

These results clearly demonstrate the effectiveness of joint training. We think that it is
due to the reduction of the distortion problem and the linguistic information back-
propagated from the acoustic model to the separation frontend. In addition, the separation
frontend used in this study treats all the frames and T-F units equally important, without
considering the underlying linguistic information that is critical for senone states
discrimination. In contrast, with joint modeling, the separation frontend can be informed
by the acoustic model to produce more discriminative enhancement results.

The best performance we obtained on the test set is 11.23% average WER if no extra
robust features are used. With extra robust features, the performance is further improved
to 10.63%. With more sophisticated training and adaptation techniques, the effectiveness
of extra features is reduced. This would be welcome as using a small number of features,
such as log mel-spectrogram, is favored in industry. On the other hand, incorporating more
robust features for acoustic modeling is a simple and effective technique towards improved

robustness of ASR systems.
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Table 2-4. Performance (% WER) comparison of proposed approach with other studies.

Study dev. set test set
Average|-6dB -3dB 0dB 3dB 6dB 9dB Average
Weng et al. [190] - 38.11 29.07 22.98 17.92 14.96 13.60 22.77
Chen et al.[19] 20.11 - - 16.04

Narayanan-Wang [116] - 25.1 192 151 128 105 95 15.4
Weninger et al. [191] 17.87 |23.48 17.02 13.71 10.72 8.95 8.67 13.76

sMBR-+joint training+multi-stream

+run-time adaptation (proposed) 13.81 |18.23 13.02 10.39 8.67 6.86 6.61 10.63

It might be argued that the joint training approach just performs acoustic modeling
multi-conditionally by training a very deep and large DNN on a combination of features.
To address this possibility, we train a DNN with 12 (4+1+7) hidden layers, each with 1,600
ReLUs, on the combination of the log power spectrogram and MEL features (without
robust features) using multi-condition training directly. Note that the number of parameters
in this new DNN is almost the same as that in the joint-training DNN. The performance,
shown in the last entry of Table 2-2, is much worse than that of joint training. This is likely
because the joint training approach has better network architecture and better parameter

initialization.

2.3.4. Comparison with Other Studies

In Table 2-4, we list the results of several other studies that report competitive results
on the same dataset. All of them use the DNN-HMM hybrid approach and clean alignments
from clean utterances as the labels to train their acoustic models. The system described in
[190] employs an RNN to perform acoustic modeling on the noisy-reverberant training
data and does not use any speech enhancement or separation. Chen et al. [19] utilize LSTM

for both speech separation and acoustic modeling. Their ASR systems follow the re-
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training approach, and an iterative strategy using alignment information from their ASR
system is proposed to improve speech separation and recognition simultaneously.
Weninger et al. [191] build their frontend by training an RNN with the LSTM activation
function to predict a phase-sensitive spectrum approximation objective function. They also
use re-training and additional alignment information from ASR systems to boost the
performance of speech separation. Their DNN based acoustic models are built in a way
similar to the standard recipes in the Kaldi toolkit. Both enhanced and unenhanced log mel-
filterbank features without delta components are utilized for acoustic modeling, and no
extra robust features are used in their study. Han et al. [53] use a spectral mapping based
separation frontend to enhance both the training and test set first, and perform acoustic
modeling on the enhanced training set using the standard DNN training recipes in the Kaldi
toolkit. Their overall WER is 15.6%, which is slightly worse than obtained by Narayanan
and Wang [116]. To our knowledge, the results by Weninger et al. [191] are the best on
the CHiME-2 dataset reported in the literature. As shown in Table 2-4, we have now pushed
the performance to 10.63% average WER. This represents a 22.75% relative error

reduction over [191], and the best result at the time of publication.

2.4. Conclusion

Speech separation and recognition are two closely related problems. In this study, a
joint training strategy is presented to integrate speech separation and acoustic modeling at
the training stage. By further applying sequence training and run-time adaptation, the
performance advantage of the joint modeling approach becomes even larger. Still, speech

separation is done in a bottom-up fashion at the test stage. How to leverage top-down
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information, such as the knowledge from language models, to help speech separation at the
test stage is an interesting direction for future research. We think that the joint modeling
approach presented in this paper could be an important step towards this goal, because
language models are about the relations among words, or in a wider sense, among
phonemes or states, while speech separation is commonly done in the T-F domain or at the
signal level [173]. There is clearly a gap between them. The joint modeling approach
utilizes acoustic models to bridge these two modules so that the information can be

potentially flowed back and forth.
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Chapter 3. Robust Speaker Localization

This chapter studies robust speaker localization in noisy and reverberant conditions,
which serves as a key step for multi-channel speech enhancement and source separation.
The main idea is to identify T-F units dominated by direct sound and only use these T-F
units for speaker localization. This work has been published in Interspeech 2018 [174] and

IEEE/ACM T-ASLP in 2019 [175].

3.1. Introduction

Robust speaker localization has many applications in real-world tasks. The ability to
localize a speaker in daily environments is important for a voice-based interface such as
Amazon Echo. Localization is also widely used in beamforming for speech separation or
enhancement [40].

Conventionally, GCC-PHAT [80] (or SRP-PHAT [28]) and MUSIC [134] are the two
most popular algorithms for sound source localization. However, their speaker localization
performance is unsatisfactory in noisy and reverberant environments; in such
environments, the summation of GCC coefficients exhibits spurious peaks and the noise
subspace constructed in the MUSIC algorithm does not correspond to the true noise

subspace.
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To improve the robustness, frequency-dependent SNR weighting is designed to
emphasize frequencies with higher SNR for the GCC-PHAT algorithm. SNR can be
computed in various ways, such as rule-based methods [155] and VAD based algorithms
[127]. T-F unit level SNR based on minima controlled recursive averaging or inter-channel
coherence has also been applied to emphasize T-F units with higher SNR or coherence [9],
[124], [156]. However, these algorithms typically assume stationary noise, which is an
unrealistic assumption in real-world acoustic environments.

While it is difficult to perform localization in noisy and reverberant environments, with
two ears the human auditory system shows a remarkable capacity at localizing sound
sources. Psychoacoustic evidence suggests that sound localization largely depends on
sound separation [12], [54], [163], which operates according to auditory scene analysis
principles [12]. Motivated by perceptual organization, we approach robust speaker
localization from the angle of monaural speech separation.

It is well-known that, even for a severely corrupted utterance, there are still many T-F
units dominated by target speech [163]. As analyzed [45], [106], [156], [196], [211], [216],
these T-F units carry relatively clean phase and may be sufficient for speaker localization.
Motivated by this observation, our approach aims at identifying speech dominant T-F units
at each microphone channel and only using such T-F units for multi-channel localization.
A profound consequence of this new approach is that deep learning can be brought to bear
on T-F unit level classification or regression for robust localization.

In this context, we perform robust DOA estimation by utilizing deep learning based T-
F masking. We make three contributions. First, DNN estimated masks are utilized to

improve the robustness of conventional cross-correlation, beamforming and subspace
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based algorithms [28] for DOA estimation in environments with strong noise and
reverberation, following previous research along similar directions [119], [201]. A key
ingredient, we believe, is balancing the contributions of individual frequency bands for the
DOA estimation of broadband speech signals. Second, we find that using the IRM and its
variants, which consider direct sound as the target signal, leads to high localization
accuracy, suggesting that such training targets are very effective for robust speaker
localization (see also [119]). Third, we show that the trained model is versatile in
application to sensor arrays with diverse geometries and with various numbers of
microphones.

The rest of this chapter is organized as follows. The proposed algorithms are presented
in Chapter 3.2. Experimental setup and evaluation results are reported in Chapter 3.3, and

3.4. Chapter 3.5 concludes this paper.

3.2. System Description

We start with a review of the classic GCC-PHAT algorithm, which motivates our
algorithm design. The following three sections propose three localization algorithms based
on mask-weighted GCC-PHAT, mask-weighted steered-response SNR, and steering
vectors. They respectively represent cross-correlation , beamforming and subspace based
approaches for localization. Deep learning based T-F masking for the purpose of speaker

localization is described in the last subsection.
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3.2.1. GCC-PHAT
Suppose that there is only one target speaker, the physical model for a pair of signals
in noisy and reverberant environments under the narrowband approximation assumption

can be formulated as
Y1) =c(f; St )+ H(E )+ N, f), (3.1

where S(t, f) is the STFT value of the direct-path signal of the target speaker captured by
a reference microphone q at time t and frequency f, and c(f; q) is the relative transfer
function. ¢(f;q)S,(t, f), H(t,f), N(t,f), and Y (¢, f) respectively represent the STFT
vectors of the direct signal, its reverberation, reverberated noise, and received mixture. By
designating the first microphone as the reference, the relative transfer function c(f; q) in

the two-microphone case can be described as

T
c(fiq) = 1Ay 255 (3.2)

where 7" denotes the time difference of arrival (TDOA) between the two signals in
seconds, A(f) is a real-valued relative gain, j is the imaginary unit, f; is the sampling rate
in Hz, D is the number of discrete Fourier transform (DFT) frequencies, and [+]7 stands for
transpose. The range of f is from 0 to D /2.

The classical GCC-PHAT algorithm [80], [28] estimates the time delay of a pair of
microphones p and g by computing their generalized cross-correlation coefficients with a

weighting mechanism based on phase transform

(3.3)

Y, t, Y t, H . f
GCCp,q(t,f,k)=Real{ AINACYY) e—12n5fsrp_q(k)}

¥, (&, O |Y, & |
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= cos( LYp(t, f)— LYq tf)— zn%ﬂTp,q (k)),

where Real{-} extracts real component and £(+) extracts phase. 7, ; (k) = (dixq — dip)/Cs
denotes the time delay of a candidate direction or location k, where c is the speed of sound

in the air, and dy4 and dy, respectively represent the distance between the hypothesized

sound source to microphone p and q. Assuming that the target speaker is still within a
single utterance, the GCC coefficients are then summated and the time delay producing the
largest summation represents the delay estimate.

Intuitively, this algorithm first aligns two microphone signals using a candidate time
delay t and then computes their cosine distance at each T-F unit pair. If the cosine distance
is close to one, it means that the candidate time delay is close to the true time delay at that
T-F unit. The summation functions as a voting mechanism to combine the observations at
all the unit pairs. Since each GCC coefficient is naturally bounded between -1 and 1, each
T-F unit pair has an equal contribution to the summation. We emphasize that PHAT
weighting [14], [210], i.e. the magnitude normalization term in Eq. (3.3), is essential, as
the energy of human speech is mostly concentrated in lower frequency bands. If the
magnitude normalization is not performed, lower frequency components would have much
larger GCC coefficients and dominate the summation, making it less sharp. In addition, the
scales of the two signals are usually different in near-field or binaural cases. It is hence
beneficial to remove the influence of different energy levels.

We emphasize that summation over frequencies is very important for broadband speech

signals. Because of spatial aliasing [40], the cross-correlation function at high frequencies
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is typically periodic, containing multiple peaks. It is important to summate over all the
frequencies to sharpen the peak corresponding to the true timed delay [163].

Although GCC-PHAT performs well in environments with low to moderate
reverberation, it is susceptible to strong reverberation and noise. To see this, suppose that
there is a strong directional noise source. There would be many T-F units dominated by the
noise source. In this case, the noise source would exhibit the highest peak in the summated
GCC coefficients. Similarly, diffuse noise and reverberation would broaden GCC peaks

and corrupt TDOA estimation.

3.2.2. Mask-Weighted GCC-PAHAT

The time delay information is contained in the direct-path signal c(f;q)S, (¢, f).

Including the GCC coefficients of any T-F unit pairs dominated by noise or reverberation
in the summation would weaken localization performance. To improve robustness, we
multiply the GCC coefficients for a pair of microphones and a masking-based weighting

term following [156], [45]
MGCCyq(t,f, k) = MIS)(t, £)GCCpq (£ f,Tpq(K)), (3.4)

where M (s) t, ) represents the importance of the T-F unit pair for TDOA estimation
2.q p p p

(superscript (s) indicates target signal — see Eq. (3.1)). It is computed using

My (t, f) = My (8, )M (L £, (3.5)

where IVIP and IVIq are the T-F masks representing the estimated speech portion at each T-

F unit of microphone p and g, respectively. The estimated masks should be close to one

for T-F units dominated by direct sound signals and zero for T-F units dominated by noise
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or reverberation. Mask estimation based on deep learning will be discussed later in Chapter

3.2.5. The time delay or direction is then computed as

D/2

k=argmax > ) MGCCq(t,f, k) (3.6)
e t f=1

where () represents the set of microphones pairs in an array used for the summation. Note
that the above delay estimation is formulated for a general array with at least two sensors.

Through the product of the masks of individual microphone channels, the weighting
mechanism in Eq. (3.5) places more weights on the T-F units dominated by target speech
across all the microphone channels. This makes sense as target-dominant T-F units carry
cleaner phase information for localization than other ones. Therefore, adding this weighting
term should sharpen the peak corresponding to the target source in the summation and
suppress the peaks corresponding to noise sources and reverberation.

At a conceptual level, T-F masking guides localization in the following sense. First, T-
F masking serves to specify what the target source is through supervised training. Although
we are interested in speaker localization in this study, the framework does not change if
one is interested in localizing, for example, musical instruments instead. Second, masking
suppresses the impact of interfering sounds and reverberation in localization. Without the
guidance of masking, traditional DOA estimation could be considered blind as it is
indiscriminately based on sound energy in one form or another.

One property of the proposed algorithm is that, for relatively clean utterances,
estimated mask values would all be close to one. In such a case, the proposed algorithm
simply reduces to the classic GCC-PHAT algorithm, which is known to perform very well

in clean environments [28].

43



We point out that our approach is different from applying the GCC-PHAT algorithm
to enhanced speech signals obtained via T-F masking. To explain this, let us substitute
1\71p(t, Y, (¢, f) and IVIq (&, Y, (¢, f) for Y, (¢, f) and Y, (¢, f) in Eq. (3.3). Doing it this
way produces the same GCC coefficients as using the unprocessed Y, (t, /) and Y, (¢, f),
because the real-valued masks are cancelled out due to the PHAT weighting (unless time-
domain re-synthesis is performed). The proposed algorithm utilizes estimated masks as a
weighting mechanism to identify for localization speech dominant T-F units where the
phase information is less contaminated, as localization cues are mostly contained in inter-
channel phase differences.

Our study first estimates a T-F mask for each single-channel signal and then combines
the estimated masks using their product. In this way, the resulting DNN for mask
estimation can be readily applied to microphone arrays with various numbers of
microphones arranged in arbitrary geometry, although geometrical information is still
necessary for DOA estimation. This flexibility distinguishes our algorithms from
classification based approaches [15], [38], [98], [99], [199] for DOA estimation, which
typically require fixed microphone geometry, fixed number of microphones and fixed
spatial resolution for DNN training and testing. In addition, the trained neural network for
mask estimation can be directly employed for related tasks such as VAD, spatial covariance
matrix estimation, beamforming, and single-channel post-filtering [58], [213].

Following [156], [45], a recent study [119] proposed to use DNN based T-F masking
to improve the SRP-PHAT algorithm. This method first averages the log-magnitudes from
all the channels and then uses a convolutional neural network to estimate an average mask

from the averaged magnitudes. The estimated average mask is then used as weights for
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SRP-PHAT. Averaging log-magnitudes would not be a good idea when the signals at
different channels vary significantly, for example in the binaural case where interaural level
differences can be large. In addition, averaging would incorporate contaminated T-F units
for DOA estimation. In contrast, our approach estimates a mask from each microphone
signal separately, using features extracted from that microphone. We then combine
estimated masks using the product rule in Eq. (3.5). As a result, our approach places more
weights on the T-F units dominated by target speech in all the microphone channels. It
should, however, be noted that performing channel-wise mask estimation comes at the cost
of increased computation compared to estimating an average mask. Furthermore, as
described in Chapter 3.2.5, our study uses powerful recurrent neural networks (RNNs) to
estimate the IRM [166] and phase-sensitive mask [35], [170], yielding better mask

estimation for localization.

3.2.3. Mask-Weighted Steered Response SNR

The GCC-PHAT, SRP-PHAT or BeamScan [84], [217] algorithms steer a beam
towards a hypothesized direction and compute the steered-response power of noisy speech
to determine whether the hypothesized direction is the target direction, i.e. with the
strongest response. The proposed mask-weighted GCC-PHAT algorithm utilizes a T-F
mask to emphasize speech dominant T-F units so that the steered-response power of
estimated target speech, rather than noisy speech, is used as the location indicator. This
section uses steered-response SNR as the indicator, as SNR considers both speech power
and noise power, and more importantly, the SNR at each frequency can be bounded
between zero and one so that DOA estimation would not be biased towards high-energy
lower-frequency components. Specifically, for each direction of interest, we design a
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beamformer to point towards that direction, and the direction producing the highest SNR
is considered as the predicted target direction [9]. Speech and noise covariance matrices
for beamforming and SNR computation can be robustly estimated with the guidance of T-

F masking.

Let Y, ,(tf) = [Yp(t, ), Yq(t, f)]T. The speech and noise covariance matrices

between microphone p and q at each frequency are computed in the following way,

CHGES NV CI Y ALY AHICYS 67
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where ME; (t,f) is given in Eq. (3.5) and 1\71;2(1:, f) is computed as (superscript (1)

indicates noise or interference)

M0t ) = (1= 1,(6.0) (1= Myt ) (3.9)

Motivated by the work in masking-based beamforming for ASR [203], [58] (see also
[213]), the weights in Eq. (4.11) are empirically designed so that only the T-F units
dominated by speech in both microphone channels are utilized to compute the speech
covariance matrix, and the more speech-dominant a T-F unit is, the more weight is placed
on it. The noise covariance matrix is computed in a similar fashion, where the noise mask
is simply obtained in Eq. (3.9) as the complement of the speech mask.

Next, under the plane-wave and far-field assumption [40], the steering vector for a

candidate direction k is hypothesized as
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. f.dk . f.dk T
Cpq(f k) = e_’z"ﬁfsc_f,e_’z"ﬁfsc_q (3.10)
Then, ¢, 4(f, k) is normalized to unit length
Cpq(f, )
Cpq(f 1) = 7 (3.11)
o lepq(F O]
and an MVDR beamformer is constructed
&M n-14
. Dy (F)77C,
W, (f k) = —24 - (3.12)

= HgM -1z
Cpq Ppq(F)Cpq
Afterwards, the SNR of the beamformed signal is estimated as the ratio between the

beamformed speech energy and beamformed noise energy

Wy o (f, KT (P, o (f K
SNR, 4 (f, k) = A”"’(f ) A‘(’:;(f )A”'q (.1 (3.13)
Wp,q (f, k)T @, o (F)Wp o (f, k)
Finally, the speaker location is estimated as
D/2
k = argmax z z SNR,, 4 (f, k) (3.14)
(P.@)eQ f=1

One issue with Eq. (3.13) is that the computed energy and SNR are unbounded at each
frequency band. In such cases, several frequency bands may dominate the SNR calculation.
To avoid this problem, we restrict it to between zero and one in the following way

Wy a (F OHBS) ()W, o (f, )
W, (£ IOHBS) (FIWy, o (f, ) + Wy o (f, HBS) ()W, o (f, k)

SNR,, ,(f, k) = (3.15)

Eq. (3.15) shares the same spirit as PHAT weighting, where the GCC coefficient at each
unit pair is bounded between -1 and 1, making each frequency contribute equally to the

summation.
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One can also explore alternative ways of weighting different frequency bands. One of

them is to place more weights on higher-SNR frequency bands, i.e.

My, q () Wy o (F, ) B30 (F)W 4 ()

SNR,, . (f, k) = ~— — (3.16)
- Wy o (FLIOHDS) ()W, o () + Wy o (F, HBS) (W, o (f, k)
UNOEDWA VIR ICIY G.17)

where the sum of the speech mask 1\717(,,521 (t, f) within each frequency band is used to
indicate the importance of that band for localization. This frequency weighting, which
counters the energy normalization, is motivated by the mask-weighted GCC-PHAT
algorithm, which implicitly places more weights on frequencies with larger 1\7Ip'q (). In

our experiments, consistently better performance is observed using Eq. (3.16) than using

Eq. (3.13) and (3.15) (see Chapter 3.4).

3.2.4. DOA Estimation Based on Steering Vectors

In the recent CHIiME-3 and 4 challenges [8], [160], deep learning based T-F masking
has been prominently employed for acoustic beamforming and robust ASR [58], [203],
[213]. The main idea is to utilize estimated masks to compute the spatial covariance
matrices and steering vectors that are critical for accurate beamforming. Remarkable
improvements in terms of ASR performance have been reported over conventional
beamforming techniques that employ traditional DOA estimation algorithms such as GCC-
PHAT [2] and SRP-PHAT [8] for steering vector computation. This success is largely

attributed to the power of deep learning based mask estimation [161]. In this context, we
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Figure 3-1. Illustration of DOA estimation based on estimated steering vectors for a 2.4 s
two-microphone (spacing: 24 cm) signal with babble noise. The SNR level is -6 dB and
reverberation time is 0.16 s. Dots indicate the estimated phase differences £(¢,;(f)); —

£(Cpq(f)), obtained using the IRM, and crosses the fitted phase differences 2m % fsTp,q(K)
for a candidate direction k at each frequency.

propose to perform DOA estimation from estimated steering vectors, as they contain
sufficient information about the underlying target direction.

Following [203], [213], the steering vector for microphone p and q, ¢,,(f), is
estimated as the principal eigenvector of the estimated speech covariance matrix computed
using Eq. (3.7). If EI\)I(,S,C)I (f) is accurately estimated, it would be close to a rank-one matrix,
as the target speaker is a directional source and its principal eigenvector is a reasonable
estimate of the steering vector [40].

To derive the underlying time delay or direction, we enumerate all the candidate

directions and find the direction that maximizes the following similarity:
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Sintq(£,10) = c05 (£ (6pq(P)). = 2 (8pa (D), - an fitpg@)  G.18)

D/2
k=argmax Y Simye(f, 0 (3.19)
“ ewer=

The rationale is that €, , (f) is independently estimated at each frequency, and therefore
the estimated phase difference, £ (ép’q (f)) A (6p,q (f)) , between the two complex
1 2

values in €, 4, (f) does not strictly follow the linear phase assumption. We enumerate all

the candidate directions and find as the final estimate a direction k with its hypothesized
phase delay an fsTp,q(k) that best matches the estimated phase difference at every

frequency band. As illustrated in Figure 3-1, this approach can be understood as performing
circular linear regression between the estimated phase difference and frequency index f,
where the slope is determined by 7, 4 (k) and the periodic cosine operation is employed to
deal with phase wrapping. The cosine operation is naturally bounded between -1 and 1,
thus explicit energy normalization as in Eq. (3.3) and (3.15) is not necessary. When there
are more than two microphones, we simply combine all the microphone pairs by the
summation. We optimize the similarity function through explicit enumeration. Eq. (3.18)
in form is similar to Eq. (3.3). The key difference is that the phase difference per frequency
is obtained from robustly estimated steering vectors rather than from the observed phase
difference at each unit pair.

Similar to Eq. (3.16), we emphasize the frequency bands with higher SNR using

M, ,(f) given in Eq. (3.17).
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Simy, o (f, k) = M, 4 (f)cos (4 (c“,,,,q(f))1 .y (6,[,,6,(10))2 = 27% fiThq (k)) (3.20)

Previous studies [124], [3], [151] have computed time delays from estimated steering
vectors at each frequency band or each T-F unit pair. They divide the estimated phase
difference by the angular frequency to get the time delay, assuming that the microphones
are placed sufficiently close and no phase wrapping occurs. However, using closely spaced
microphones would make the time delay too small to be accurately estimated and also make
location triangulation harder. When phase wrapping is present, multiple time delays could
give exactly the same phase difference at a specific frequency band. Our method addresses
this ambiguity via enumerating all the time delays and checking the similarity measure in
Eq. (3.18) of each time delay. This method is sensible because a time delay
deterministically corresponds to a phase difference. Another difference is that we use DNN
based T-F masking for steering vector computation. In contrast, previous studies use spatial
clustering [3] or empirical rules [151].

Our proposed algorithm differs from the classic MUSIC algorithm [134] and its recent
extension in [201] where a recurrent neural network with uni-directional long short-term
memory (LSTM) is used to estimate the IBM and the estimated mask is then utilized to
weight spatial covariance matrix estimation for MUSIC. Whereas these studies find the
target direction with its hypothesized steering vector orthogonal to the noise subspace, the
proposed algorithm directly searches for a direction that is closely matched to target
steering vectors between each pair of microphones at all frequencies. The steering vector
in our study is robustly estimated using supervised T-F masking. Similar to GCC-PHAT,

our algorithm implicitly equalizes the contribution of each frequency as all frequencies
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contain information for the DOA estimation of broadband speech signals. In contrast, the
pseudospectrum at each frequency in the broadband MUSIC algorithm used in [201] is

unbounded, and some frequencies could dominate the summation of the pseudospectrams.

3.2.5. Deep Learning Based T-F Masking

Clearly, the estimated mask of each microphone signal IVIp plays an essential role in
the proposed algorithms. Deep learning based T-F masking has advanced monaural speech
separation and enhancement performance by large margins [161]. Many DNNs have been
applied to T-F masking. Among them, RNNs with bi-directional LSTM (BLSTM) have
shown consistently better performance over feed-forward neural networks, convolutional
neural networks, simple RNNs [176], and RNNs with uni-directional LSTM [191], [66],
due to their better modeling of contextual information. In this study, we train an RNN with
BLSTM to estimate the IRM (see Chapter 3.3 for more details of BLSTM training). When
computing the IRM of a noisy and reverberant utterance, we consider the direct sound as
the target signal and the remaining components as interference, as the direct sound contains

phase information for DOA estimation.

e, (F; )S, (& )|

_ ~ (3.21)
e, (F; S, (6, )| + |Hy (8, ) + Ny (8, )]

IRM,, (¢, f) =

See Eq. (3.1) for relevant notations in the above equation.

In single-channel speech enhancement, the estimated real-valued mask is element-wise
multiplied with the STFT coefficients of unprocessed noisy speech to obtain enhanced
speech [166]. In this study, we use an estimated IRM to weight T-F units for DOA

estimation. Our study uses log power spectrogram features for mask estimation.
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The IRM is ideal for speech enhancement only when the mixture phase is the same as
the clean phase at each T-F unit. The phase-sensitive mask (PSM) [35], [170] takes the
phase difference into consideration by scaling down the ideal mask when the mixture phase
is different from the clean phase using a cosine operation. In a way, it represents the best
mask if a real-valued mask is multiplied with the STFT coefficients of unprocessed noisy
speech for enhancement [35], [192]. We define a form of the phase-sensitive mask in the

following way:

PSM, (t, f) = max {0,1IRM, (¢, f) cos <4Yp(t, 1 = 2 (e S, f)))} (3.22)

The inclusion of phase in an ideal mask seems particularly suited for our task as phase
is key for localization and we need to identify T-F units with cleaner phase for this task.
The cosine term serves to reduce the contributions of contaminated T-F units for
localization. Note the difference between the PSM defined in Eq. (3.22) and the definition

in [35].

3.3. Experimental Setup

The proposed localization algorithms are evaluated in reverberant environments with
strong diffuse babble noise. Our neural network is trained only on simulated RIRs using
just single-channel information for mask estimation, and directly tested on three unseen
sets of RIRs for DOA estimation using microphone arrays with various numbers of
microphones arranged in diverse ways. An illustration of the test setup is shown in Figure

3-2. The first test set includes a relatively matched set of simulated two-microphone RIRs,
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O Interference Source ® Target Source

Figure 3-2. Illustration of (a) two-microphone setup, (b) eight-microphone setup, and (c)
binaural setup.

the second set consists of real RIRs measured on an eight-microphone array, and the third
set contains real binaural RIRs (BRIR) measured on a dummy head.

The RIRs used in the training and validation data are simulated using an RIR generator
[47], which is based on the classic image method. An illustration of this setup is shown in
Figure 3-2(a). For the training and validation set, we place 36 different interfering speakers
at the 36 directions uniformly spaced between -87.5° and 87.5° in steps of 5°, i.e. one
different competing speaker in each direction, resulting in a 36-talker diffuse babble noise.
The target speaker is randomly placed at one of the 36 directions. For the testing data, we
put 37 different interference speakers at the 37 directions spanning from —90° to 90° in
steps of 5° (one different competing speaker in each direction), and the target speaker
randomly at one of the 37 directions. This way, the test RIRs are different from the RIRs
used for training and validation. The distance between each speaker and the array center is
1.5 m (see Figure 3-2(a)). The room size is fixed at 8 X 8 X 3 m, and the two microphones
are placed around the center of the room. The spacing between the two microphones is 0.2
m and the microphone heights are both set to 1.5 m. The reverberation time (T60) of each
mixture is randomly selected from 0.0 s to 1.0 s in steps of 0.1 s. Target speech comes from

the IEEE corpus [68] with 720 sentences uttered by a female speaker. We split the
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utterances into sets of 500, 100 and 120 (in the same order as listed in the IEEE corpus) to
generate training, validation and test data. To create the diffuse babble noise for each
mixture, we randomly pick 37 (or 36) speakers from the 462 speakers in the TIMIT training
set and concatenate all the utterances of each speaker, and then place them at all 37 (or 36)
directions, with a randomly chosen speech segment of each speaker per direction. Note that
we use the first half of the concatenated utterance of each speaker to generate the training
and validation diffuse babble noise, and the second half to generate the test diffuse noise.
There are in total 50,000, 1,000, and 3,000 two-channel mixtures in the training, validation
and test set, respectively. The average duration of the mixtures is 2.4 s. The input SNR
computed from reverberant speech and reverberant noise is fixed at -6 dB. Note that if the
direct sound is considered as target speech and the remaining signal as noise, as is done in
Eq. (3.21) and (3.22), the SNR will vary a lot and be much lower than -6 dB, depending on
the direct-to-reverberant ratio (DRR) of the RIRs. We therefore fix the SNR between the
reverberant speech and reverberant noise at -6 dB and systematically vary the RIRs to
change the SNR between the direct sound signal and the remaining components.

We train our BLSTM using all the single-channel signals (50,0002 in total) in the
training data. The log power spectrogram is used as the input features for mask estimation.
Global mean-variance normalization is performed on the input features. The BLSTM
consists of two hidden layers each with 600 units in each direction. Sigmoidal units are
utilized in the output layer, as the IRM and PSM are bounded between zero and one. During
training, the Adam algorithm is utilized to minimize the mean squared error. The frame
length is 32 ms, the frame shift is 8 ms, and the sampling rate is 16 kHz. A 512-point FFT

(fast Fourier transform) is performed to extract 257-dimensional log spectrogram feature
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at each frame. The input and output dimension are thus both 257. The sequence length for
BLSTM training and testing is just the utteance length.

The proposed algorithms are also evaluated on the Multi-Channel Impulse Responses
Database [50] measured at Bar-Ilan University using a set of eight-microphone linear
arrays. We use the microphone array with 8 cm spacing between the two center
microphones, and 4 cm spacing between the other adjacent microphones in our
experiments, i.e. 4-4-4-8-4-4-4. The setup is depicted in Figure 3-2(b). The RIRs are
measured in a room with the size 6X6X2.4 m in steps of 15° from —90° to 90°, at a
distance of 1.0 and 2.0 m to the array center, and at three reverberation time (0.16, 0.36
and 0.61 s). Similar to the two-microphone setup, the IEEE and TIMIT utterances are
utilized to generate 3,000 eight-channel test utterances for each of the two distances. We
put one different interference speaker at each of the 26 locations, resulting in a 26-talker
diffuse babble noise. For each of the two distances, the target speaker is placed at one of
the 11 interior locations on the hemi-circle (to avoid endfire directions). Note that the RIRs,
number of microphones, source-to-array distance, and microphone geometry in this dataset
are all unseen during training. In addition, the diffuse babble noise is generated using
different locations and different number of interfering speakers. The trained BLSTM is
directly tested on the generated test utterances using randomly selected sets of microphones
to demonstrate the versatility of our approach to arrays with varying numbers of
microphones arranged in diverse geometries.

We also evaluate our algorithm on a binaural setup illustrated in Figure 3-2(c). The real

BRIRs! captured using a Cortex head and torso simulator (HATS dummy head) in four real

! Available at https://github.com/IoSR-Surrey/RealRoomBRIRs.
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rooms with different sizes and T60s at the University of Surrey are utilized to generate the
test utterances. The dummy head is placed at various heights between 1.7 m and 2.0 m in
each room, and the source to array distance is 1.5 m. The real BRIRs are measured using
37 directions ranging from —90° to 90° in steps of 5°. The IEEE and TIMIT utterances are
utilized to generate 3,000 binaural test utterances in the same way as in the two-microphone
setup. The only difference from the two-microphone setup illustrated in Figure 3-2(a) is
that now real BRIRs rather than simulated two-channel RIRs are used to generate test
utterances. Note that we directly apply the trained BLSTM on this new binaural test set for
DOA estimation, although the BLSTM is not trained specifically on any binaural data and
the binaural setup is completely unseen during training.

For setup (a) and (b), the location or direction of interest k is enumerated from —90°
to 90° in steps of 1° on the hemi-circle. The hypothesized time delay between microphone
p and q for location or direction k, T, 4(k), is computed as (dy, — dyp)/cs, Where ¢ is
343 m/s in the air. Note that setup (b) uses real RIRs measured by a given microphone
array, so the distance between each candidate location and each microphone, and
microphone configurations are all subject to inaccuracies. In addition, the assumed sound
speed may not equal the actual sound speed. These factors complicate accurate localization.
For setup (c), the hypothesized time delay cannot be obtained from the distance difference
due to the shadowing of head and torso. 7, ,(k) is instead enumerated from -15 to 15
samples in steps of 0.1 sample. The estimated time delay is then mapped to the azimuth
giving the closest time delay. This mapping is obtained from the group delay of the

measured BRIRs of the HATS dummy head in the anechoic condition, as is done in [196].
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Note that we assume that the target speaker is fixed within each utterance (average
length is 2.4 s), and compute a single DOA estimate per utterance. For setup (a) and (c),
which use 5° step size for the candidate directions, we measure localization performance
using gross accuracy, which considers a prediction correct if it is within 5° (inclusive) of
the true target direction. For the Multi-Channel Impulse Response Database with a coarser
spatial resolution, we consider a prediction correct if it is within 7.5° of the true direction.
Gross accuracy is given as percent correct over all test utterances.

In Eq. (3.6), (3.14) and (3.19), Q contains all the microphone pairs of an array for the

summation.

3.4. Evaluation Results

Table 3-1 presents localization gross accuracy results for two-microphone setup (a),
together with the DRR at each T60 and the oracle performance marked in grey. We report
DRR together with T60 as it is an important factor for the performance of sound
localization in reverberant environments. The rows of eIRM and ePSM in the table mean
that estimated IRM and estimated PSM are used for DOA estimation, respectively. All the
three proposed algorithms lead to large improvements over GCC-PHAT and MUSIC (on
average 72.0%, 86.7% and 75.1% using ePSM vs. 21.6% and 25.2%). PSM estimation
yields consistently better performance than IRM estimation for all the algorithms; similar
trends are observed from later results in Table 3-2, Table 3-3, and Table 3-4. As is reported
in Table 3-1, frequency weighting based on estimated masks, i.e. using Eq. (3.16) and
(3.20), leads to consistent improvements (more than 5% on average). Among the three

proposed algorithms, mask-weighted steered-response SNR performs the best, especially
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Table 3-1. DOA estimation performance (%gross accuracy) of different methods in two-
microphone setup.

Frequency T60(s)/DRR(dB)

Method Weighting| ¥ [0.0/nf]0.2/3.8[0.3/-0.40.4/-2.5]0.5/-4.0[0.6/-5.1]0.7/-6.0]0.8/-6.810.9/-7 4[L.0/-8.0 - O
GCC-PHAT - - [337]356] 301 | 261 | 167 | 156 | 195 | 143 | 152 | 89 |21.6
MUSIC - - 351416 [ 339 [ 267 | 20.6 | 205 | 23.6 | 167 | 193 | 13.9 [25.2

- JeIRM[ 943 [ 957 | 87.0 | 80.1 | 74.6 | 64.0 | 534 | 49.0 | 47.2 | 38.6 |68.3

Mask-weighted = IRM| 99.3 1 99.7 | 98.7 | 96.1 | 96.9 | 97.1 | 96.8 | 94.9 | 96.2 | 95.7 |97.1
GCC-PHAT - |ePSM| 96.4 [ 954 | 883 | 82.7 | 80.1 | 69.2 | 59.1 | 53.7 | 51.0 | 44.6 [72.0

- PSM |100.0|100.0 | 100.0 | 100.0 | 100.0 | 99.7 | 99.7 | 99.3 | 100.0 | 99.3 [99.8

Eq. (3.15)[eIRM| 94.6 | 93.7 | 84.8 | 785 | 80.1 | 80.2 | 68.1 | 59.5 | 59.7 | 57.8 |75.7
Eq. (3.16)[eIRM| 95.0 | 95.0 | 87.7 | 84.0 | 85.7 | 87.7 | 75.7 | 69.7 | 66.6 | 64.7 |81.2
Mask-weighted  |Eq. (3.16)[ IRM |100.0| 99.7 | 99.1 | 993 | 993 | 99.4 | 994 | 993 | 99.3 | 99.3 [99.4
Steered-response SNR|Eq. (3.15)|ePSM| 94.6 | 95.4 | 87.0 | 82.7 | 87.1 | 84.7 | 75.1 | 65.6 | 66.6 | 62.0 |80.1
Eq. (3.16)[ePSM| 96.1 | 96.4 | 91.1 | 89.6 | 91.3 | 89.0 | 84.0 | 769 | 76.9 | 75.9 |86.7
Eq. (3.16)[PSM | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 99.7 [100.0
Eq. (3.19)[eIRM]| 89.6 | 92.4 | 842 | 733 | 704 | 64.6 | 55.6 | 51.4 | 50.0 | 40.6 [67.2
Eq. (3.20)[eIRM]| 93.5 | 95.7 | 86.4 | 80.8 | 76.7 | 69.2 | 61.0 | 58.8 | 552 | 47.2 |724
DOA Estimation from|Eq. (3.20)[ IRM | 98.9 | 99.7 | 99.1 | 97.1 | 972 | 96.8 | 96.2 | 942 | 959 | 964 |97.1
Steering Vectors  |Eq. (3.19)[ePSM| 90.7 | 92.4 | 84.5 | 76.5 | 72.5 | 67.9 | 60.1 | 51.4 | 50.7 | 43.9 |69.0
Eq. (3.20)[ePSM| 96.1 | 97.0 | 88.3 | 82.7 | 80.8 | 70.5 | 66.1 | 58.8 | 57.2 | 54.1 |75.1
Eq. (3.20)[PSM| 99.6 |100.0| 100.0 | 100.0 | 100.0 | 99.7 | 99.7 | 99.3 | 99.7 | 99.3 [99.7

when reverberation time is high and DRR is low. For all the three proposed algorithms,
using the PSM or IRM results in close to 100% gross accuracy, even when reverberation
time is as high as 1.0 s, the DRR is as low as -8.0 dB, and the SNR between reverberant
speech and reverberant noise is as low as -6 dB. These oracle results demonstrate the
effectiveness of T-F masking: the PSM and IRM can be considered as strong training
targets for robust speaker localization, just like for speech separation and enhancement
[162], [166]. Better estimated masks in the future will likely produce better localization
results.

For the mask-weighted GCC-PHAT algorithm, we have also evaluated the average of
estimated mask instead of the product in Eq. (3.5), motivated by [119]. We find that the
product rule produces significantly better localization than the average, 68.3% vs. 55.3%
using eIRM and 72.0% vs. 61.6% using ePSM. We should note that the average mask is

not exactly what is used in [119] and there are many differences between our system and
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Figure 3-3. Illustration of an estimated IRM for a mixture with babble noise in the two-

microphone setup (SNR =-6 dB and T60 = 0.9 s). (a) Mixture log power spectrogram; (b)
clean log power spectrogram; (¢) IRM; (d) estimated IRM.

[119], as discussed in Chapter 3.2.2. These differences complicate a direct comparison.
Another way is to compare the relative improvement over a baseline where no masking is
performed. It appears that our overall system obtains larger improvements.

Figure 3-3 illustrates IRM estimation for a very noisy and reverberant mixture. As can
be observed by comparing the IRM in Figure 3-3(c) and the estimated IRM in Figure
3-3(d), the estimated mask well resembles the ideal mask in this case, indicating the
effectiveness of BLSTM based mask estimation. Upon a closer examination, we observe
that the IRM is more accurately estimated at speech onsets and lower frequencies, likely
because the direct speech energy is relatively stronger in these T-F regions.

Table 3-2 presents the accuracy of DOA estimation in setup (b), which uses measured
real RIRs. For each utterance, we randomly choose two microphones from the eight

microphones for testing. Note that the microphone distances can vary from 4 cm at
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Table 3-2. DOA estimation performance (%gross accuracy) of different methods in multi-
microphone setup by randomly selecting two microphones for each test utterance.

. T60(s)/DRR(dB) . T60(s)/DRR(dB)
Method Mask | Distance (570770570 36/7.4] 0.617a.7] O | Pt (070 e 3T036/1.6 06113 O
GCC-PHAT ; 379 | 385 | 317 |361 317 | 298 | 228 |28.1
MUSIC ; 346 | 358 | 317 | 341 300 | 239 | 211 | 250
eIRM 840 | 83.0 | 843 |837 821 | 744 | 675 | 746
Mask-weighted | IRM 927 | 916 | 93.0 | 924 928 | 930 | 917 |925
GCC-PHAT ePSM 856 | 859 | 83.0 |849 852 | 783 | 706 | 78.1
PSM 940 | 940 | 925 | 935 933 | 932 | 924 |93.0
cRM]| 840 | 842 | 825 [836] 815 | 693 | 666 |724
Mask-weighted | IRM m 932 | 929 | 927 |929] “™ [ 931 | 922 | 927 |926
Steered-response SNR | ePSM 86.7 86.5 86.4 |86.5 85.0 77.1 724 782
PSM 928 | 938 | 925 |93.1 952 | 926 | 918 |932
eIRM 804 | 80.6 | 81.6 |808 795 | 679 | 653 | 709
DOA Estimation from | IRM 923 | 902 | 928 |917 928 | 926 | 911 | 922
Steering Vectors | ePSM 83.6 | 834 | 813 |828 819 | 73.8 | 68.1 | 746
PSM 938 | 939 | 922 |933 929 | 929 | 924 |928

Table 3-3. DOA estimation performance (%gross accuracy, averaged over all reverberation
times) of different methods at 2 m distance in multi-microphone setup by randomly
selecting different numbers of microphones for each test utterance.

# microphones

Method Mask 3 3 4 5 6 7 3
GCC-PHAT - |28.1136.1{38.9| 41.8|41.5|414|428
MUSIC - 125.0{30.4|31.3| 32.2 | 32.8 | 32.7 | 32.8

eIRM |74.6|89.3|93.8]| 94.6 | 95.1 | 96.0 | 96.1
IRM [92.5|98.2199.6/100.0/100.0|100.0|100.0
ePSM|78.1190.3193.7| 95.5 | 95.9 | 96.2 | 96.2
PSM [93.0/98.7|99.7100.0/100.0|100.0|100.0
elRM |72.4185.8/90.1] 92.1 | 92.9 | 93.4 | 93.5
Mask-weighted Steered-response | IRM [92.6|98.7/99.6/100.0{100.0|100.0{100.0
SNR ePSM|78.2190.0{93.5| 94.7 | 95.6 | 95.8 | 95.8

PSM [93.2198.9199.8/100.0/100.0/100.0|100.0
eIRM |70.9|85.6/89.8| 91.3192.2 | 92.4|92.6
DOA Estimation from Steering | IRM 192.2198.3199.6/100.0/100.0/100.0/100.0
Vectors ePSM |(74.6|88.9192.6| 94.4 | 94.8 | 95.1 | 95.1

PSM |92.8198.7199.7/100.0/100.0]100.0|100.0

Mask-weighted GCC-PHAT

minimum to 28 cm at maximum for the test utterances. As the DNN in our algorithms only
utilizes single-channel information, our approach can still apply even as geometry varies
substantially. As can be seen, the proposed algorithms using PSM lead to large
improvements over GCC-PHAT and MUSIC, 84.9%, 86.5% and 82.8% vs. 36.1% and

34.1% for 1 m distance, and 78.1%, 78.2% and 74.6% vs. 28.1% and 25.0% for 2 m
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Table 3-4. DOA estimation performance (%gross accuracy) of different methods in
binaural setup.

Room - T60(s)/DRR(dB)

Method Mask | Anechoic A B C D AVG
0.0/Inf ]0.32/7.210.47/7.0/0.68/10.9]0.89/7.3
GCC-PHAT - 56.7 28.7 36.6 33.4 25.3 |36.0
MUSIC - 56.4 26.0 36.1 28.0 26.1 |34.3
eIRM| 96.6 94.7 94.8 95.1 91.2 |94.5
Mask-

weighted IRM | 100.0 99.4 99.8 99.3 100.0 | 99.7
GCC-PHAT ePSM| 974 95.3 96.6 95.6 943 195.8
PSM | 100.0 99.5 100.0 99.3 100.0 | 99.8

Mask- elRM| 96.6 88.6 89.1 87.6 85.8 189.5
weighted |IRM | 99.7 99.5 99.5 99.2 99.8 199.5
Steered- |[ePSM| 974 93.6 93.8 89.3 904 1929
response SNR| PSM | 100.0 100.0 | 99.7 99.8 100.0 | 99.9
DOA elRM| 97.6 91.3 91.3 86.0 852 190.2
Estimation | IRM | 100.0 99.4 99.8 99.2 99.8 199.6
from Steering |ePSM| 97.6 95.3 93.9 89.6 89.9 1933
Vectors PSM | 100.0 99.5 99.8 99.0 100.0 | 99.7

distance. In this setup, the three proposed algorithms perform similarly, with the mask-
weighted steered-response SNR performing slightly better. Clearly, the performance is
better when the source to array distance is 1 m than 2 m. Using the IRM or the PSM does
not reach 100% accuracy in this setup, likely because the aperture size can be as small as
4 cm, posing a fundamental challenge for accurate localization of a distant speaker.

In Table 3-3, we show that our algorithms can be directly extended to multi-channel
cases. This is done by combining different microphone pairs as in the classic SRP-PHAT
algorithm. For each utterance, we randomly select a number of microphones for testing.
As can be seen from the results, using more microphones leads to better performance for
all the algorithms. A significant improvement occurs going from two to three microphones,
likely because three microphone pairs become available for localization in a three-sensor

array versus one pair in a two-sensor array. The performance starts to plateau after five
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microphones. Among the proposed algorithms, the mask-weighted GCC-PHAT algorithm
performs slightly better than the other two when more microphones become available.
Table 3-4 reports the results on binaural setup (c). Although the neural network trained
for mask estimation has not seen binaural signals and binaural geometry, directly applying
it to binaural speaker localization results in substantial gains over GCC-PHAT and MUSIC.
Notably, the mask-weighted steered-response SNR algorithm is slightly worse than the
other two (92.9% vs. 95.8% and 93.3% using ePSM). The reason, we think, is that the
energy levels at the two channels cannot be treated as equal as is done in Eq. (3.10), as
head shadow effects occur in the binaural setup. For the microphone array setup (a) and
(b), assuming equal energy levels is reasonable as there is no blockage from sound sources
to an array. Also the localization performance in this binaural setup appears much higher

than the two-microphone setup, likely because the DRR is much higher.

3.5. Conclusion

We have investigated a new approach to robust speaker localization that is guided by
T-F masking. Benefiting from deep learning based monaural masking, our approach
dramatically improves the robustness of conventional cross-correlation, beamforming and
subspace based approaches for speaker localization in noisy-reverberant environments. We
have found that balancing the contribution of each frequency is important for the DOA
estimation of broadband speech signals. Although the neural network is trained using
single-channel information, our study shows that it is versatile in its application to arrays

with various numbers of microphones and diverse geometries.
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Before closing, we emphasize that the proposed approach achieves robust speaker
localization as guided by T-F masking. Our experiments find that even for severely
corrupted utterances, ratio masking in the proposed algorithms leads to accurate
localization. Our study suggests that ideal ratio masks can serve as strong training targets
for robust speaker localization. Clearly, the major factor limiting the localization
performance is the quality of estimated masks. Nonetheless, the proposed T-F masking
guided approach promises further localization improvements as robust speaker localization
can directly benefit from the rapid development of deep learning based T-F masking.
Through training, masking guidance plays the dual role of specifying the target source and
attenuating sounds interfering with localization. T-F masking affords a view of the signal

to be localized, as opposed to traditional localization that blindly relies on signal energy.
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Chapter 4. Multi-Channel Blind Speaker Separation

This chapter investigates multi-channel talker-independent speaker separation, by
tightly integrating complementary spectral and spatial features for deep learning based
multi-channel speaker separation in reverberant environments. The primary idea is to
localize individual speakers so that an enhancement network can be trained on spatial as
well as spectral features to extract the speaker from an estimated direction and with specific
spectral structure. This work has been published in ICASSP 2018 [177], [178], Interspeech

2018 [179], and IEEE/ACM T-ASLP in 2019 [180].

4.1. Introduction

Recent years have witnessed major advances of monaural talker-independent speaker
separation since the introduction of deep clustering [57], [69], [177], [181], deep attractor
networks [20], [94], and permutation invariant training (PIT) [206], [81]. These algorithms
address the label permutation problem in the challenging monaural speaker-independent
setup [161], [122] and demonstrate substantial improvements over conventional
algorithms, such as spectral clustering [5], CASA based approaches [163] and target- or
speaker-dependent systems [212], [161].

When multiple microphones are available, spatial information can be leveraged to

alleviate the label permutation problem, as speaker sources are directional and typically
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spatially separated in real-world scenarios. One conventional stream of research is focused
on spatial clustering [40], [103], [70], where individual T-F units are clustered into sources
using complex GMMs or their variants based on spatial cues such as inter-channel time,
phase or level differences (ITDs, IPDs or ILDs) and spatial spread, under the speech
sparsity assumption. However, such spatial cues degrade significantly in reverberant
environments and lead to inadequate separation when the sources are co-located, close to
one another or when spatial aliasing occurs. In addition, conventional spatial clustering
does not exploit spectral information. In contrast, recent developments in deep learning
based monaural speaker separation suggest that, even with spectral information alone,
remarkable separation can be obtained [122], although most of such studies are only
evaluated in anechoic conditions.

One promising research direction is hence to harness the merits of these two streams of
research so that spectral and spatial processing can be tightly combined to improve
separation and at the same time, make the trained models as blind as possible to microphone
array configuration. In [29], [62], monaural deep clustering is employed for T-F masking
based beamforming. Their methods follow the success of T-F masking based beamforming
in the CHiME challenges [160]. Although beamforming is very helpful in tasks such as
robust ASR, for tasks such as speaker separation and speech enhancement, it typically
cannot achieve sufficient separation in reverberant environments, when sources are close
to each other, or when the number of microphones is limited. For such tasks, further
spectral masking would be very helpful. The studies in [21], [22] apply single-channel
separation on the outputs of a set of fixed beamformers. A major motivation is that fixed

beamformers together with a separate beam prediction network can be efficient to compute
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in an online low-latency system. However, their approach requires the information of
microphone geometry to carefully design the fixed beamformers, which are manually
designed for a single fixed device and typically not as powerful as data-dependent
beamformers that can exploit signal statistics for significant noise reduction. In addition,
the fixed beamformers point towards a set of discretized directions. This leads to resolution
problems and would become cumbersome to apply when elevation is a consideration.
Different from the approaches that apply deep clustering and its variants on monaural
spectral information, a recent study [178] includes inter-channel phase patterns for the
training of deep clustering networks to better resolve the permutation problem. However,
this approach only produces a magnitude-domain binary mask and does not exploit
beamforming, which is capable of phase enhancement and is known to perform very well
especially in modestly reverberant conditions or when many microphones are available.
In this context, our study tightly integrates spectral and spatial processing for blind
source separation (BSS), where spatial information is encoded as additional input features
to leverage the representational power of deep learning for better separation. The overall
proposed approach is a Separate-Localize-Enhance strategy. More specifically, a two-
channel chimera++ network that takes inter-channel phase patterns into account is first
trained to resolve the label permutation problem and perform initial separation. Next, the
resulting estimated masks are used in a localization-like procedure to estimate speaker
directions and signal statistics. After that, directional (or spatial) features, computed by
compensating IPDs or by using data-dependent beamforming, are designed to combine all
the microphones for the training of an enhancement network to further separate each

source. Here, beamforming is incorporated in two ways: one uses the magnitude produced

67



by beamforming as additional input features of the enhancement networks to improve the
magnitude estimation of each source and the other further considers the phase provided by
beamforming as the enhanced phase. The proposed approach aligns with human ability to
focus auditory attention on one particular source with its associated spectral structures and
arriving from a particular direction, and suppress the other sources [24].

Our study makes five major contributions. First, inter-channel phase and level patterns
are incorporated for the training of two-channel chimera++ networks. Second, two
effective spatial features are designed for the training of an enhancement network to utilize
the spatial information contained in all the microphones. Third, data-dependent
beamforming based on T-F masking is effectively integrated in our system by means of its
magnitudes and phases. Fourth, a run-time iterative approach is proposed to refine the
estimated masks for T-F masking based beamforming. Fifth, the trained models are blind
to the number of microphones and microphone geometry. On reverberant versions of the
speaker-independent wsj0-2mix and wsj0-3mix corpus [57], spatialized by measured and
simulated RIRs, the proposed approach exhibits large improvements over various
algorithms including MESSL [102], oracle and estimated time-invariant multi-channel
Wiener filter, GCC-NMF [195], ILRMA [78] and multi-channel deep clustering [178].

In the rest of this chapter, we first introduce the physical model in Chapter 4.2, followed
by a review of the monaural chimera++ networks [177] in Chapter 4.3. Next, we extend
them to two-microphone cases in Chapter 4.4.1. Based on the estimated masks obtained
from pairwise microphone processing, Chapter 4.4.2 encodes the spatial information
contained in all the microphones as directional features to train an enhancement network

for further separation, with or without utilizing the estimated phase produced by
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Figure 4-1. Illustration of proposed system for BSS. A two-channel chimera++ network
is applied to each microphone pair of interest for initial mask estimation. A multi-channel
enhancement network is then applied for each source at a reference microphone for further
separation.

beamforming. An optional run-time iterative mask refining algorithm is presented in
Chapter 4.4.3. Figure 4-1 illustrates the proposed system. We present our experimental

setup and evaluation results in Chapter 4.5 and 4.6, and conclude this paper in Chapter 4.7.

4.2. Physical Models and Objectives

Given a reverberant P -microphone C -speaker time-domain mixture y[n] =

¢_, s [n], the physical model in the STFT domain is formulated as:

c
Ve =) SO, (4.

where S (¢, f) and Y (t, f) respectively represent the P-dimensional STFT vectors of the
reverberant image of source ¢ and the reverberant mixture captured by the array at time t

and frequency f. Our study proposes multiple algorithms to separate the mixture Y,

captured at a reference microphone p to individual reverberant sources .SQISC), by integrating

single- and multi-channel processing under a deep learning framework. Note that the

69



proposed algorithms focus on separation and do not address de-reverberation, although

they can be straightforwardly modified for that purpose.

4.3. Monaural Chimera++ Networks

A recent study [177] proposed for monaural speaker separation a novel multi-task
learning approach, which combines the permutation resolving capability of deep clustering
[57], [69] and the mask inference ability of PIT [206], [81], yielding significant
improvements over the individual models. The objective function of deep clustering pulls
in the T-F units dominated by the same speaker and pushes away those dominated by
different speaker, creating hidden representations that can be utilized by PIT to predict
continuous mask values more easily and more accurately. The objective function is also
considered as a regularization term to improve the permutation resolving ability of
utterance-level PIT. This subsection first introduces deep clustering and PIT, and then
reviews the chimera++ networks.

The key idea of deep clustering [57] is to learn a unit-length embedding vector for each
T-F unit using a DNN such that for the T-F units dominated by the same speaker, their
embeddings are close to one another, while farther otherwise. This way, simple clustering
algorithms such as k-means can be applied to the embeddings at run time to determine the
speaker assignment at each T-F unit. More specifically, let v; denote the D-dimensional
embedding vector of the i*® T-F unit and u; represent a C-dimensional one-hot vector
denoting which of the C sources dominates the i** T-F unit. Vertically stacking them
yields the embedding matrix V € RTF*P and the label matrix U € RTF*¢, The embeddings

are learned to approximate the affinity matrix UUT
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Figure 4-2. Illustration of two-channel chimera++ networks on microphone pair < p, q >.
spatial(Yp(t),Yq(t)) can be a combination of cos(AYp — AYq), sin (AYp — AYq) and
log (|Y,|/1Y4]) for microphones p and q. F' represents input feature dimension and E is
number of units in each BLSTM layer.

Lpc = VVT = UU"|IZ (4.2)

Recent studies [177] suggested that a variant deep clustering loss function that whitens

the embeddings based on a k-means objective leads to better separation performance.

2

1 1
Lpcw = ”V(VTV)_E —uroyy-tutvrvyz (4.3)
F
=D —trace((VTV)"VTuUTU)~tUTV) (4.4)

It is important in deep clustering to discount the importance of silence T-F units, as
their labels are ambiguous and they do not carry directional phase information for multi-
channel separation [178]. Following [177], the weight of each T-F is computed as the

magnitude of each T-F unit over the sum of the magnitudes of all the T-F units. This
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weighting mechanism can be simply implemented by broadcasting the weight vector to V
and U before computing the loss.

A recurrent neural network with BLSTM units is usually utilized to model the
contextual information from past and future frames. The network architecture of deep
clustering is shown in the left branch of Figure 4-2.

A permutation-free objective function was proposed in [57], and later reported to work
well when combined with deep clustering in [69]. In [206], [81], a permutation invariant
training technique was proposed, first showing that such objective function can produce
comparable results by itself. The key idea is to train a neural network to minimize the
minimum utterance-level loss of all the permutations. The PSM [35] is typically used as
the training target. Following [81], the loss function for phase-sensitive spectrum

approximation (PSA) is defined as

. App(c) [Yp|
Lo = min Y 05 ll -7 (1501cos (257 - )| @)

)

1
. . . . c

where p indexes a microphone channel, W is a set of permutations over C sources, S,S ) and

Y, are the STFT representations of source ¢ and the mixture captured at microphone p,

T(lypl(-) = max (0, min(|Y,|,")) truncates the PSM to the range [0,1] and Q denotes the
estimated masks. We denote the best permutation as @, (-). Following our recent studies
[176], [177], the L, loss is used as the loss function, as it leads to consistently better
separation than the L, loss. Following [177], sigmoidal units are utilized in the output layer
to obtain Qéc) for separation. See the right branch of Figure 4-2 for the network structure.

In [177], a multi-task learning approach is proposed to combine the merits of both

algorithms. The objective function is a combination of the two loss functions
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Lepivs = aLlpew + (1 — ) Lpp (4.6)

At run time, only the PIT output is needed to make predictions: SIEC) = @;C)Yp.

4.4. Proposed Algorithms

4.4.1. Two-Channel Extension of Chimera++ Networks

Following previous studies on multi-channel speech enhancement [73], [214] and
speaker separation [178], the key idea of the proposed approach for two-channel separation
is to utilize not only spectral but also spatial features for model training. This way,
complementary spectral and spatial information can be simultaneously utilized to benefit
from the representational power of deep learning to better resolve the permutation problem
and achieve better mask estimation. See Figure 4-2 for an illustration of the network
architecture.

Given a pair of microphones p and g, it is well-known that, because of speech sparsity,
the STFT ratio Y, /Y, = |V, |/|¥,|e/“»~4¥0), indicative of the relative transfer function
[182], naturally forms clusters within each frequency for spatially separated speaker
sources with different time delays to the array [103], [40]. This property establishes the
foundations of conventional narrowband spatial clustering [33], [63], [132], [131], which
typically first employs spatial information such as directional statistics and mixture STFT
vectors for within-frequency bin-wise clustering based on complex GMM and its variants,
and then aligns the clusters across frequencies. However, such approaches perform
clustering largely based on spatial information, and typically do not leverage spectral cues,

although there are recent attempts at using spectral embeddings produced by deep
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clustering for spatial clustering [29]. In addition, the clustering is usually only conducted
independently within each frequency because of the IPD ambiguity, and thus does not
exploit inter-frequency structures. By IPD ambiguity we mean that IPD varies with
frequency and the underlying time delay cannot be uniquely determined only from the IPD
at a frequency when spatial aliasing and phase wrapping occur.

Our study investigates the incorporation of the spatial information contained in ¥, /Y,
for the training of a two-channel chimera++ network. We consider the following inter-

channel phase and level patterns

IPD = 2£e/“%~4%) = mod(2Y, — 2Y, + m,2n) — 7 (4.7)
cosIPD = cos(4Y, — 4Y;) (4.8)

sinlPD = sin(4Y, — 4Y,) (4.9)

ILD =log (1Y,1/1Y,1) (4.10)

In our experiments, the combination of cosIPD and sinIPD leads to consistently better
performance than the individual ones and the IPD. Our insight is that according to the
Euler’s formula, the distribution of cosIPD and sinIPD for directional sources naturally
follows a helix-like structure with respect to frequency. See Figure 4-3(c) for an illustration
of the cosIPD and sinIPD distribution of an anechoic three-speaker mixture. Such helix
structure could be exploited by a strong learning machine like deep neural networks to
better model inter-frequency structures and achieve better separation. Indeed, in
conventional spectral clustering, which significantly motivated the design of deep

clustering [5], [57], it is suggested that spectral clustering has the capability of modeling
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Frequency (kHz)
Frequency (kHz)

Frequency (kHz)

Figure 4-3. Distribution of inter-channel phase patterns of an example anechoic three-
speaker mixture with Tgo = 0.54 s and microphone spacing 21.6 cm. Each T-F unit is
colored according to its dominant source. (a) IPD vs. Frequency; (b) cosIPD vs. Frequency;
(c) cosIPD and sinIPD vs. Frequency.

such a distribution for clustering [138]. The distribution of an alternative representation,
IPD, is depicted in Figure 4-3(a). Clearly, the wrapped lines are not continuous across
frequencies because of phase wrapping. Such abrupt discontinuity could make it harder for
the neural network to exploit the inter-frequency structures. As a workaround, the

distribution of cosIPD is depicted in Figure 4-3(b). Although the continuity improves,
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without sinIPD, the number of crossings among the wrapped lines significantly increases.
Such crossings, also observed in Figure 4-3(a) and Figure 4-3(c), are mostly resulted from
spatial aliasing and phase wrapping, indicating that the inter-channel phase patterns are
indistinguishable even though the sources are spatially separated with different time delays
and therefore posing fundamental difficulties for conventional BSS techniques that only
utilize spatial information. In such cases, spectral information would be the only cue to rely
on for separation. Our study hence also incorporates spectral features log (|Yp |) for model
training, and leverages the recently proposed chimera++ networks [177], which have been
shown to produce state-of-the-art monaural separation, although only tested in anechoic
conditions. Another advantage of including spectral features is that IPD itself is ambiguous
across frequencies when the microphone spacing is large, meaning that there does not exist
a one-to-one mapping between IPDs and ideal mask values. The incorporation of spectral
features could help at resolving this ambiguity, as is suggested in our recent study [178].
Note that the chimera++ network naturally models all the frequencies simultaneously to
exploit inter-frequency structures, hence avoiding an error-prone second-stage frequency
alignment step that is necessary in conventional narrowband spatial clustering. In addition,
the BLSTM better models temporal structures than complex GMMs and their variants,
which typically make strong independence assumptions along the temporal axis.

We also incorporate ILDs, computed as in Eq. (4.10), to train chimera++ networks, as
they become indicative about target directions especially when the microphone spacing is

large and in setups like the binaural setup [163], [152].
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4.4.2. Multi-Channel Speech Enhancement

To extend the proposed two-channel approach to multi-channel cases, one
straightforward way is to concatenate the inter-channel phase patterns and spectral features
of all the microphone pairs as the input features for model training, as is done in [204].
However, this makes the input dimension dependent on the number of microphones and
could make the trained model accustomed to one particular microphone geometry. Our
recent study [178] proposes an ad-hoc approach to extend two-channel deep clustering to
multi-channel cases by performing run-time K-means clustering on a super-vector obtained
by concatenating the embeddings computed from each microphone pair. However, it only
performs model training using pairwise microphone information, hence incapable of
exploiting the geometrical constraints and the spatial information contained in all the
microphones.

To build a model that is directly applicable to arrays with any number of microphones
arranged in diverse layouts, we think that it is necessary to constructively combine all the
microphones into a fixed-dimensional representation. Under this guideline, we propose two
fixed-dimensional directional features, one based on compensating ambiguous IPDs using
estimated phase differences and the other based on T-F masking based beamforming, as
additional inputs to train an enhancement network to improve the mask estimation of each
source at the reference microphone. See Figure 4-1 for an illustration of the overall pipeline
of our proposed approach. Note that at run time, we need to run the enhancement network

once for each source for separation.
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4.4.2.1. Compensated IPD

Specifically, for the P(= 2) microphones, we first apply the trained two-channel
chimera++ network to each of the P pairs consisting of one pair < p,q > between the
reference microphone p and a randomly-chosen non-reference microphone q, and P — 1
pairs < q',p > for any non-reference microphone q'(# p). The motivation of using this
set of pairs is that we try to obtain an estimated mask for each source at each microphone.
Note that for any non-reference microphone q’, we can indeed randomly select another
microphone to make a pair, but here we simply pair it and the reference microphone p.
After obtaining the estimated masks Aic), .., 0 ,(,C) of all the P pairs from the two-channel
chimera++ network, we permute the C masks at each microphone to create for each source
¢ a new set of masks Ml(c), oM 1(,6) such that they are all aligned to source c. At training

time, such an alignment is readily available from Eq. (4.5), i.e. 1\711(C) = Af’ 1(C),. M I(,C) =

@g’" © At run time, we align the masks using Algorithm 4-1, where an average mask is
maintained for each source in the alignment procedure to determine the best permutation
for each non-reference microphone. We then compute the speech covariance matrix of each

source using the aligned estimated masks, following recent developments of T-F masking

based beamforming [203], [58], [213].
SO(f) == Ren Ot )Y (& ) Y& Y, (4.11)

where T is the number of frames within the utterance and n(°)(t, f) is the median [58] of

the aligned estimated masks

n© = median(#°, ..., M) (4.12)
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Input: Agc), e Q}(,C), forc =1, ..., C, and reference microphone p.

Output: Aligned masks Ml(c), e IWI(,C), forc=1,..,C;
(1) MIEC) = QI(,C), forc=1,..,C;
(2) me) = MIEC), forc=1,..,C;

avg
(3) counter = 1;
For non-reference microphone q' in{1,...,p —1,p+1,...,P} do

(4) ¢" = argmingey Doy || WS, — 05|
(5) MC([f) = Oq(p’*(C)a fOI‘C = 1' ey C7
(6) 1\//76(1% = (1\//76(1% * counter + M;f))/(counter +1), forc=1,..,C;

(7) counter+=1;
End

Algorithm 4-1. Mask alignment procedure at run time. Binary weight matrix W used in
step (4) indicates T-F units with energy larger than -40 dB of the mixture’s maximum
energy.

The key idea here is to only use the T-F units dominated by source ¢ for the estimation

of its covariance matrix. The steering vector for each source #(€)(f) is then computed as
PO = P{OO(N), (4.13)

where P{-} compute the principal eigenvector. The motivation is that if ®©)(f) is well-
estimated, it would be close to a rank-one matrix for a directional speaker source [203],
[213], [40]. Its principal eigenvector is hence a reasonable estimate of the steering vector.
Note that this steering vector estimation step is essentially similar to DOA estimation.
Following our recent study [183], the directional features are then compensated in the

following way:

PRGN =5mr Y cos{erphN - ahe N~ (490 - #00),  @14)

<q'.p>eQ
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where () contains all the P — 1 pairs between each non-reference microphone q’ and the

reference microphone p. £Y ;1 (¢, f) — £Y,(t, f) represents the observed phase difference
and Lf;,c) (f) - Ar“'p(c) (f) the estimated phase difference (or the phase compensation term

for source c¢). The motivation is that if a T-F unit is dominated by source c, the observed
phase difference is expected to be aligned with its estimated phase difference. The phase
compensation term is used to establish the consistency of the directional features along

frequency such that at any frequency and no matter which direction source ¢ arrives from,
a value close to one in DFp(C)(t, f) would indicate that the T-F unit is likely dominated by

the source ¢, while dominated by other sources if much smaller than one, only if the
steering vector can be estimated accurately. This property makes the directional features
highly discriminative for DNN based T-F masking to enhance the signal from a specific
direction. In addition, by establishing the consistency along frequency, the phase
compensation term alleviates the ambiguity of IPDs, which could be problematic when
directly used for the training of the two-channel chimera++ networks in Chapter 4.4.1.
When there are more than two microphones, we simply average the compensated IPDs
together. This makes the trained models directly applicable to arrays with various numbers
of microphones arranged in diverse geometry. The phase compensation term is designed
to combine all the microphone pairs constructively.

There were previous studies [73], [4], [118], [214] utilizing spatial features for deep
learning based speech enhancement (i.e. speech vs. noise). The spatial features in those
studies are only designed for binaural speech enhancement, where only two sensors are
considered and the target is right in the front direction. However, in more general cases,

the target speaker may originate in any directions and the spatial features used in those
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studies would no longer work well. There was one speech enhancement study [118]
considering compensating cosIPDs. However, it needs a separate DOA module that
requires microphone geometry, and does not address DOA estimation in a robust way.
Diffuseness features have also been applied in deep learning and T-F masking based
beamforming for speech enhancement [183], [91]. However, such features are incapable
of suppressing directional interferences, which we aim to suppress in this study. On the

other hand, directional features are capable of suppressing diffuse noises.

4.4.2.2. T-F Masking Based Beamforming

Another alternative directional feature is derived using beamforming, as beamforming
constructively combines target signals captured by different microphones and destructively
for non-target signals, only if the signal statistics or target directions critical for
beamforming can be accurately determined. Recent development in the CHiME challenges
has suggested that deep learning based T-F masking can be utilized to compute such signal
statistics accurately [160], demonstrating state-of-the-art robust ASR performance. Here,

we leverage this recent development to construct a multi-channel Wiener filter [40]

— _1 —
() = (39(N) 3O (Hu, (4.15)
where ®O)(f) = %Zt Y(t, Y(t, f)M is the mixture covariance matrix and u,, a one-hot

vector with the p™ element being one. Clearly, this way of constructing beamformers is
blind to microphone geometry and the number of microphones. The directional feature is

then computed as

DE (¢, f) = log (|wi” ()Y (e, £)] ) (4.16)
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4.4.2.3. Enhancement Network I

Using the spatial features alone for enhancement network training is not sufficient
enough for accurate separation, as the sources could be spatially close and the reverberation

components of other sources could also arrive from the estimated direction. We hence
combine DFP(C) with spectral features log (|Yp|), and the initial mask estimates IVIIEC)

obtained from the two-channel chimera++ network to train an enhancement network to
estimate the phase-sensitve spectrum of source ¢ at microphone p. This way, the neural
network can take in both spectral and spatial information, and learn to enhance the signals
with particular spectral characteristics and arriving from a particular direction. The

objective function for training the enhancement network (denoted as Enhy) is
) [Ypl
Lgnn, = ||R7(7C)|YP| — T b (ISzEC)ICOS (LSIEC) - LYp))”l; (4.17)

where ﬁz(,c) denotes the estimated mask from the Enh; network. At run time, we execute
the enhancement network once for each source, and the separated source c is obtained as

3256) = }?,(,C) Y,. Here the mixture phase is used for signal re-resynthesis.

4.4.2.4. Enhancement Network 11

The above approach however cannot utilize the enhanced phase provided by

beamforming. When the number of microphones is large, the enhanced phase @SC) (tf) =

L(W;C) (OY (L, f )) is expected to be better than 2Y,, if the speech distortion introduced

by beamforming is minimal. We hence use the former as the phase estimate of source c.

To obtain a good magnitude estimate, we train an enhancement network (denoted as Enhy)

. .. . ()
to predict the phase-sensitive spectrum of source ¢ with respect to |Y, |e’ %", based on the
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same features used in Enh, i.e. DFp(C), log (|Y, ) and Mz(,c). The loss function used for

training is

Loan, = ||281%, |-, (|5,§C)|cos (258 - @5@))”1, (4.18)

where ZISC) denotes the estimated mask of the Enh> network. At run time, the separated

source c is obtained as 3;6) = ZISC) Y, e’ 6

Different from the above two ways of integrating beamforming, another alternative is
to extract spectral features from the beamformed mixture, train an enhancement network
to predict the ideal masks computed from the beamformed sources, and at run time apply
the estimated masks to the beamformed mixture [214]. In contrast, our approach uses

beamforming results as directional features to improve the mask estimation at the reference
microphone p, with or without using the phase of the beamformed mixture, since SISC),

rather than beamformed sources w'© ()7 S (¢, f), is considered as the reference for
metric computation. This way, we can systematically compare the performance of single-
and multi-channel processing, as well as the effects of various algorithms for reverberant
source separation. Note that we do not use beamformed sources as the reference signals for
metric computation, as they usually contain speech distortions in reverberant
environments, and are sensitive to the number of microphones, microphone geometry, and
the type of beamformer used to obtain w(¢) (f). In addition, for BSS algorithms that do not
involve any beamforming, such as spatial clustering or independent component analysis, it

is not reasonable to use beamformed sources as the reference signals for evaluation.
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We emphasize again that our models, once trained, can be directly applied to arrays
with any numbers of microphones arranged in various layouts. At run time, we can first
apply the trained two-channel chimera++ network on each microphone pair of interest,
then use Eq. (4.14) or (4.16) to constructively combine the spatial information contained
in all the microphones, and finally apply the well-trained Enh; or Enhz networks for further
separation. Note that the two-channel chimera++ network essentially functions as a DOA
module to estimate target directions and signal statistics for spatial feature computation
and beamforming. Indeed, it can be replaced by a monaural chimera++ network, while the
two-channel one produces much better initial mask estimation because of the effective

exploitation of spatial information, although in a very straightforward way.

4.4.3. Iterative Mask Refinement
In Eq. (4.12), n(© is computed from the estimated masks 1\711(,6) produced by the
chimera++ network that only exploits two-channel information. Such masks are expected

to be not as accurate as I?I(,C) produced by Enhi, which can utilize the spatial information

from all the microphones and suffers less from IPD ambiguity. Using ﬁéc) for T-F masking

based beamforming would hence likely leads to better beamforming results, which can in

turn benefit the enhancement networks.
More specifically, at run time, after obtaining R,(,C) using Enhi, we use it in Eq. (4.12)

A(C

to recompute a multi-channel Wiener filter Wp) and feed the combination of

log (1P (HHY (e, HI), log (Y, ]) and RS directly to Enhs to get ZS. The separated

~ 3 50 2 =~
source is then obtained as SZSC) = Z,(,C) |v,|e’% ", where HISC) @t f)= L(Wg,c) OHRY (L, f )).
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Input: wsj0-3mix;
Output: spatialized reverberant wsj0-3mix;
For each source s;, source s2, source s3 in wsj0-3mix do
Sample room length 7, and width 7;, from [5,10] m;
Sample room height 7, from [3,4] m;
Sample mic array height a, from [1,2] m;
Sample displacement n,. and n,, of mic array from [—0.2,0.2] m;

Place array center at [%" + ny, rz_y +n,, az] m;
Sample microphone spacing a, from [0.02,0.09] m;
Forp =1:P(=8) do
. Tx P-1 Ty
Place mic p at [; tny——-a, + (p— 1)ar,? +n,, az] m;
End

Sample speaker locations in the frontal plane:
s M D)

x Py °z - az;
@ @ @ _ .
Sx Sy S, = Ay
3 6B 6 .
Sx Sy S, = Qg

such that any two speakers are at least 15° apart from each other with respect to the
array center, and the distance from each speaker to the array center is in between
[0.75,2] m;

Sample T60 from [0.2,0.7] s;

Generate impulse responses using RIR generator and convolve them with s;, s2 and s3;

Concatenate channels of reverberated s;, s> and s3, scale them to match SIR among

original s;, 5> and s3, and add them to obtain reverberated mixture;

End

Algorithm 4-2. Data spatialization process (simulated RIRs).

We denote this iterative mask estimation approach as Enhi;+Enhz. We emphasize this
approach is performed at run time and does not require any model training. ﬁéc) can be

improved with more iterations, but we only do one iteration due to computation

considerations.

4.5. Experimental Setup

We train our models using only simulated RIRs, while test on simulated as well as real-

recorded RIRs. The RIRs are convolved with the anechoic two-speaker and three-speaker
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Figure 4-4. Illustration of experimental setup.

mixtures in the recently proposed wsj0-2mix and wsj0-3mix corpus [57], each of which
contains 20,000, 5,000 and 3,000 anechoic monaural speaker mixtures in its 30-hour
training, 10-hour validation and 5-hour test data. Note that the speakers in the training set
and test set are not overlapped. The task is hence speaker-independent. The signal to
interference ratio (SIR) for wsj0-2mix mixtures are randomly drawn from -5 to 5 dB. For
wsj0-3mix, the third speaker is added such that its energy is the same as that of the first
two speakers combined. The sampling rate is 8§ kHz.

The data spatialization process using simulated RIRs for wsj0-3mix is detailed in
Algorithm 4-2. The RIR generator [47] is employed to generate the simulated RIRs. The
general guideline is to make the setup as random as possible while still subject to realistic

constraints. For each wsj0-3mix mixture, we randomly generate a room with random room
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characteristic, speaker locations, and microphone spacing. Our study considers a linear
array setup, where the target speakers are placed in the frontal plane and are at least 15°
apart from each other. We generate 20,000, 5,000, and 3,000 eight-channel mixtures for
training, validation and testing, respectively. A T60 value for each mixture is randomly
drawn in the range [0.2, 0.7] s. See Figure 4-4(a) for an illustration of this setup. The
spatialization of wsj0-2mix is performed similarly. The average speaker-to-microphone
distance is 1.38 m with 0.37 m standard deviation and the average DRR is 0.49 dB with
3.92 dB standard deviation.

We also generate another 3,000 eight-channel mixtures using the Multi-Channel
Impulse Responses Database [50], which is recorded using eight-microphone linear arrays
with three different inter-microphone spacing, including 3-3-3-8-3-3-3, 4-4-4-8-4-4-4, 8-
8-8-8-8-8-8 cm, under three reverberant time (0.16, 0.36, 0.61 s) created by using a number
of covering panels on the walls. The RIRs are measured in steps of 15° from —90° to 90°
and at a distance of 1 m and 2 m to the array center, in a room with size approximately at
6Xx6%2.4 m. See Figure 4-4(b) for an illustration of this setup. For each mixture, we place
each speaker in a random direction and at a random distance, using a randomly-chosen
linear array and a randomly-chosen reverberation time among 0.16, 0.36 and 0.61 s. Note
that for any two speakers, they are at least 15° apart with respect to the array center. The
average DRR is 2.8 dB with 3.8 dB standard derivation in this case. We emphasize that
this is a very realistic setup, as it is speaker-independent and more importantly, we use

simulated RIRs for training and real RIRs for testing.
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At run time, we randomly pick a subset of microphones for each utterance for testing.
The aperture size can be 2 cm at minimum and 63 cm at maximum for the simulated RIRs,
and 3 cm and 56 cm for the real RIRs.

The chimera++ and enhancement network respectively contains four and three BLSTM
layers, each with 600 units in each direction. The window size is 32 ms and the hop size is
8 ms. A 256-point DFT is applied to extract 129-dimensional log magnitude features after
square-root Hann window is applied to the signal. The a in Eq. (4.6) is empirically set to
0.975 and the embedding dimension set to 20, following [177]. We emphasize that the
enhancement network is trained using the directional features computed from various
numbers of microphones, as the quality of the directional features varies with the number
of microphones. For all the input features, we apply global mean-variance normalization
before feed-forwarding.

Following the SiSEC challenges [142], average signal-to-distortion ratio (SDR)
computed using the bss_eval images software is used as the major evaluation metric. We
also report average perceptual estimation of speech quality (PESQ) and extended short-
time objective intelligibility (eSTOI) [72] scores to measure speech quality and
intelligibility.

We consider the reverberant image of each source at the reference microphone, i.e.

sz()c), as the reference signal for metric computation.
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Table 4-1. SDR (dB) results on spatialized reverberant wsj0-2mix using up to two

microphones.
Approaches Input Features Simu RIRs || Real RIRs
Unprocessed - 0.0 0.0
lch PIT log (|%,]) 7.5 7.3
Ich deep clustering log (|%,]) 7.3 7.4
Ich chimera++ log (|%,]) 8.4 8.4
2ch chimera++ log (|Y,|),IPD 10.2 9.8
2ch chimera++ log (|Y,]),cosIPD 9.7 10.0
2ch chimera++ log (|Y,]),cosIPD,sinIPD 10.4 10.1
+ Enh; log (|Y,|),15” 10.7 10.5
+ Enh; log (|Y,]).DE (Eq. (4.14),M7 | 108 10.7
+ Enh; log (|Y,).DE (Eq. (4.16),M7 | 11.1 11.1
2ch chimera++ log (|Y,]),cosIPD,sinIPD,ILD 10.4 10.1

Table 4-2. SDR (dB) results on spatialized reverberant wsj0-3mix using up to two

microphones.

Approaches Input Features Simu RIRs || Real RIRs
Unprocessed - -3.3 -3.2
Ich chimera++ log (%)) 4.0 4.0
2ch chimera++ log (|Y,|),IPD 7.1 6.1
2ch chimera++ log (|Yp |),cosIPD 5.8 5.9
2ch chimera++ log (|Y,]),cosIPD,sinIPD 7.3 6.3
+ Enh; log (|Y,[),15” 7.6 6.7
+ Enh; log (|Y,|).DE (Eq. (4.14),07 | 7.8 6.9
+ Enh; log (|Y,]).DE (Eq. (4.16),07 | 7.9 7.1

4.6. Evaluation Results

We first report the results on the reverberant wsj0-2mix spatialized using the simulated
RIRs in the second last column of Table 4-1. Clearly, the chimera++ network shows clear
improvements over the individual models (8.4 vs. 7.5 and 7.3 dB), which align with the
findings in [177]. Even with random microphone spacing, incorporating inter-channel

phase patterns for model training produces large improvement compared with only using
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monaural spectral information. This is likely because inter-channel phase patterns naturally
form clusters within each frequency regardless of microphone spacing, and we use a
clustering-based DNN model to exploit such information for separation. Among various
forms of IPD features, the combination of cosIPD and sinIPD leads to consistently better
performance over using IPD or cosIPD (10.4 vs. 10.2 and 9.7 dB), likely because this
combination naturally maintains the helix structures that can be exploited by the network.
Further including the ILD features for training does not lead to clear improvement (10.4
vs. 10.4 dB), likely because level differences are very small in far-field conditions. Using
the Enh; network brings further improvement as it provides better magnitude estimates.
Compensating IPDs (i.e. Eq. (4.14)) using estimated phase differences to reduce the
ambiguity and using beamforming results (i.e. Eq. (4.16)) as directional features push the
performance from 10.4 to 10.8 and 11.1 dB, respectively. The former feature is worse than
the latter one, likely because the former is mathematically similar to the delay-and-sum
beamformer, which is known to be less powerful than the multi-channel Wiener filter. In
the following experiments, we use Eq. (4.16) to compute the directional feature if not
specified. The last column of Table 4-1 presents the results on the real RIRs. The
performance is as comparably good as on the simulated RIRs, although the model is trained
only on the simulated RIRs.

Table 4-2 presents the results obtained on the spatialized wsj0-3mix using the simulated
RIRs and real RIRs, with up to two microphones. Similar trends as in Table 4-1 are
observed.

Table 4-3 and Table 4-4 compare the proposed algorithms with other systems along

with the oracle performance of various ideal masks, using up to eight microphones, and in
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Table 4-4. Performance comparison with other approaches on real RIRs using various
numbers of microphones on spatialized reverberant wsj0-3mix.

R . © Oracle Masks
Metrics[#mics|Mixture M]fOSZSL g\}li/ﬁ: ILI;E/IA M1C7]gC Ch.MC_ i Usllr?lgig eMCWF|Enhi|Enh, EI;lhti+ ;/I[) g\l\h//['i: MC-
[102] [195] [78] | [178] |Chimera 4.12) nhy IRMIIBMItPSM| o0
2 2.0 2.6 - 5.6 5.5 6.6 39 |7.1173]| 74 4.5 11.6
3 - - 4.6 6.1 5.9 6.7 49 75|79 82 5.7 12.1
SDR 4 - - 5.0 6.3 6.2 7.0 5.7 7.8 84| 88 6.5 12.5
(dB) 5 -3.2 - - 5.1 6.4 6.3 7.2 6.3 8.0|89] 94 7.2 19.2]10.1{11.3|12.9
6 - - 5.2 6.5 6.4 7.3 6.7 821931 938 7.7 13.2
7 - - 5.2 6.5 6.4 7.3 7.0 |83]96]10.1| 82 13.5
8 - - 53 6.5 6.4 7.3 7.3 8498104 ] 85 13.7
2 1.87 | 1.68 - 1.49 1.48 2.45 2.10 |(2.48]2.55|2.59 | 2.14 3.73
3 - - 222 | 1.55 1.54 2.46 2.26 |(2.64]|2.74|2.81 | 2.30 3.79
4 - - 226 | 1.57 1.56 2.53 2.35 (2.73]|2.85]2.94 | 2.41 3.83
PESQ| 5 1.67 - - 2.28 | 1.58 1.57 2.54 2.43 (2.81]|2.95| 3.05 | 2.48 |3.60|2.87|3.64|3.85
6 - - 229 | 1.59 1.58 2.56 2.48 |(2.84]3.00| 3.12 | 2.54 3.87
7 - - 2.30 | 1.59 1.59 2.56 2.52 |2.88]3.05| 3.17 | 2.59 3.89
8 - - 2.31 1.59 1.59 2.57 2.55 12.90]3.09] 3.21 | 2.63 391
2 433 |379 - 53.0 52.4 62.5 47.5 (65.4166.9| 68.2 | 49.4 90.2
3 - - 543 | 555 55.0 62.9 53.2 |68.5(70.7( 72.5 | 55.9 91.2
4 - - 56.3 | 56.7 56.4 64.9 57.2 |70.7|73.4| 75.5 | 60.0 91.8
eS(;OI 5 37.5 - - 57.0 | 57.3 56.9 65.2 60.1 |72.4|75.5|77.8 | 63.1 |87.6/80.4| 88.5|92.3
%) 6 - - 57.5 | 57.6 573 65.9 62.2 |73.4|76.8{ 79.2 | 65.4 92.7
7 - - 57.8 | 57.7 57.4 65.8 63.9 |74.2|779(80.3 | 67.4 93.0
8 - - 58.0 | 57.6 57.6 66.2 65.2 174.7|78.6] 81.1 | 69.0 93.3

terms of SDR, PESQ and eSTOI. Because of utilizing the phase provided by beamforming,
Enh, shows consistent improvement over Enhi, especially when more microphones are
available. This justifies the proposed way of integrating beamforming for separation.
Performing run-time iterative mask refinement using Enh;+Enh; leads to slight
improvement over Enh; in the two-speaker case, while clear improvement is observed in

the three-speaker case, especially when more microphones are available. This indicates the
effectiveness of using }?I(,C) for T-F masking based beamforming, especially when 1\71156) is

not good enough.
Recent studies [62] apply monaural deep clustering on each microphone signal to
derive a T-F masking based beamformer for each frequency for separation. To compare

with their algorithms, we wuse the truncated PSM (tPSM), computed as
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T01'0(|SISC) |cos (LSISC) —2Y)/ Y, |), in Eq. (4.12) to compute oracle () and report oracle
time-invariant MCWF results (denoted as tPSM-MCWF). We also report the estimated
time-invariant MCWF (eMCWF) performance obtained using Mz(,c) computed from the

two-channel chimera++ network. Clearly, the beamforming approach requires relatively
large number of microphones to produce reasonable separation. Although using estimated
masks, the eMCWF is comparable to tPSM-MCWF. As can be observed, both of them are
not as good as Enhz, which combines beamforming with spectral masking. We also
compare the proposed algorithms with MESSL? [102], a popular wideband GMM based
spatial clustering algorithm proposed for two-microphone arrays, and GCC-NMF? [195],
a location based stereo BSS algorithm, where dictionary atoms obtained from non-negative
matrix factorization (NMF) are assigned to individual sources over time according to their
time difference of arrival estimates obtained from GCC-PHAT. Note that oracle
microphone spacing information is supplied to MESSL and GCC-NMF for the
enumeration of time delays. Independent low-rank matrix analysis (ILRMA)* [78],
originated from the ICA stream of research, is a strong and representative algorithm for
determined and over-determined BSS. It unifies independent vector analysis (IVA) and
multi-channel NMF by exploiting NMF decomposition to capture the spectral
characteristics of each source as the generative source model in IVA. The recently
proposed multi-channel deep clustering (MCDC) [178] integrates conventional spatial

clustering with deep clustering by including inter-channel phase patterns to train deep

2 Available at https://github.com/mim/messl.
3 Available at https://github.com/seanwood/GCC-nmf.
4Available at http://d-kitamura.net/programs/ILRMA _release20180411.zip.
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clustering networks. Its extension to multi-channel cases is achieved by first applying a
well-trained two-channel deep clustering model on every microphone pair, then stacking
the embeddings obtained from all the pairs, and finally performing K-means on the stacked
embeddings to obtain an estimated binary mask for separation. Following the suggestions
by an anonymous reviewer, we evaluate two extensions of MCDC as alternative ways of
exploiting multi-channel spatial information. The first one, denoted as MC-Chimera++,
concatenates the embeddings provided by our two-channel chimera++ network for K-

means clustering, and the second one uses the median mask produced in Eq. (4.12) for
separation, i.e. S}SC) =n© Y,. Clearly, the proposed algorithms are consistently better than

the MCDC approach and the two extensions, likely because the proposed algorithm is more
end-to-end and better exploits spatial information contained in more than two microphones.

The performance of various oracle masks is presented in the last columns of Table 4-3
and Table 4-4. The IBM is computed based on which source is dominant at each T-F unit.
The IRM is calculated as the magnitude of each source over the sum of all the magnitudes.

Compared with such monaural ideal masks that use mixture phase for re-synthesis, the

multi-channel tPSM (MC-tPSM), calculated as Tg°(IS<” |cos (28 — 857)/|Y,| ) where

é}gc) here is computed from tPSM-MCWF and used as the phase for re-synthesis, is clearly

better and becomes even better when more microphones are available. Note that MC-tPSM

represents the upper bound performance of Enha. The results clearly show the effectiveness
of using é}gc) as the phase estimate.

By exploiting spatial information, we improve the performance of monaural chimera++

network from 8.4 to 11.2 dB when using two microphones and to 14.2 dB when using eight
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microphones on the spatialized wsj0-2mix corpus, and from 4.0 to 7.4 and 10.4 dB on the
spatialized wsj0-3mix corpus. These results are comparable to the oracle performance of
the monaural IBM, IRM and tPSM in terms of the SDR metric, confirming the

effectiveness of multi-channel processing.

4.7. Conclusion

We have proposed a novel approach that combines complementary spectral and spatial
features for deep learning based multi-channel speaker separation in reverberant
environments. This spatial feature approach is found to be very effective for improving the
magnitude estimate of the target speaker from an estimated direction and with particular
spectral structures. In addition, leveraging the enhanced phase provided by masking based

beamforming driven by a two-channel chimera++ network produces further improvements.

94



Chapter 5. Magnitude Based Phase Reconstruction

This chapter investigates phase reconstruction for deep learning based monaural talker-
independent speaker separation in the STFT domain. The key observation is that, for a
mixture of two sources, with their magnitudes accurately estimated and under a geometric
constraint, the absolute phase difference between each source and the mixture can be
uniquely determined; in addition, the source phases at each T-F unit can be narrowed down
to only two candidates. To pick the right candidate, we propose three algorithms based on
iterative phase reconstruction, group delay estimation, and phase-difference sign
prediction. At the time of publication, state-of-the-art results are obtained on the publicly
available wsj0-2mix and 3mix corpus. This work has been published in Interspeech 2018

[181] and ICASSP 2019 [184].

5.1. Introduction

Audio source separation concerns the separation of a C-source discrete time-domain
mixture y[n] = Y¢_, s©[n] to its individual time-domain sources s(©. As speech is
short-time stationary, a common approach decomposes the time-domain mixture to
frequency domain to reveal its frequency components using STFT, and performs separation
therein. One major recent advance is the introduction of DNN for the estimation of the

IBM, IRM, spectral magnitude mask (SMM) [161], or PSM, where source separation is
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converted to a magnitude-domain T-F unit level classification or regression problem,
typically retaining the mixture phase for re-synthesis. Notable works include masking
based speech enhancement studies [161], [166], [165], and speaker separation studies such
as deep clustering (DC) [57], [177], [181] and PIT [122], [206]. These studies suggest that
magnitude estimation can be substantially improved using deep learning based T-F
masking.

In this context, this study investigates magnitude-based methods for phase
reconstruction for monaural speaker separation. The key insight is that the possible
solutions of phase can be significantly narrowed down given sufficiently accurate

magnitude estimates, under the following geometric constraint in the STFT domain

HeN=y. sOCN=Y  AOwNSD, (5.1

where S (t, f) and Y (¢, f) respectively denote the STFT values of source signal ¢ and
the mixture signal y at time t and frequency f, and A€ (t, f) = |S©(t, f)| and
€ (t, f) = 25©(t, f) are the magnitude and phase of S()(¢, ), respectively. In the
simplest case, suppose that there are only two sources and the two magnitude spectrums
can be perfectly estimated (i.e. A (t, f) = A (t, f)), are there any closed-form solution
for phase estimation? It would be reasonable to say yes as there are two equations with two

unknowns

Y (t, )lcos (£Y (t, £)) = AV (¢, Heos (D (t, )) + AP (L, f)eos BD(t,f)) (5.2)

Y (t, Hlsin (£Y (¢, ) = AP, fHsin (D (¢, ) + AP (¢, Hsin (6Dt £))  (5:3)
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Figure 5-1. Illustration of sign ambiguity when magnitudes are known in the complex
plane. (a) Two-source case; (b) three-source case: for each possible 8 (¢, f), there
could be two solutions for 8@ (¢, f) and ) (t, f).

However, the underlying phase cannot be determined, because depending on the sign

of the phase difference, there are two candidates satisfying the above two equations

" [Y(t, OI?+AD(t, £)2 — AP (¢, f)?
(1) =
0D (¢, f) = 2Y(t, f) + arccos < W EDIADEF) ) (5.4)
. _ [Y(t, D2+ AP (t, £)2 — AD(t, f)?
(2) =
0@ (t,f) = 2Y(t, ) F arccos < 20V HIAD @ ) > (5.5)

as is also suggested in earlier studies [107], [108]. See Figure 5-1(a) for an illustration.
Intuitively, this sign ambiguity occurs because the phase of each source could be either
ahead of or behind the mixture phase within each T-F unit in an almost random way, posing
fundamental difficulties for STFT- or time-domain phase estimation. One thing we can
conclude, though, is that one of the two candidates is the true 8V (¢, f) and 6@ (¢, f).

To resolve this sign ambiguity, we think that inter-T-F unit phase relations such as

group delay (GD) or instantaneous frequency [109] and phase regularizations such as phase
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consistency [86] could help. We propose three algorithms for phase reconstruction,
leveraging good magnitude estimates produced by DNNs. The first one uses estimated
magnitudes to drive an iterative phase reconstruction algorithm, which could implicitly
resolve the sign ambiguity. The second one finds a sign assignment per T-F unit such that
the resulting GD is closest to an estimated one. The third one implicitly predicts a sign at
each T-F unit within a neural network that enforces the geometric constraint in Eq. (5.1).

For a mixture with C > 3, even if the magnitudes are known, there are still infinite
numbers of phase candidates satisfying the geometric constraint, as is illustrated in Figure
5-1(b). This suggests that it could be helpful to approach multi-source separation from a
one-vs.-the-rest angle, where a model is trained to estimate the magnitude of source ¢ and
the magnitude of the rest sources combined (denoted as —c), and at run time, the model is
applied once for each source for separation. This way, there are only two possible phase
candidates at each T-F unit to resolve for each source. For speaker separation, our study
hence first uses a chimera++ network [177] to perform C-speaker separation to resolve the
permutation problem and then uses an enhancement network taking into account the initial
separation results of source c to further estimate the magnitudes of source ¢ and —c for
phase reconstruction. Our best performing algorithm achieves state-of-the art performance
on the public wsj0-2mix and 3mix dataset [57], at the time of publication.

Why do we rely so much on magnitude estimates for phase reconstruction? This is
because magnitude is much more structured and predictable than phase, and also more
stable. Even if the signal is shifted slightly, the magnitude remains almost unchanged,

while the phase will exhibit a phase change at every frequency and become very random if
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Input: Estimated magnitudes A©) and starting phases 9 (€(0) initialized as mixture phase
£Y or enhanced phase 8 for ¢’ in {c, =c}, and iteration number K

Output: Reconstructed phase 9" (K) of source ¢’, for ¢’ in {c, ~c};
For k = 1:K do

(1) 3D (k) = iSTFT(A©), € (k — 1)), for ¢’ in {c, =c};

(2) S(kl) =y- Zc’e[c,—m}%\‘(c )(k);

(3) 9€) (k) = £STFT(3¢) (k) + (k) /2), for ¢" in {c, —=c};
End

Algorithm 5-1. Two-source MISI. iSTFT(:,") reconstructs a time-domain signal from a
magnitude and a phase. STFT(*) computes the magnitude and phase of a signal.

phase wrapping is incurred [109]. In addition, good magnitude estimation is achievable as

is indicated in recent advance on deep learning based speech separation [161].

5.2. Chimera++ Networks Revisit

For speaker separation, we need to first resolve the label-permutation problem. This
section uses the chimera++ networks introduced in Chapter 4.3, which combine DC and
PIT in a multi-task learning way, to resolve the permutation problem. The resulting masks
obtained from the PIT branch are denoted as M(°) for each source.

In Chapter 4.3, a vanilla BLSTM is used in the chimera++ network. To improve mask
estimation, we employ a BLSTM with convolutional encoder-decoder structures and skip

connections [147] (see Figure 5-4).

5.3. Proposed Algorithms

With the label-permutation problem resolved, an enhancement network, which
includes the estimated mask M () produced by the chimera++ network as inputs, is trained

for each of the following three proposed algorithms to further estimate the magnitude of
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Figure 5-2. Enhancement network architectures. GD M (t, f) = 2/ (Y &f+D=2Y (L)

source ¢ and —ic for phase reconstruction. See Figure 5-2 for the network architectures. A

side product of this research is a new way of computing the PSM using magnitude estimates

(see Chapter 5.3.4).

5.3.1. Deep Learning Based Iterative Phase Reconstruction

One straightforward approach for phase reconstruction is to use estimated magnitudes
to drive an iterative phase reconstruction algorithm [52], [215], [177], [181]. Here, we
employ the multiple input spectrogram inverse (MISI) algorithm [46] (see Algorithm 5-1).
Our insight is that the error distribution step (see step (2) and (3) in Algorithm 5-1) can
ensure that the estimated phases are taken from reconstructed signals that add up to the
mixture signal. The geometric constraint is hence roughly satisfied. If the magnitudes of
the reconstructed signals are sufficiently accurate, the signs of many T-F units could be
automatically determined, because the reconstructed signals are real signals that guarantee
to have consistent phase structures and only particular ways of sign assignments exhibit

consistent phase.
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One issue with previous studies [177], [181] employing MISI for phase reconstruction
is that the PSM is used as the training target in PIT and the resulting magnitude estimates
are used for MISI. However, the sum of such magnitude estimates almost equals the
mixture magnitude, as the sum of the PSMs of all the sources is one. Under the geometric
constraint, the most reasonable phase estimate for each source is therefore simply the
mixture phase. For example, in Figure 5-1(a), if AV (¢, f) + A@(t, f) = |V (¢, )], the
three sides cannot make a triangle and the absolute phase difference estimates |0 (¢, f) —
2Y(t, )| and |0P (¢, f) — 2Y (¢, )] are both zero. Similar issues will be incurred if the
sum of estimated magnitudes is implicitly or explicitly constrained to equal the mixture
magnitude, such as using the IBM or IRM as the training target, using softmax as the output
non-linearity, and estimating noise magnitude by subtracting estimated speech magnitude
from the mixture magnitude.

This study hence estimates the SMM by using the magnitude spectrum approximation
(MSA) loss function in Eq. (5.6), rather than the PSM using Eq. (5.7). See Figure 5-2(a)
for the network structure. This minor change leads to large improvements in our

experiments after MISI is applied for phase reconstruction.

LEMS e = Lusaca = ). e IBTERED =TEASEDI, - s.6)
[ c,—C

where R(") is the estimated SMM obtained by using softplus non-linearity. Based on the
trigonometric perspective, @ should be much larger than one so that the estimated
magnitudes can be large enough compared with the mixture magnitude when necessary to
elicit a large enough phase difference for phase reconstruction, such as when the sources

cancel with each other at a T-F unit.
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To facilitate comparison, we also train the same network with minimal changes to

estimate the PSM using the following loss

V1T Q") — T/} (S| @cos (£5¢" — 21))

LEnhl — 2 , 57
PSA(Y.B) et |1 (5.7)

where the estimated PSM Q(C’) is obtained by using sigmoid activation when f = 1 and
y = 0, linear activation when f > 1 and y < —1, Softplus when f > 1 and y = 0, and
tanh when f = 1andy = —1.

Following [181], we unfold the MISI iterations as multiple layers in the network and

compute the loss function in the time domain

LEnnt = Z [iISTFT(ACY, €I (K)) — s, (5.8)
c'e{c,c}

where 9(¢" (K) denotes the reconstructed phase after K iterations of MISI (see Algorithm
5-1 for detailed definitions), which starts from estimated magnitude A) =

Y |QTE (R (C’)) and the mixture phase £Y.

5.3.2. Group Delay Based Phase Reconstruction

For a pair of T-F units at two consecutive frequencies, there are four (22) combinations
of possible phase solutions, while only one combination exhibits a particular group delay.
Our study first estimates the group delay of each source and then finds a sign assignment
at each T-F unit in a way such that the resulting phase spectrum has a group delay closest

to the estimated one. Note that group delay (GD) [110], computed as GD©(t, f) =

£SO +1D-259 W) exhibits patterns clearly predictable from (see Figure. 5-3), and

is mathematically related to, log magnitude [109], [42], [111], [140].
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Figure. 5-3. Illustration of GD using a two-speaker mixture. (a) Log magnitude of
mixture; (b) log magnitude of source 1; (c) clean GD of source 1; (d) estimated GD of
source 1.

Figure 5-2(b) depicts the network structure. Magnitude weighted cosine distance is

used as the loss function in the GD branch

F-1
Lam=), D2 S + DI cos@O @) = 60O )2 (59)

and the overall loss function is L4y +¢p1 = Lmsaa) + Lapi-

At run time, assuming that A© A=) and |Y| form a triangle at each T-F unit, we first

estimate the absolute phase difference § (') petween source ¢’ and the mixture based on

the law of cosines

5 = |Lej(§(CI)_‘Y)

ly|2+4()? - A(=c"? .
= arccos (T SEG] ,for ¢"in {c,=c} (5.10)

where T (+) truncates the values outside of the range [—1,1] to 1. Note that when
A, )+ ACO(t, ) < |Y(t f)|, the three sides cannot make a triangle. This can

happen as we are using estimated magnitudes. In addition, A¢) and A=) could have zero
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values in some T-F units, if obtained via ReLU. We hence clip the values outside the range
[—1,1] to 1, meaning that the mixture phase is considered as the phase estimate for such
T-F units since arccos(1) = 0.

We then determine the sign assignment at each T-F unit, §(t, f) € {—1,1}, by

maximizing the following similarity at each frame

ait1),.., gt F) =

Fo1 (5.11)

argmax Z Z cos(8€I(t, f + 1)(g(t, f + 1)) = 8Ot (g (t, ) = CDCO (&, ),
g(t1),...g(t,F) F=1 ¢/ Efeme)

where 8 (t, £)(g(t, f)) and 8T (¢, f)(g(t, f))are phases hypothesized as

0O, NGt ) =2Y(t. )+ gt N ) (5.12)

6O, N9t ) = 2Y(t. ) — g(t, HECI(L, f) (5-13)

Although Eq. (5.11) has 2F possible solutions, our insight is that it can be efficiently solved
with time complexity O(2%F) by applying dynamic programming (or Viterbi decoding)
within each frame, as the estimated GD only characterizes the phase relations between each
consecutive T-F unit pair along frequency. The final phase estimates are obtained as £Y +
GRSE© and 2Y — GRS,

There are previous studies [107], [108] employing GD for sign determination.
However, they resolve the ambiguity using an empirically hypothesized minimum GD

deviation constraint and only consider a few frequencies with detected harmonic peaks.
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5.3.3. Sign Prediction Networks
The GD based method is designed to be applied at run time as post processing. It is
hard to perform end-to-end training. A possibly better approach is to let the network predict

the sign explicitly (see Figure 5-2(c)), and compute the estimated phases as follows
0©) = 2Y + sign®5© (5.14)
0O = 2Y — sign®ECO) (5.15)

where sign is obtained via tanh non-linearity. Note that § CORT naturally bounded in the

range [0, 7] and sign®§ ) in the range [—, Tt]. The loss function on estimated phases is

Lepz = che{mc}ztz:ﬂ S f +1D](1—cos(BCO (¢, f +1) = 8C (¢, f) = 6D (L, ))) /2, (5.16)

and the overall loss function is: Lﬁ'gﬁ%a) +6p2 = Lusaa) T Lepz- This way, the network

could learn to produce a sign that can lead to GD spectrums close to the clean ones. An

alternative is to compute the loss from the estimated phases and clean phases

Lonase = z I 1S |®(1 — cos(H€) — e(c’)))/2| ¥ (5.17)
c¢'efc,c}

and the overall loss function is: Lﬁ’gﬁ%a)wmse = Lysaa) T Lphase-

We emphasize that Eq. (5.14) and (5.15) (as well as (5.12) and (5.13)) implicitly
constrain that, at each T-F unit, the two reconstructed STFT vectors (A (¢, f)e’ )
and A9 (t, el 90w r )) have to be on the different sides of the mixture STFT vector

Y(t, f) in the complex plane, and 8 (¢, f) and (¢, ) cannot be, at the same time,

more than /2 away from 2Y (¢, f), because only in this way could the two reconstructed
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STFT vectors add up to the mixture STFT vector. This distinguishes our approach from
studies that directly predict unbounded or unconstrained phase differences [1], [87], clean
phases [145] and real and imaginary components of target sources [192], [193], or fully
complex neural network approaches [130].

Following our recent study [181], we train through iSTFT for time-domain waveform

approximation (WA), using A ') and §("
LEnhs — z liSTFT(AC", 5 — 51| (5.18)
c’'€{c,c} 1

Following [87], which uses estimated phases as the starting phases to train through

MISI, we further train our model using

LEned o = z [iSTFT(A€", 5D (K)) — s |, (5.19)
c'efc,c}

where 19(5')(1() is obtained after K iterations of MISI starting from AC) and 9"

produced by the sign prediction network. We will denote Lira® as Lo o since

@(C’)(O) = (") (see Algorithm 5-1).
Following [181], [117], [120], which computes loss using the magnitudes of

reconstructed signals, we further train the network using

LEmms z [[sTET (iSTFT (A(C’),ﬁ(c')(K)))| sl (5.20)
1

c'efc,c}
Our insight is that due to phase inconsistency, the reconstructed signal,
iSTFT(A(C’),ﬁ(C')(K)), may not exhibit a magnitude as good as A(C'), although the
iterative process in MISI can reduce their difference [44]. The network trained this way

outputs two signals that almost add up to the mixture signal and each signal is expected to
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exhibit a good magnitude. From the trigonometric perspective, the signs could be
automatically determined because the two signals are real signals having consistent phase

structures, as is explained in the first paragraph of Chapter 5.3.1.

5.3.4. Computing PSM from Estimated Magnitudes
A side product of this research is a new way of computing the PSM (defined as
1S ®cos(£S© — 2Y) /|Y]) [35] in two-source cases, where the cosine term can be

estimated as cos (§(9)
20 = AO®cos (S(C)) /17| (521)

In the literature, the PSM is typically clipped to the range [0,1] and directly predicted
by a DNN in a way similar to Eq. (4.5) or using 5522(10,1) (i.e. f=1 and y=0) in Eq. (5.7)

[35]. In contrast, the estimated PSM obtained here is assembled based on estimated

magnitudes. It is not limited to the range [0,1] and can even go negative.

5.4. Experimental Setup

We validate our algorithms on the wsj0-2mix and 3mix dataset [57], designed for a
talker-independent speaker separation task. Each of them contains 20,000, 5,000, and 3,000
2(or 3)-speaker mixtures in its 30, 10 and 5 h training, validation, and test (open speaker
condition, OSC) set, respectively. The sampling rate is 8§ kHz. The SNR in each mixture is
randomly sampled from -5 to 5 dB. We use 32 ms window size and 8 ms hop size. Square-
root Hann window is applied before 256-point DFT is applied to extract 129-dimensional
log magnitude features. A in Eq. (4.6) is set to 0.975 and embedding dimension D set to 20.

K in MISI is set to 5.
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Figure 5-4. Chimera++ network architecture. The tensor shape after each block is in
format: featureMaps X timeSteps X frequencyChannels. Each block is specified in the
format: kernelSizeTime X kernelSizeFreq, (stridesTime, stridesFreq), (paddingsTime,
paddingsFreq), featureMaps.

We use a 4-layer BLSTM with convolutional encoder-decoder structures and skip
connections [126], [71] in the chimera++ network (see Figure 5-4). Similar network was
found useful in a speech enhancement study [147]. The encoder contains seven
convolutional blocks, each including 2D convolution, batch normalization and exponential
linear units (ELU). The decoder contains six deconvolutional blocks, each consisting of
2D deconvolution, BN and ELU layers, and one 2D deconvolution layer and a sigmoidal
layer to obtain estimated masks. The embedding layer grows out from the last BLSTM

layer. Each BLSTM has 512 units in each direction.
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Table 5-1. Average SI-SDRi (dB) and PESQ results on OSC of wsj0-2mix.

Approaches Models Enhanced Phase? | SI-SDRi | PESQ
Unprocessed - No 0.0 2.01
Chimera++(Encoder-BLSTM-Decoder) | £ p;44 No 11.9 3.12
LETR o0 No 12.1 3.15
+MISI-5 Yes 12.5 3.17
LESR 05 No 124 | 3.17
+MISI-5 Yes 12.9 3.19
LEA1m No 124 | 3.21
Deep learning based iterative +MISI-5 Yes 12.9 3.24
phase reconstruction [;ggg(l_ 5.5) No 12.7 3.21
+MISI-5 Yes 13.3 3.24
Lifeats) No 11.1 3.27
+MISI-5 Yes 14.4 343
+LEmL Yes 15.0 3.38
+Eq. (5.21) No 12.6 3.24
Group delay based phase reconstruction Lf,,’}’jz(s)wm Yes 13.6 3.39
L%’f{sncpz Yes 14.2 3.39
Lﬁ@ﬁ%s)whase Yes 14.4 3.38
Sign prediction network +MISI-S Yes 15.0 344
+LEnh3 Yes 14.6 3.36
+LEnhs Yes 15.3 3.36
+LEMS o Yes 15.2 3.45

Each enhancement network (see Figure 5-2) contains three BLSTM layers, each with
600 units in each direction.
We use scale-invariant SDR improvement (SI-SDRi) [94] as the major evaluation

metric. We also report SDR improvement (SDRi) and PESQ.

5.5. Evaluation Results

Table 5-1 reports the performance on wsj0-2mix. Including the encoder-decoder
structure into the chimera++ network improves SI-SDRi by 0.7 dB (from 11.2 to 11.9 dB),
compared with [177] that uses a vanilla BLSTM. The enhancement network, which can
also be thought of as stacking [176], [81], improves estimated PSM results from 11.9 to
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12.1 dB, by using LE?A&, 1)- Further applying 5 iterations of MISI (MISI-5) at run time only

leads to slight improvement (from 12.1 to 12.5 dB). Similar trend is observed for models

trained using LPSA(O 5) > LPSA( 1,1, and ng’ﬁ(l_&s). In contrast, the model trained to

estimate the SMM using Lﬁ’gﬁl(s) (i.e. @=5) exhibits substantial improvements when

combined with MISI-5 (from 11.1 to 14.4 dB), indicating that the SMM is the preferred

training target if MISI needs to be performed. Further training the model with LEAL

pushes the performance to 15.0 dB. Compared with LE/%? A(s)> using estimated group delay
from LE["2 A(s)+cp1 for phase reconstruction improves the performance from 11.1 to 13.6

dB, while this approach is not as good as the sign prediction networks that can be trained
end-to-end. Compared with L), Lifeatsysphase a0d Lifeas)sepz both lead to
substantial improvement (14.4 and 14.2 vs. 11.1 dB). The former is slightly better, likely
because it directly compares estimated phases with clean ones for loss computation. Further
applying MISI-5 on the estimated magnitudes and enhanced phase improves the results to
15.0 dB, which is 0.6 dB (15.0 vs. 14.4 dB) better than applying MISI-5 on the model

trained with L,’f,,’}ﬁl(S), indicating the benefits of using an enhanced phase as the starting

phase for MISI over using the mixture phase. Further training through MISI using LEM3

produces slight improvement (from 15.0 to 15.3 dB). Compared with LEMR3
LENRS <4 leads to worse SI-SDRi (15.2 vs. 15.3 dB), which aligns with the findings in
[181]. Different from [181], the PESQ score is improved significantly from 3.36 to 3.45.
This could be that PESQ is computed by reducing the phase mismatch between enhanced

signals and reference signals via a time alignment procedure, and considerably taking into

account the magnitudes of resynthesized signals [123], while SI-SDR solely considers
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Table 5-2. Average SI-SDRi (dB), SDRi (dB) and PESQ comparison between proposed
algorithms and other methods on OSC of wsj0-2mix and wsj0-3mix.

A h wsj0-2mix wsj0-3mix
pproachies SI-SDRi | SDRi | PESQ | SI-SDRi | SDRi | PESQ
Unprocessed 0.0 0.0 | 2.01 0.0 0.0 | 1.66
DC++ [57], [69] 108 | - : 7.1 } :
ADANet [94] 104 | 108 | 28 | 91 | 94 | 2.16
uPIT-ST [206], [81] - 100 - _ 77 | -
Chimera++ (BLSTM) [177] 11.2 11.5 - - - -
+MISI-5 [177] 115 |11.8] - 3 } 3
FWA-MISI5 [181] 126 | 129 - 3 } _
+ PhaseBook [87] 12.8 - - - - -
conv-TasNet-gLN [97], [95] 146 | 150 | 325 | 116 | 12.0 | 2.50
Proposed (Sign prediction net, LEP3 153 | 156 | 336 | 121 | 125 | 2.64
Proposed (Sign prediction net, LEPRS . )| 152 | 154 | 3.45 12.0 | 123 | 2.77

time-domain signals and is hence more sensitive to phase mismatches. For the side product
in Eq. (5.21), which assembles an estimated PSM from the estimated magnitudes produced

via Lﬁ’;ﬁl@, it obtains results comparable to L,’f’slﬁ(l_s's), and better than the other three

models trained to directly estimate the PSM.

Table 5-2 compares the performance of our algorithm with other competitive systems
on the wsj0-2mix and 3mix corpus. Our algorithm obtains dramatically better performance
than the other STFT based approaches. Its performance is also better than a recent time-

domain approach [95], particularly in terms of PESQ.

5.6. Conclusion

Thanks to a novel trigonometric perspective, we have proposed three phase
reconstruction algorithms based on magnitude estimation. The obtained state-of-the-art
speaker separation results at the time of publication suggest that deep learning based

magnitude estimation can clearly benefit phase reconstruction. In closing, we emphasize
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that a geometric constraint affords a mechanism to narrow down the possible solutions of

phase, and it could play a fundamental role in future research on phase estimation.
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Chapter 6. Multi-Channel Speech Dereverberation

This chapter investigates multi-channel speech dereverberation and its application to
robust ASR in reverberant conditions using deep learning based complex spectral mapping.

The work in this chapter has been published in IEEE/ACM T-ASLP in 2020 [185].

6.1. Introduction

Room reverberation is pervasive in modern hands-free speech communication. In a
reverberant enclosure, speech signals propagate in the air and are inevitably reflected by
the walls, ceiling, floor, and any objects in the room. As a result, the signal captured by a
distant microphone is a summation of an infinite number of delayed and decayed copies of
original source signals. Room reverberation is known to be detrimental to ASR systems,
and severely degrades speech quality and intelligibility. Speech dereverberation is a
challenging task, as reverberation is a convolutive interference, and it is difficult to
distinguish the direct-path signal from its reverberated versions, especially when room
reverberation is strong or environmental noise is also present [161].

For single-channel dereverberation, one conventional approach estimates the power
spectral density (PSD) of late reverberation to compute a Wiener-like filter [48], [10]. The
weighted prediction error (WPE) algorithm [112], [205] is probably the most widely used

algorithm for speech dereverberation. It uses variance-normalized delayed linear prediction
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to predict late reverberation from past observations, and subtracts the predicted
reverberation to estimate target speech. It iteratively estimates the time-varying PSD of
target speech and the linear filter, and is unsupervised in nature. Many ASR studies report
that WPE suppresses reverberation with low speech distortions, and consistently improves
ASR performance even for multi-conditionally trained ASR backends [26].

When multiple microphones are available, spatial information can be leveraged to filter
out signals not arriving from the estimated target direction. Single-channel WPE can be
extended to multi-channel WPE [112] by simply concatenating the observations across
multiple microphones when performing linear prediction. Another popular approach for
multi-channel speech dereverberation is the so-called suppression approach [49], [11],
which decomposes a multi-channel Wiener filter into a product of a time-invariant or time-
varying MVDR beamformer and a monaural Wiener post-filter. This approach can utilize
the phase produced by linear beamforming, which is expected to be better than the mixture
phase, since MVDR beamforming is distortionless. However, the phase improvement is
dependent on linear beamforming, which is less effective when room reverberation is
strong or when the number of microphones is small. In addition, the Wiener post-filter is a
real-valued mask, and would inevitably introduce phase inconsistency problems [44],
[184], when directly applied to the beamformed signal for enhancement.

Different from conventional algorithms, supervised learning based approaches train a
DNN to predict the magnitudes or real-valued masks of the direct-path signal from
reverberant observations [37], [52], [100], [104], [197]. However, the DNN operates in the
magnitude domain, and mixture phase is typically utilized for signal re-synthesis. Phase

estimation is hence a promising direction for further improvement. Another direction in
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dereverberation uses DNN estimated speech magnitudes as the PSD estimate for WPE [59],
[60], [76], [143]. This approach can leverage the spectral structure in speech for linear
prediction, and most importantly eliminates the iterative process. In offline scenarios,
although ASR improvement is observed on the eight-channel task of the REVERB
challenge, it leads to slightly worse performance on the monaural task [76].

In this context, our study extends magnitude-domain masking and mapping based
speech dereverberation to the complex domain, where a DNN is trained to predict the RI
components of direct sound from reverberant ones. Although previous studies perform
single-channel complex masking or mapping for speech denoising [39], [148], [192], their
results in reverberant conditions are mixed [193] and how to extend to multi-channel
processing is unclear.

Our study approaches multi-channel dereverberation from the angle of target
cancellation, where a key assumption is that the target speaker is a directional source, and
is typically non-moving within a short utterance. This suggests that we can point a null
beam to cancel the target speaker, and the remaining signal would only contain a filtered
version of reverberation. This filtered reverberation can be utilized as extra features for
DNN to perform multi-channel complex spectral mapping based dereverberation. It should
be noted that similar ideas of target cancellation were explored in binaural speech
segregation [125] and multi-channel dereverberation [79], [11]. Their purposes are,
however, different (e.g. on the PSD estimation of late reverberation), and they do not
address phase estimation.

Our study makes four main contributions. First, we extend deep learning based

magnitude-domain single-channel speech dereverberation to the complex domain for phase
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estimation. The phase estimation method follows the complex spectral mapping idea in
[39], [148], while our study addresses direct sound vs. reverberation and noise, rather than
speech vs. noise in anechoic conditions. Second, we introduce for complex spectral
mapping a magnitude-domain loss function, which dramatically improves speech quality
measures in reverberant conditions. Third, we propose a novel target cancellation strategy
to utilize spatial information to improve the estimation of direct sound. Fourth, we
investigate the effectiveness of DNN based phase estimation for beamforming and post-
filtering, while the DNN in previous deep learning based multi-channel enhancement
operates in the magnitude domain.

We emphasize that the proposed algorithms are designed in a way such that the
resulting models, once trained, can be directly applied to arrays with an arbitrary number
of microphones arranged in an unknown geometry.

The rest of this paper is organized as follows. We introduce the physical model in
Chapter 6.2. The proposed algorithms are detailed in Chapter 6.3, followed by
experimental setup in Chapter 6.4. Evaluation and comparison results are presented in

Chapter 6.5. Conclusions are made in Chapter 6.6.

6.2. Physical Models and Objectives

Given a P -microphone time-domain signal y[n] = [yl [n], ..., vp [n]]T € RP*1
recorded in a reverberant and noisy enclosure, the physical model in the STFT domain is

formulated as:

Y(t,f) = c(f;)Se(t, f) + H(t, f) + N(t, f) = S(t, f) + V(¢ f), (6.1)
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where S (t, f) € Cis the complex STFT coefficient of the direct-path signal of the target
speaker captured by a reference microphone q at time t and frequency f, ¢(f; q) € CP*1
is the relative transfer function with the " element being one, and c(f; q)S,(t, f),
H(t,f), N(t,f) and Y (¢, f) € CP*1 respectively represent the STFT vectors of the direct-
path signal, reverberation, reverberant noise and received mixture at a T-F unit.

We propose multiple deep learning algorithms to enhance the mixture Y, captured at
the reference microphone g to recover S, , by exploiting single- and multi-channel
information contained in Y. In this study, N(t, ) is assumed to be a quasi-stationary air-
conditioning noise, as our focus is on dereverberation; the proposed algorithms can be
straightforwardly applied to deal with more noises. The target speaker is assumed to be
still within an utterance. Our study also assumes offline scenarios: we normalize the time-
domain sample variance of each input multi-channel signal y to one before any processing.
This normalization would be important for mapping-based enhancement to deal with
random gains in input signals.

In the remainder of this paper, we refer to S(¢, f) = c(f; q)S4(t, f) as the target
component we aim to extract, and V(t,f) = H(t,f) + N(t,f) as the non-target

component to remove.

6.3. Proposed Algorithms

There are two DNNs in our system. The first DNN performs single-channel
dereverberation by predicting the RI components of the direct-path signal from a mixture.
Dereverberation results are utilized to compute an MVDR beamformer. The second DNN
utilizes the RI components of beamformed speech as additional features to further improve
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Figure 6-1. Illustration of overall system for single- and multi-channel speech
dereverberation (or enhancement). There are two DNNs, one for single-channel and the

other for multi-channel dereverberation and denoising. The superscript in 31(1), ., S 151)
and S éz) denotes the DNN used for processing.

the estimation of the RI components of the direct-path signal. Figure 6-1 illustrates the

overall system.

6.3.1. Monaural Complex Spectral Mapping

Following recent studies [39], [148], we train a DNN to directly predict the RI
components of the direct sound from reverberant and noisy ones. One key difference is that
[39] and [148] deal with speech vs. noise, while our study addresses direct sound vs.

reverberation and noise. We use the following loss function

Lri = ||R, - Real(Sp)”1 + |1, — Imag(S,)| (6.2)

1]
where p € {1, ..., P} indexes microphones, ﬁp and fp are the estimated RI components

obtained by using linear activation in the output layer, and Real(:) and Imag(:)

respectively extract the RI components. The enhanced speech at microphone p is obtained
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as S“zgk) = }?I(,k) + jflgk), where the superscript k € {1,2} denotes the output from the k™

DNN, as shown in Figure 6-1.
Following recent studies combining Lg; with a magnitude-domain loss [39], [194], we

design the following loss function

f,\z .2
LRI+Mag:LRI+H R, +1 _|Sp|

Different from [39], [194], our study does not compress the estimated magnitudes or

(6.3)

1

complex spectra using logarithmic or power compression. This way, the DNN is always
trained to estimate a complex spectrum that has consistent magnitude and phase structures,
and therefore would likely produce a consistent estimated STFT spectrum at run time
[184].

Our experiments show that including a loss on magnitude leads to large improvements
in objective measures of speech quality, along with a small degradation on time-domain

SNR based measures, compared with only using Lg;.

6.3.2. Multi-Channel Complex Spectral Mapping

We propose a target cancellation approach to exploit spatial information for
dereverberation. The motivation is that given an oracle MVDR beamformer w(f; q), the

beamformed signal is distortion-less, meaning that S, (¢, ) = w(f; @)!S(¢, f). Therefore,

the difference between the mixture and the beamformed signal at reference microphone q,

computed as
Yq(trf) - BFq(t'f)
= Yq(tﬂf) - W(f' Q)HY(t,f)
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=S4t 1) + Vo (&. ) = (W S (. ) + w(f; )"V (L. )

=V (&, ) —w(f; "V, f) (6.4)
would only contain a filtered version of non-target signals, i.e. V, (t, f) — w(f; @)V (t, f).
Intuitively, the more microphones there are and the more accurate the beamformer is, the
weaker the beamformed non-target speech w(f; q)V(t, f) would be, and the closer
V,(t, f) —w(f; )"V (¢, f) is to the actual non-target speech V, (¢, /) we aim to remove at
microphone q. This makes Y, — BT:'q a highly discriminative feature for dereverberation,
and hence motivates us to use it as an extra input for DNN to predict S, via complex
spectral mapping. Without this feature, the DNN may struggle at distinguishing direct-path
signal from its reverberated versions, as the latter is a summation of the delayed and
decayed copies of the former.

We apply the single-channel complex spectral mapping model to each microphone
signal and directly use the estimated speech S to robustly compute an MVDR
beamformer for cancelling target speech. Our study considers time-invariant MVDR (TI-
MVDR) beamforming, as the target speaker is assumed still within each utterance, and
reverberation and the considered noise are largely diffuse. The covariance matrices are

computed as

~ 1 —~ —~
3O =7 SENSEH" (65)

~ 1T 5 -
3O =7 ) Ve NVEN" (6.6)

where V(t, f) = Y(t, f) — S(¢, f). The motivation is that the estimated complex spectra

are expected to have cleaner phase than the mixture phase. In contrast, mask-weighted
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ways of computing covariance matrices (see Eq. (6.11) for example) [36], [58], [200],
[203], [213] are fundamentally limited when there are insufficient T-F units dominated by
the direct-path signal, such as when room reverberation or environmental noise is very
strong.

The relative transfer function is then computed in the following way

#(f) = P{®O (N} (6.7)
e(fs ) = 7N /7() (6.8)

where P{-} extracts the principal eigenvector. The motivation is that (IO (f) would be
close to a rank-one matrix if accurately estimated. Its principal eigenvector is therefore a
reasonable estimate of the steering vector [40]. We then use Eq. (6.8) to obtain an estimated
transfer function relative to a reference microphone q. We emphasize that, without using
Eq. (6.8), a different complex gain would be introduced at each frequency, leading to
distortions in the beamformed signal.

A TI-MVDR beamformer is then computed as

() e(f; q)

w(f;q) = — 6.9
R DI GRE Y )

The beamformed signal is obtained using
BF,(t,f) = w(f; Q)"Y (¢, f) (6.10)

For multi-channel dereverberation, we feed the RI components of ¥, — BE, in addition
to the RI components of Yy, to a DNN to estimate the RI components of the direct-path

signal S, (see Figure 6-1).
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We point out that this strategy is in spirit similar to the classic generalized sidelobe
canceller [40], which contains three components: a delay-and-sum (DAS) beamformer
computed to enhance the target signal, a blocking matrix used to block the target signal,
and an adaptive noise canceller designed to cancel the sidelobes produced by the DAS
beamformer based on the blocked signal. The key difference here is that we compute an
MVDR beamformer to block the target signal, and use deep learning to cancel the non-
target signal in ¥, based on Y; — BEI.

From the spatial feature perspective, popular for deep learning based multi-channel
speech enhancement [4], [73], [118], [214] and speaker separation [180], the RI
components of BT*"q orY, — BT"q can be considered as complex-domain spatial features,
which can be utilized by the DNN to extract a target speech signal with specific spectral
structure and arriving from a particular direction. Such features are more general than those
previously proposed for improving magnitude estimation, such as plain IPD [204], cosine
and sine IPD [178], and target direction compensated IPD and the magnitudes of

beamformed mixtures [180].

6.4. Experimental Setup

Our models for dereverberation are trained on reverberant and noisy data created by
using simulated RIRs and recorded noises. We first measure the performance on a
relatively matched simulated test set, and then evaluate the trained models directly on the
test set of the REVERB challenge [77] to show their generalization ability. This section
describes the datasets and the setup for model training, and several baseline systems for

comparison purposes.
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Input: WSICAMO;
Output: spatialized reverberant (and noisy) WSICAMO;
REP[train]=5; REP[validation]=4; REP[test]=3;
For dataset in {train, validation, test} set of WSJCAMO do
For each anechoic speech signal s in dataset do
Repeat REP[dataset] times do
- Sample room length 7, and width 7, from [5,10] m;
- Sample room height 7, from [3,4] m;
- Sample mic array height a, from [1,2] m;
- Sample array displacement n, and n,, from [—0.5,0.5] m;
- Place array center at (%x + nx,%y +ny,a,) m;
- Sample array radius a,. from [0.03,0.1] m;
- Sample angle of first mic angle 9 from [0, E];
Forp =1:P(=8) do
- Place mic p at (%"+ n, + a, cos (19 + (- 1)%),%’+ny + arsin(ﬁ + (- 1)%),612) m;
End
- Sample target speaker locations in the 0 — 360° plane:
(Sx' sy' Sz (= az)>
such that the distance from target speaker to array center is in between [0.75,2.5] m, and target
speaker is at least 0.5 m from each wall;
- Sample T60 from [0.2,1.3] s;
- Generate multi-channel impulse responses using RIR generator and convolve them with s;
If dataset in {train, validation} do
- Sample a P-channel noise signal n from the training noise of REVERB corpus;

Else
- Sample a P-channel noise signal n from the testing noise of REVERB corpus;
End

- Concatenate channels of reverberated s and n respectively, scale them to an SNR randomly
sampled from [5,25] dB, and add them to obtain reverberant and noisy mixture;
End
End
End

Algorithm 6-1. Data spatialization process (simulated RIRs).

6.4.1. Datasets and Evaluation Setup

Following REVERB [77], our training data for dereverberation is generated using the
WSJCAMO corpus. Different from REVERB, which only uses 24 measured eight-channel
RIRs to generate its training data, we use a much larger set of RIRs (in total 39,305 eight-
channel RIRs for training) generated by an RIR generator [47] to simulate room

reverberation. See Algorithm 6-1 for the detailed simulation procedure. For each utterance,
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we randomly generate a room with different room characteristics, speaker and microphone
locations, microphone array characteristics, and noise levels. Our study considers eight-
channel circular arrays with radius spanning from 3 to 10 cm. The target speaker is placed
on the same plane as the array, at a distance randomly drawn from 0.75 to 2.5 m. The
reverberation time (T60) is randomly sampled between 0.2 and 1.3 s. We use the training
and test noise (mostly diffuse quasi-stationary fan noise) in REVERB to simulate noisy
reverberant mixtures in our training and test sets, respectively. The SNR between the direct
sound and reverberant noise of each mixture is randomly drawn between 5 and 25 dB. The
average DRR is -3.7 dB with 4.4 dB standard deviation. There are 39,305 (7,861%5, ~80
h), 2,968 (742x4, ~6 h), and 3,264 (1,088 %3, ~7 h) eight-channel utterances in the training,
validation and test set, respectively. Note that the training and the test speakers are
different. We denote this test set as Test Set I. At run time, we randomly choose a subset
of microphones for each test mixture for evaluation. This setup therefore covers a wide
range of microphone geometry. We use the direct-path signal at a reference microphone
(i.e. the signal corresponding to S,) as the reference for metric computation, and the first
microphone is always considered as the reference. For P-channel processing, we randomly
select P — 1 microphones from the non-reference microphones and always report the
performance on the reference microphone. This way, we can directly compare single- and
multi-channel processing as they are both evaluated using the same reference signals.

We apply the trained models, without re-training, to the test set of REVERB, which
contains simulated as well as recorded reverberant and noisy mixtures. We first evaluate
the enhancement performance of the trained models on the simulated test set (denoted as

Test Set II), where six measured eight-channel RIRs are used to simulate 2,176 reverberant
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Figure 6-2. RIR illustration. (a) Example RIR segment from REVERB
(RIR_SimRoom3 far AnglB.wav); (b) Example direct-path RIR simulated using RIR
generator.

and noisy mixtures. The six RIRs are measured in small-, medium- and large-size rooms,
where the T60s are 0.25, 0.5 and 0.7 s respectively, and the speaker to microphone distance
is around 0.5 m in the near-field case and 2.0 m in the far-field case. Recorded
environmental noise is added at an SNR of 20 dB. In the REVERB challenge setup, only
the sample at n;, which is the index corresponding to the highest value in the measured
RIR, is used to compute the direct-path signal (i.e. reference signal) for metric computation.
However, due to measurement inaccuracy, this may not be realistic, since the samples in a
small window around n, are typically considered as in the direct-path RIR [34]. A short
segment of an example RIR from REVERB is shown in Figure 6-2(a), where T60 is around
0.7 s. If we only use the sample at n, to simulate the direct-path signal, the resulting DRR
would be unrealistically low, as the samples around the peak exhibit non-negligible energy;
as a result, the reverberation generated by the surrounding samples would be difficult to

remove. These surrounding samples should be considered when computing the direct-path
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signal, as they are in a measured RIR. Also, the sound source may not be a point source
strictly and for a 16 kHz sampling rate, one discrete sample can have around 340/16,000
m measurement error, where 340 (m/s) is the sound speed in the air. Furthermore,
simulated direct-path RIRs are usually computed based on low-pass filtering, and they will
be similar to a Sinc function even for a point source [47]. In Figure 6-2(b) we show an
example direct-path RIR simulated using the RIR generator by setting the T60 parameter
to zero. In our study, we hence use the samples in the range [n; — 0.0025 X 16,000,n, +
0.0025 x 16,000] (i.e. a 5-ms window surrounding the peak) of the measured RIRs to
compute the direct-path signal for metric computation. This strategy aligns with the setup
in the ACE challenge [34]. We then evaluate the dereverberation models on the ASR task
of REVERB (denoted as REVERB ASR). The test utterances are real recordings with T60
(reverberation time) around 0.7 s and the speaker to microphone distances approximately
I m in the near-field case and 2.5 m in the far-field case. Both Test Set II and REVERB
ASR use an eight-microphone circular array with a 20 cm diameter, and the target speaker
is non-moving within each utterance. We follow a plug-and-play approach for ASR, where
enhanced signals are directly fed into a multi-conditionally trained ASR backend for
decoding. The backend is built based on the official REVERB corpus using the Kaldi
script’. It is composed of a GMM-HMM system, a time-delay DNN (TDNN) trained with
lattice-free maximum mutual information based on online-extracted i-vectors and MFCCs,

and a tri-gram language model. Note that the window length and hop size for ASR are

> https://github.com/kaldi-asr/kaldi/tree/master/egs/reverb/s5 (commit 61637e6c8ab01d3b4c54a50d9b20781a0aal2as9). Different
from the Kaldi script, our study (1) performs sentence-level cepstral mean normalization on the input features of TDNN; (2) reduces the
initial batch size of TDNN training by changing the trainer.num-chunk-per-minibatch flag from 256,128,64 to 128,64; (3) increases the
number of TDNN training epochs from 10 to 20; (4) uses wsj/s5/local/wer_output_filter and wsj/s5/local/wer_hyp_filter to filter out
tokens such as NOISE and SPOKEN_NOISE when utilizing local/score.sh to compute WER; and (5) enforces the same word insertion
penalty (WIP) for near- and far-field conditions, and uses the averaged WER on the near- and far-field conditions of the validation set
to select the best WIP.
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respectively 25 and 10 ms, following the default setup in Kaldi. During testing, we first
obtain enhanced time-domain signals using our frontend and then feed them to the ASR
backend for decoding, meaning that our frontend does not leverage any knowledge of the
backend. We emphasize that the purpose of Test Set II and REVERB ASR is to show the
generalization ability of our dereverberation models, which are trained based on simulated
training data, as well as to compare the proposed algorithms with unsupervised methods
such as WPE, not to obtain state-of-the-art performance using dereverberation frontends
trained on the REVERB training data.

The two DNNSs in Figure 6-1 are trained sequentially. We first train the single-channel
model using the first channel of all the multi-channel signals (in total 7,861x5 utterances).
Designating the first microphone as the reference, we use the trained model to obtain a
beamformed signal based on a random subset of microphones. The beamforming result is
then combined with the mixture signal to train the second network. This way, the second
DNN can deal with beamforming results produced by using up to eight microphones.
Figure 6-3 illustrates the DNN architecture. We use two-layer recurrent neural networks
with BLSTM having an encoder-decoder structure similar to U-Net, skip connections, and
dense blocks as the learning machines for masking and mapping. The motivation for this
DNN design is that BLSTM can model long-term temporal information, U-Net can
maintain fine-grained local information as is suggested in image semantic segmentation
[126], and DenseNet encourages feature reuse and improves the discriminative capability
of the network [67], [92], [144]. In our experiments, this network architecture shows
consistent improvements over the standard BLSTM and a recently proposed convolutional

recurrent neural network [148]. The encoder contains one 2D convolution, and six
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Figure 6-3. Network architecture for predicting the RI components of S, from the RI
components of Y, and Y, — BEI. Note that for single-channel processing, the network
only takes in single-channel information as its inputs. The tensor shape after each block
is in format: featureMaps X timeSteps X frequencyChannels. Each Conv2D, Deconv2D,
Conv2D+ELU+IN, and Deconv2D+ELU+IN block is specified in format:
kernelSizeTime X kernelSizeFreq, (stridesTime, stridesFreq), (paddingsTime,
paddingsFreq), featureMaps. Each DenseBlock(g) contains five Conv2+ELU+IN blocks
with growth rate g.

convolutional blocks, each with 2D convolution, ELUs and instance normalization (IN)
[198], for down-sampling. The decoder includes six convolutional blocks, each with 2D

deconvolution, ELUs and IN, and one 2D deconvolution, for up-sampling. Each BLSTM
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layer has 512 units in each direction. The frontend processing uses 32 ms window length
and 8 ms frame shift for STFT. The sampling rate is 16 kHz. A square-root Hann window
is used as the analysis window.

Our main evaluation metrics are SI-SDR [88] and PESQ, where the former is a time-
domain metric that closely reflects the quality of estimated phase, and the latter strongly
correlates with the accuracy of estimated magnitudes. We also consider scale-dependent
SDR (SD-SDR) [88] for evaluating the single-channel models. Following REVERB, we
also use cepstral distance (CD), log likelihood ratio (LLR), frequency-weighted segmental
SNR (fwSegSNR), and speech-to-reverberation modulation energy ratio (SRMR) as the
evaluation metrics. Note that the computation of SRMR does not require clean references.

WER is used to evaluate ASR performance.

6.4.2. Baseline Systems for Comparison

This section describes the single- and multi-channel baselines considered in our study.

6.4.2.1. Single-Channel Baselines

The first four baselines for dereverberation perform single-channel magnitude-domain
masking and mapping based MSA and PSA [161], which are popular approaches in single-
channel speech enhancement. We summarize the baselines in Table 6-1. All of them use
the same network architecture in Figure 6-3, and the key difference is in the number of
input and output feature maps depending on the input features and training targets, output
non-linearities and loss functions. T?(:) = max (min(:, b),a) in Lyg A-Masking and
Lpsa—_Masking truncates the estimated mask to the range [a, b]. @ in Lyisa—masking 18 set to

10.0, and B and y in Lpga_masking Tespectively set to 1.0 and 0.0 in our study.

129



Table 6-1. Summary of various single-channel models for speech dereverberation.

Method Input Loss function Network O‘thplllt Enhancement
features Output |activation results

S Sq =Ry + i

Complex §pectral Real(Yq), Lgy or LriyMag Ry I | Linear | 4 atia

mapping Imag(¥,) Ve =Y =5

LMSA—Masking = || |Yq|T61(M1§S)) - T0u|yq|(|5q|) ||1

7 g® Clipped |Sq = Yo T& (M)
a i@ alvg| q
ey - 15w,

MSA-Masking 4| Softplus 7=, TO”(M("))

: — 77 7@ i 7 q
MSA-Mapping Eusacvappng = 108 = 1511, + 10 = lll, {2,009 sompius | S0 = 2% €
q q
Y 5 Blql
Wl s mans = [1vI7f @5 = Th 4 dIs, leos (25, — 2x) | ¢ _yrBo®
PSA-Masking il 199 0™ | Sigmoid Sq =¥l (Qq)
- R v a »%q o _ vy rBaw
+ | |Yq|Tf(Qg"’) - Tyﬁlll,q‘il(|Vq|cos (LV, = 2Y,)) | Vg = YT, (Qg )
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—_ |7 A -
PSA-Mapping Lesa-mapping = 1257 = [Sqlcos (28, — LYq)||1 7 20| Lincar Siq - {éS)ej,Lyq
+25” — [Vycos (27 — 27, - U, = 2

6.4.2.2. TI-MVDR

To show the effectiveness of using estimated complex spectra for covariance matrix
computation, we apply the single-channel models to enhance each microphone signal
following the last column of Table 6-1, and then compute the covariance matrices based
on Eq. (6.5) for TI-MVDR. This method is denoted as BT*"q. Additionally, we use mask-
weighted ways [58], [203] of computing covariance matrices for TI-MVDR, based on the
estimated masks produced by the models trained with Lysa_Masking a0d Lpsa—Masking

1

BOG) =7 ) 1 DENYEN YN, (6.11)

where d € {s, v}.
When using Lyisa—Masking 7@ is computed as

ip(d ~
T (1) TE )
Te(M) + 1e(A) T8 G) + T (1)

7@ = median ,  (6.12)
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where IVII(,d) denotes the estimated magnitude mask at microphone p.

When using Lpsa_maskings 7@ is computed as
7@ = median (Tf (05®), . T¢( ”,S"”)), (6.13)

where Qz(,d) denotes the estimated phase-sensitive mask at microphone p.
We also square the mask before median pooling, as the outer product is in the energy
domain, while in Eq. (6.13) and (6.12) the mask is in the magnitude domain. n‘® is

computed as

af io(d) 2 —~(d
@ = med ri (1Y) )’
n'* = median R, o2 T N, o (6.14)
Te(P) +1g(mP) To (Mp7) + T (M)
for LPSA—Masking and as
@ = median (T?(6@Y _ T8(0@)*
n'* = median Ty( 1 ),...,Ty( P ) (6.15)

for Lpsa_masking- Note that @, B and y are respectively set to 10.0, 1.0 and 0.0 in our

study.

6.4.2.3. Post-filtering (no re-training)

After obtaining BE, we then apply the single-channel models to BT:'q for post-filtering.
Note that the phase in L’?T'q is used as the estimated phase for magnitude-domain masking
and mapping based models. We emphasize that BTTq is still very reverberant and is expected
to contain low speech distortion. It is therefore reasonable to feed BT'q into a single-channel

model trained on unprocessed mixtures for further enhancement. Note that in this method,
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only one DNN is trained (i.e. the single-channel model), but it is run twice at run time. This

method is denoted as BT*"q + Post-filtering (no re-training).

6.4.2.4. Post-filtering (re-training)
As BEI may contain distortion unseen by the single-channel models, which are trained
on unprocessed mixtures. We train a complex spectral mapping based post-filter, which

predicts the RI components of S, based on BT*"q. Similar to the proposed system shown in
Figure 6-1, this method uses two DNNSs, while the input to the second DNN is BT'q rather

than Y, and Y; — B?q. We denote this method as BT"q + Post-filtering (re-training).

6.4.2.5. Single- and Multi-Channel WPE

We follow the script for REVERB in Kaldi, which is based on the open-source nara-
wpe toolkit [30], to build our offline WPE baselines, where the window size is 32 ms and
hop size is 8 ms, the prediction delay is set to 3, the iteration number set to 5, and the order
of the regressive model set to 40 for single-channel processing and 10 for multi-channel

processing. Note that these hyperparameters are the recommended ones in [76] and [26].

6.5. Evaluation Results

We first report the dereverberation performance of the trained models on Test Set I,

and then report their generalization ability on Test Set Il and REVERB ASR.

6.5.1. Dereverberation Performance on Test Set I
In Table 6-2, we compare the performance of single-channel magnitude-domain
masking and mapping based MSA and PSA, and complex spectral mapping over

unprocessed speech and oracle magnitude-domain masks such as the spectral magnitude
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Table 6-2. Average SI-SDR (dB), PESQ and SD-SDR (dB) of different methods on
single-channel dereverberation (Test Set I). Oracle masking results are marked in gray.

Method SI-SDR | PESQ | SD-SDR
Unprocessed -3.7 1.93 -3.7
LMSA—Masking 0.8 291 35
LMSA—Mapping 0.7 2.92 35
Lpsa-Masking 2.3 2.55 4.5
LPSA—Mapping 1.6 2.56 42
Ly 6.2 2.80 7.2
LgisMag 5.9 3.07 7.0
SMM (T4 °(ISq1/1Y D) 1.6 | 3.40 3.9
PSM (Ty (IS4]cos (£S, = 2Y) /1Y) | 4.5 3.09 5.8

mask [166] and phase-sensitive mask [35]. Note that the unprocessed SI-SDR is closely
related to DRR, an important factor characterizing the difficulty of dereverberation along
with T60. Comparing Lyjsa-Masking> £MSA-Mapping> £Psa-Masking a1d Lpsa_Mapping and
Ly, we observe that Lg; leads to much better SI-SDR than MSA and PSA (6.2 vs. 0.8, 0.7,
2.3 and 1.6 dB), while MSA obtains the best PESQ (2.91 and 2.92 vs. 2.55, 2.56 and 2.80).
This is likely because PESQ is closely related to the quality of estimated magnitudes, while
time-domain measures such as SI-SDR needs the estimated magnitudes to compensate for

the error of phase estimation. Compared with Ly, Lri4mag Substantially improves PESQ
from 2.80 to 3.07, slightly degrading SI-SDR from 6.2 to 5.9 dB. In addition, Lgi;mag

obtains better PESQ than MSA (3.07 vs. 2.91 and 2.92), indicating the effectiveness of
phase processing. We observe that SD-SDR results are consistent with SI-SDR. In the
following experiments, we use Lgiimag @s the loss function to train the two DNNs in
Figure 6-1, as it yields a very strong SI-SDR and the highest PESQ.

In Table 6-3, we compare the performance of TI-MVDR and post-filtering based on

the statistics computed using the single-channel models in Table 6-2. Among all the
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Table 6-3. Average SI-SDR (dB) and PESQ of different methods for TI-MVDR and post-

filtering using eight microphones (Test Set I).

Method Model C&Va“.ance #mics |SI-SDR | PESQ
atrices
Lyvisa-Masking 2.3 2.27
Lysa-Mapping 2.3 2.26
ol ey |2
—Mapping . .
— Ly 5.8 | 234
BFq LRI+Mag 5.6 2.34
LMSA—Masking Eq. (61 1), (612) 1.7 2.44
Lpsa—Masking |Eq. (6.11), (6.13) 33 2.45
Lysa-Masking | Eq. (6.11), (6.14) 30 | 244
Lpsa—_Masking | Eq. (6.11), (6.15) g 42 | 2.44
LMSA—Masking 4.4 3.01
[’MSA—Mapping 4.3 3.03
e g (03) s
—Mapping . .
BE, +Post-filtering (no re-training) LRiR;ag gj g;g
Lysa-Masking | Eq. (6.11), (6.12) 3.5 3.10
Lpsa—Masking |Eq. (6.11), (6.13) 53 2.96
Lysa-Masking | Eq. (6.11), (6.14) 4.7 3.10
Lpsa—Masking |Eq. (6.11), (6.15) 6.1 2.95

alternative ways of computing the statistics for TI-MVDR, using the Lg; and Lgi;mag
models with Eq. (6.5) obtains the highest SI-SDR (5.8 and 5.6 dB), and the PESQ scores
(2.34 and 2.34) are better than using MSA and PSA models with Eq. (6.5) (2.27,2.26, 2.31
and 2.31) while worse than using MSA and PSA models with Eq. (6.11) (2.44, 2.45, 2.44
and 2.44). Applying post-filtering to BEI computed using the Lg; and Lgy4mag models and
Eq. (6.5) shows the highest SI-SDR scores (9.6 and 9.4 dB), and Lgj4mag leads to

significantly better PESQ over Lg; (3.23 vs. 3.10). These results suggest the effectiveness

of complex spectral mapping based beamforming and post-filtering. In the following
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Table 6-4. Average SI-SDR (dB) and PESQ of different methods on multi-channel
dereverberation (Test Set I).

Metrics | #mics | Mixture | Model BFq +P0Stﬁ.l t?rmg Bl +P0St.ﬁ{te}fMg SW | §@
(no re-training) (re-training) a q
1 - - 59| -
2 7.3 7.4 - 115
3 8.2 8.9 - 1941
SI-SDR -3.
4 37 8.6 9.7 - 199
6 r 9.2 10.6 - |10.8
8 g 9.4 11.0 - 112
: Eq. (6.5) - - 3071 -
2 3.14 3.17 - 13.18
3 3.20 3.29 - 1329
PESQ 4 1.93 3.22 3.34 - 13.34
6 3.23 3.40 - 1341
8 3.23 3.44 - |3.44

experiments, we compute BT"q using Eq. (6.5) and Lgiymag if not specified, as this
combination obtains the highest PESQ and a very competitive SI-SDR.

In Table 6-4, we show the results of 36(12), obtained by combining Y, and ¥, — BT"q for

dereverberation (see Figure 6-1). Consistently better performance is obtained over S (1),
confirming the effectiveness of multi-channel processing (e.g. 11.2 vs. 5.9 dB in SI-SDR
and 3.44 vs. 3.07 in PESQ in the eight-microphone case). féz) also obtains better
performance than BTTq +Post-filtering (no re-training), especially when the number of
microphones is greater than two, for instance 11.2 vs. 9.4 dB in SI-SDR and 3.44 vs. 3.23
in PESQ in the eight-channel case. It is also slightly better than BT:'q +Post-filtering (re-
training). These results demonstrate the gains of combining Y, — BEI with Y, for
dereverberation. In the two-channel case, it obtains results slightly better than BEI +Post-

filtering (no re-training), likely because BEI is not accurate enough in such a case. As a
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Table 6-5. Average LLR, CD, fwSegSNR, PESQ, and SRMR of different approaches on

Test Set I1.
PE+ WPE+DNN-Based
Data Metrics | Unprocessed | #mics | S (51) S (sz) WPE Be::,n formlt MVDR
(LRri+Mag and Eq. (6.5))
1 3.16 - 4.95 - -
CD 5.08 2 - 3.01 | 498 4.66 4.77
8 - 2.78 | 4.81 3.94 4.45
1 0.53 - 0.63 - -
LLR 0.67 2 - 0.45 | 0.61 0.60 0.55
SimData 8 - 0.39 | 0.53 0.49 0.40
1 15.61 - 9.38 - -
fwSegSNR 8.32 2 - 16.94] 9.71 10.20 11.24
8 - 18.75]111.38 12.48 14.20
1 3.29 - 2.51 - -
PESQ 2.37 2 - 3.51 | 2.58 2.65 2.77
8 - 3.71 | 2.82 3.10 3.21
1 6.69 - 3.83 - -
RealData| SRMR 3.18 2 - 6.38 | 3.99 4.08 4.00
8 - 6.30 | 5.04 5.53 5.29

result, the quality of Y, — B?q is not as good as when more microphones are available, and
the trained DNN would focus on dealing with features computed from more than two
microphones.
6.5.2. Generalization on Test Set II and REVERB ASR

In Table 6-5, we directly evaluate the performance of the trained dereverberation
models on Test Set II. Our models obtain dramatically better performance than WPE, and
WPE+BeamformlIt which applies weighted delay-and-sum beamforming on the output of
WPE, and WPE+DNN-Based MVDR. Note that the first two baselines are available in
Kaldi, and the third baseline applies DNN based TI-MVDR beamforming after WPE,

where we use the single-channel model trained with Ly mag and Eq. (6.5) to compute the

statistics for MVDR, based on the signals processed after WPE. These comparisons show
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Table 6-6. Average WER (%) of different methods on real data of REVERB ASR.

. alidation Set Test Set
frmics Method Ne;]r dFar Avg | Near | Far | Avg
Mixture 16.53[17.22[16.88 [ 1731 17.05| 17.18
1 §0 10.61 | 11.35[10.98 | 9.26 | 9.28 | 9.27
WPE 13.54]15.79 ] 14.66 [ 1338 | 14.25] 13.82
BF, (Lrismag and Eq. (6.5)) [ 21.21 | 22.83 | 22.02 | 21.02 | 18.26 | 19.64
§2 9.23 | 9.43 | 9.33 | 7.98 | 8.27 | 8.12
) WPE 12.98(16.75 | 14.87 [ 12.46 | 14.01]13.23

WPE+Beamformlt 12.41|14.76 | 13.59 | 12.49 | 14.25 | 13.37
WPE+DNN-Based MVDR

16.91|20.98|18.95|17.18| 14.01 | 15.59

(LRri+mag and Eq. (6.5))

BE, (Lpi4mag and Eq. (6.5)) | 13.41]12.10| 12.75 [ 13.13| 10.97 | 12.05

§2 7.92 | 772 | 7.82 | 5.88 | 6.41 | 6.14
8 WPE 12.48 [ 1531]13.89 [ 11.21]11.75] 11.48
WPE+Beamformlt | 9.54 [ 10.59[10.06] 8.24 | 8.61 | 8.43

WPE+DNN-Based MVDR

9.92 | 11.00|10.46| 9.52 | 8.34 | 8.93
(LRri+mag and Eq. (6.5))

that the trained DNN models exhibit good generalization to novel reverberant and noisy
conditions, and array configurations.

In Table 6-6, we report the ASR performance of the trained dereverberation models on
the REVERB real data. The proposed approach obtains clear WER improvements over
WPE, WPE+BeamformIt and WPE+DNN-Based MVDR (9.27% vs. 13.82% in the single-
channel case, 8.12% vs. 13.23%, 13.37% and 15.59% in the two-channel case, and 6.14%

vs. 11.48%, 8.43% and 8.93% in the eight-channel case). We observe large improvement
by using 552), which can also be thought of as a variant of post-filtering, over BT'q. These
results suggest that the trained dereverberation models can suppress reverberation with low
speech distortion. We observe that the WPE+DNN-Based MVDR obtains better WER than

B?q, suggesting that WPE works as a frontend for DNN based beamforming, but worse

WER than WPE+Beamformlt possibly because of the effects of reverberation.
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6.6. Conclusion

We have proposed a complex spectral mapping approach for speech dereverberation,
where we predict the RI components of direct sound from the mixture. We have extended
this approach to multi-channel dereverberation, by incorporating the RI components of
cancelled speech for model training. Our single- and multi-channel models show clear
improvements over magnitude spectrum and phase-sensitive spectrum based models, and
single- and multi-channel WPE. The trained models generalize reasonably well to novel

and representative reverberant environments and array configurations.
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Chapter 7. Multi-Channel Speech Enhancement and
Robust ASR

This chapter investigates multi-channel speech enhancement and its application to
robust ASR using deep learning based complex spectral mapping. This work has been
published in ICASSP 2017 and 2018 [127], [134], [193], and is under consideration by

IEEE/ACM T-ASLP [187] at the time of dissertation writing.

7.1. Introduction

Environmental noise and room reverberation are very detrimental to modern ASR
systems and dramatically degrade speech intelligibility and quality [161], [51]. Practical
systems typically use multiple microphones to leverage spatial (in addition to spectral)
information for speech enhancement and audio source separation. One common approach
for multi-channel speech enhancement is beamforming followed by post-filtering [40],
[49], where a popular method is to decompose a time-invariant or time-varying multi-
channel Wiener filter into a product of an MVDR beamformer and a real-valued post-filter.
Conventionally, this approach requires an accurate estimate of target direction, and speech
and noise PSD and covariance matrices. Recently, DNN based T-F masking or mapping
have been established as a mainstream approach for speech enhancement and source

separation [161]. Mask (or magnitude) estimation is dramatically improved using deep
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learning. Such real-valued mask estimates have been used to identify T-F units dominated
by a single source, where the phase is less corrupted, for accurate source localization [175]
and covariance matrix estimation [58], [160]. All the top teams in the recent CHIME-4
challenge adopted T-F masking and deep learning based beamforming in their ASR
systems [160].

We investigate single- and multi-channel DNN-based speech enhancement and robust
ASR. In addition to mask (or magnitude) estimation, our study explores the effects of phase
estimation for multi-channel speech enhancement. We emphasize that current T-F masking
based approaches for beamforming typically compute spatial covariance matrices as a
summation of mixture outer products weighted by a mask [36], [58], [64], [200], [203],
[213]. In environments with strong noise and room reverberation, there may be insufficient
T-F units dominated by target speech, and the mixture outer product at each T-F unit
inevitably contains noise and reverberation. We believe, in such cases, that it is beneficial
to perform phase estimation in addition to magnitude estimation and directly use the
estimated complex spectra for covariance matrix computation. In addition, real-valued
post-filtering only performs magnitude estimation and would inevitably produce phase
inconsistency issues [42], [44], [184]. Although beamforming typically improves phase,
its performance heavily depends on the number of microphones and is susceptible to strong
room reverberation [40]. Phase estimation would hence be needed for post-filtering in order
to further improve the phase produced by beamforming. Although modern ASR systems
only consider magnitude-based features, accurate phase estimation can indirectly benefit
ASR as better estimated phase leads to better spatial processing such as beamforming and

target localization.
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Our study performs DNN based phase estimation and investigates its effects on single-
channel enhancement, time-invariant and time-varying beamforming, and post-filtering.
We perform speech enhancement in the complex domain [192], more specifically via
complex spectral mapping [39], [146], which was originally proposed to deal with single-
channel speech enhancement in anechoic conditions. This paper goes beyond previous
work on complex spectral mapping by using a new loss function and addressing multi-
channel speech enhancement and robust ASR. The proposed system advances state-of-the-
art enhancement and recognition results on the single-, two- and six-microphone tasks of
CHiME-4, without using any model ensemble as employed in the previous best results
reported in [32] and [153] that combines multiple frontends and backends.

The rest of this paper is organized as follows. We describe our physical model and
objectives in Chapter 7.2, and present the proposed algorithms in 7.3. Experimental setup
and evaluation results are presented in Chapter 7.4 and 7.5. Conclusions are made in

Chapter 7.6.

7.2. Physical Model and Objectives

The hypothesized physical model is the same as in Eq. (6.1). The N(t, ) we deal with
in this chapter are more challenging and realistic recorded noises. Again, we refer to
S(t, f) = c(f;p)S4(t, f) as the target speech to extract, and V (¢, f) = H(t, f) + N(¢, f)

as the non-target signal to remove. See Eq. (6.1) for detailed notation definitions.
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Figure 7-1. System diagram of overall system for single- and multi-channel speech
enhancement. There are two DNNs, one taking in single-channel and the other multi-

channel information for speech enhancement. The superscripts in qugl) and BT*"p(l), and 3752)

and BT"p(Z) for p € {1, ..., P} respectively denote whether they are produced by the first and
the second DNN. The MVDR beamformer can be time-invariant or time-varying. Detailed
DNN architecture is shown in Figure 7-2.

7.3. Proposed Algorithms

Figure 7-1 shows two DNNs in the proposed system. The first one performs single-
channel complex spectral mapping based enhancement, and the enhancement results are
utilized to compute an MVDR beamformer. The beamforming results are combined with
the mixture for the second DNN to perform multi-channel complex spectral mapping based
speech enhancement so that spectral and spatial information can be integrated during DNN
training. A second beamformer is then computed for speech recognition, as the second
DNN can produce better signal statistics for beamforming after leveraging spatial
information. The single- and multi-channel complex spectral mapping respectively follow
Chapter 6.3.1 and 6.3.2. This section describes a novel technique for time-variant MVDR

beamforming.
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7.3.1. Adaptive Covariance Matrix Computation

Since the target speaker is typically still within each utterance, it is reasonable to
estimate RTF from &) (f) using all the frames within an utterance. Clearly, more frames
in this case lead to more accurate RTF estimation for a still directional source. However,
even if the target speaker is still, the spatial coherence of environmental noise and room
reverberation can be highly time-varying in real-world environments such as the BUS and
CAF conditions in the CHiME-4 corpus. It is hence necessary to estimate noise covariance
matrix per T-F unit or per block of units rather than per frequency for more accurate noise
suppression.

We follow a recently proposed algorithm [85] to estimate time-varying noise
covariance matrices. In [85], per-frequency T-F mask based covariance matrix is
considered as a prior, and under a maximum a posterior framework, the time-varying
spatial covariance matrix at each T-F unit is computed as a weighted combination of the
prior and the summation of the mask-weighted mixture outer products in each non-
overlapping block of T-F units. Specifically, we compute the time-varying noise

covariance matrix in the following way

RV NV N )
S a ,
trace(TiEa VL, AV, )/P - trace (5(”) (f)) /P

3O (¢, f) = (1-a) (7.1)

where « is empirically set to 0.5, A is half the window size in frames. See Chapter 6.3.1
and 6.3.2 for how V and @™ (f) are computed. Different from [85], we use estimated
complex spectra produced by complex spectral mapping, rather than estimated masks in a

mask-weighted fashion, for covariance matrix computation. This could result in more

143



accurate covariance estimation. In addition, we normalize the energy levels before the
weighted sum to eliminate the effects of time-varying PSD and focus on the weighted
summation of spatial coherences, as noise PSD cancels out in MVDR beamforming.
Without the energy normalization, the summation can be easily dominated by one of the
two terms, since noise PSD can be highly non-stationary. We emphasize that the first term
is computed based on a small context window of 2A + 1 frames, while the second term
based on all the frames. This way, the computation of the noise covariance matrix can
leverage long-term stationary information and, at the same time, adapt to sudden changes
of noise characteristics. Note that the short-term noise covariance matrix needs an accurate
complex spectrum estimate, which is obtained using complex spectral mapping. After cross
validation, A is set to 0 for the two-microphone task and 3 for the six-microphone task of
the CHiIME-4 corpus.

A time-varying MVDR (TV-MVDR) beamformer is then computed as

DdW(t, e (f; q)
e(f; QHOM(¢, e (f; q)

w(t, fiq) = (7.2)

where ¢(f; q) is computed as in Chapter 6.3.2. The beamforming result is computed using

BE,(t,f) = w(t, f; D)"Y (¢, f).

7.4. Experimental Setup

We evaluate our algorithms on the enhancement and recognition tasks of the publicly-
available CHiIME-4 corpus [160], a popular dataset featuring one-, two- and six-

microphone tasks designed for robust ASR. Our study always considers the direct outputs

from DNN (i.e. .§‘§1) and SC(IZ)) for speech enhancement, and beamforming results (i.e.
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B?q(l) and ﬁ'q(z)) for speech recognition, as it is well-known that beamforming produces

less speech distortion, which is important for modern ASR systems, but also less noise
reduction, compared to deep learning based masking and mapping. This section details the
CHiME-4 dataset, our proposed frontend and several baseline frontends, and our ASR

backend.

7.4.1. CHIME-4 Corpus

The CHiME-4 corpus [160] contains six-microphone simulated and real recordings.
The microphones are mounted on a tablet, with five of them facing the front and the other
one facing the rear. This corpus contains recordings from four real-world environments
(including street, pedestrian areas, cafeteria and bus), exhibiting large training and testing
mismatches in terms of speaker, noise and spatial characteristics, and around 12% of its
real recordings suffer from microphone failures. The training data includes 7,138 simulated
and 1,600 recorded utterances, the validation data contains 1,640 simulated and 1,640
recorded utterances, and the test data consists of 1,320 simulated and 1,320 recorded
utterances. Each of the three recorded datasets is constructed using four different speakers.
It should be noted that reverberation is weak in the CHiME-4 corpus, partly because the
considered environments are not very reverberant and the speaker-microphone distance is
not large for a hand-held position. The single-channel task uses one of the six microphones
for testing. For the two-microphone task, two of the front five channels that do not suffer
from microphone failure are selected for each utterance for testing. To address microphone
failures in the real recordings of the six-microphone task, we first select a microphone
signal that is most correlated with the other five, and then throw away the signals with less

than 0.3 correlation coefficients with the selected signal.
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7.4.2. Frontend Enhancement System

We use all the simulated signals in the training set to train our frontends, and report the
enhancement results on the simulated test set. We consider the clean signal captured by the
fifth microphone as the reference for metric computation, since it exhibits the highest
signal-to-noise ratio among all the microphones.

The two DNNSs in Figure 7-1 are trained sequentially. After training the first DNN, we
use it to generate for each microphone a beamformed signal based on TI-MVDR and a
random number of microphones, leading to 7,138x6 beamformed signals in total. Each
beamformed signal is combined with the mixture signal to train the second DNN. This way,
the second DNN can deal with the TI-MVDR results produced by using up to six
microphones. In our experiments, we also tried using TV-MVDR to produce beamformed
signals for training the second DNN. The performance is however not clearly better.

The network architecture for enhancement is shown in Figure 7-2. The network is a
temporal convolutional network (TCN) [7] with encoder-decoder structure similar to U-
Net [126], skip connections, and dense blocks [67], [144]. The motivation for this network
design is that TCN can model long-term temporal dependencies through large receptive
fields achieved via dilated convolution, U-Net can maintain fine-grained local spectral
structure as suggested in image semantic segmentation [126], and dense blocks can
increase feature reuse and improve the discriminative power of the network [67]. A similar
architecture was recently used in a speaker separation algorithm [92]. The encoder contains
one 2D convolution, and six convolutional blocks, each with 2D convolution, Swish non-
linearity and IN, for down-sampling. The decoder includes six blocks of 2D deconvolution,

Swish and IN, and one 2D deconvolution, for up-sampling. The TCN contains two layers,
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Figure 7-2. Network architecture for predicting the RI components of Sq from the RI
components of Y, and BEI. For single-channel processing, the network only takes single-
channel information as its inputs. The tensor shape after each encoder-decoder block is in
the format: featureMapsXtimeStepsX frequencyChannels. Each of Conv2D, Deconv2D,
Conv2D+IN+Swish, and Deconv2D+IN+Swish blocks is specified in the format:
kernelSizeTime X kernelSizeFreq, (stridesTime,  stridesFreq), (paddingsTime,
paddingsFreq), featureMaps. Each DenseBlock( g) contains five Conv2D+IN+Swish
blocks with growth rate g. The tensor shape after each TCN block is in the format:
featureMaps X timeSteps. Each IN+Swish+Conv1D block is specified in the format:
kernelSizeTime, stridesTime, paddingsTime, dilationTime, featureMaps.
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each of which has six dilated convolutional blocks. We use two one-dimensional (1D)
depth-wise separable convolution in each dilated convolutional block to reduce the number
of parameters.

The frame length is 32 ms and frame shift 8 ms. Square-root Hann window is used as
the analysis window. The sampling rate is 16 kHz. A 512-point discrete Fourier transform
is used to extract complex STFT spectrograms. No global mean-variance normalization is
performed on the input features. For complex spectral mapping, linear activation is used in
the output layer to produce estimated RI components. As the CHiME-4 dataset exhibits
diverse gains at different microphones, we separately normalize each of the six microphone
signals to have unit sample variance before any frontend processing.

We use PESQ, STOI, SI-SDR [88], and bss-eval SDR as the evaluation metrics. PESQ
and STOI strongly correlate with the accuracy of estimated magnitude. On the other hand,
SI-SDR is a time-domain metric closely reflecting the quality of estimated magnitude and
phase, meaning that magnitude estimates need to compensate for the inaccuracy of phase

estimates in order to produce a high SI-SDR.

7.4.3. Baseline Frontend Systems

We consider four single-channel benchmarks listed in Table 7-1 to demonstrate the
effectiveness of single-channel complex spectral mapping based speech enhancement. The
four benchmarks are based on masking and mapping based MSA [161] and PSA [35]. All
of them use the same network architecture as shown in Figure 7-2. The main differences
lie in the number of input and output feature maps, and the activation function in the output

layer. In Lysa—masking @nd Lpsa_Masking > TP?(-) = max (min(;,b),a) truncates the
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Table 7-1. Summary of single-channel frontends.

Method Input Loss function Network O.lltpl:lt Enhancement
features output activation results
Complex Spectral | Real(Y,), PO . Sq = Ry +j,
; Lgjor L R, 1 L 4 a7
Mapping Imag(Y,) RI RI+Mag o 1q inear 7,=Y,-5,
- B(i7© Bl¥q| 5 .
, Lusa-masing = || [YalT (M) = 17" (|5q|)||1 ) o | Clipped | Sq = Y,TE (%)
MSA-Masking By — Flal Mo M| Sofiplus | § = v, 78 (1)
+ || vl 1) -1 v | h= a

MSA-Mapping Lyisa-Mapping = ||§L(;S) - |5q|||1 + ||.Qé”) - |Vq|”1 éz(zS)' Rc(lw Softplus A, jzvy
[¥al

Losa-wasiang = || Yl 72 @5 = 73! (ls,|cos (25, = 21,
+[[I¥l @ = 1M (v, cos (v, ~ 2.

Lpsa-Mapping = ”255) - |Sq|cos (454 = AYq)Hl 5(s) 5@)
+H1237 = |Vy|eos (2V, = 2%,

PSA-Masking 0¥, | sigmoid | -

PSA-Mapping Linear

estimated masks to the range [a, b]. B is set to 5.0 in Lyjsao—masking and y set to 1.0 in
Lpsa-Masking-

In addition, we investigate the effectiveness of the single-channel models for TI-
MVDR beamforming. One way is to apply each single-channel model to each microphone
signal to obtain § and ¥, perform TI-MVDR beamforming using Eq. (6.5)-(6.9), and
compare their ASR performance. This comparison can show the effectiveness of single-
channel phase estimation when its result is used for beamforming.

We also evaluate the mask weighting technique for collecting statistics for TI-MVDR
beamforming, based on the MSA-Masking and PSA-Masking models. Following [203],

[58], [36], [213], we compute the covariance matrices in the following way

1

O =3 1PNV YENH", (73)

where d € {s, v}, and @ is computed as
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for MSA-Masking and as
7@ = median <Toy(Aid)), ...,TJ(A,(,d))) (7.5)

for PSA-Masking. Here £ is set to 5.0 and y set to 1.0 in our study.

7.4.4. Backend Recognition System

Our ASR backend is a DNN-HMM hybrid system built from the Kaldi toolkit. The
acoustic model is trained using both simulated and recorded noisy utterances in the training
set. The input features to the acoustic model are 80-dimensional logarithmically
compressed Mel filterbank feature together with its delta and double delta. The acoustic
model is a wide-residual BLSTM network (WRBN) [61] trained with utterance-wise
recurrent dropout [164]. At test time, we perform lattice re-scoring using the task-standard
trigram, five-gram and RNN language models, and an LSTM language model (LSTMLM)
recently proposed in [18]. The LSTMLM re-scored lattice is used for unsupervised speaker
adaptation. We apply iterative speaker adaptation proposed in [164] for three iterations,
each of which follows the linear input network algorithm [209].

Since the ASR system uses different frame and shift sizes from speech enhancement

frontends, we perform signal re-synthesis before extracting features for recognition.
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Table 7-2. Average SI-SDR (dB), PESQ, and STOI (%) performance of different
methods on channel 5 of CHiME-4 (single-channel).

Methods SI-SDR | PESQ | STOI

Unprocessed 7.5 2.18 | 87.0
Lysa—Masking 13.9 | 2.94 | 93.9
Lysa-Mapping 14.6 | 3.00 | 94.5
Lpsa—Masking 14.9 2.84 | 94.3
Lpsa_Mapping 15.0 2.90 | 94.3

Ly 155 | 296 | 95.2

LgisMag 15.8 3.16 | 95.4

SMM (T (IS41/1Y4 1)) 172 | 3.64 | 98.5

PSM (Tq (IS, ]cos (£S, — 2Y) /1Y, )| 17.6 | 3.72 | 98.1

7.5. Evaluation Results

We first report speech enhancement performance and then recognition results on the

CHiME-4 dataset.

7.5.1. Enhancement Performance

Table 7-2 compares the enhancement performance of single-channel complex-domain
mapping with single-channel magnitude-domain masking and mapping, along with oracle
magnitude-domain masking using the SMM [161] and PSM [35]. We observe better SI-

SDR, PESQ and STOI results using the model trained with Lg; and Lgy4mag than with
LMSA—Masking > LMSA—Mapping 5 LPSA—Masking and LPSA—Mapping > indicating the
effectiveness of complex-domain estimation. Compared with Lg;, Lri1mag Yields much

better PESQ (3.16 vs. 2.96), slightly better SI-SDR (15.8 vs. 15.5 dB), and marginally
better STOI (95.4% vs. 95.2%). This suggests the importance of magnitude estimation for

PESQ. The following experiments use L4 mag as the default loss function.
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Table 7-3. Average SI-SDR (dB), PESQ, and STOI (%) of different methods on channel
5 of CHiME-4 (six-channel).
Methods SI-SDR | PESQ | STOI
Unprocessed 7.5 2.18 | 87.0
BE"+postfiltering (Lysa-masking) | 186 | 3.32 | 97.3
BEV+post-filtering (Lysawapping) | 198 | 3.38 | 97.9
BE"+post-filtering (Lpsa_wasking) | 198 | 332 | 97.8

a7 (

BE™ +post-filtering (Lpsa_mapping) | 194 | 3.30 | 97.5
B/Fq(l) +post-filtering (Lgy) 193 | 3.46 | 98.0
BED+postfiltering (Lgromag) | 20.0 | 3.54 | 98.1
8P (Lataag) 220 | 3.68 | 98.6

Table 7-4. Comparison of average SI-SDR (dB), SDR (dB), PESQ, and STOI (%) of
different approaches on channel 5 of CHiME-4 (six-channel).

Methods SI-SDR [ SDR [ PESQ [ STOI
Unprocessed 7.5 7.6 | 2.18 | 87.0
S (Layymag) 22.0 [22.4| 3.68 | 98.6
Bu et al. [13] - - 1269 939
Tu et al. [154] - - 1271 940
Shimadaeral. [139]] - [16.2] 2.70 [ 94.0

Table 7-3 reports the performance of multi-channel enhancement. One straightforward
approach, denoted as BT*"q(l) +post-filtering, is to first utilize a single-channel model listed
in Table 4-1 to obtain BT'q(l) via Eq. (6.5)-(6.9) (see also Figure 7-1), and then apply the
single-channel model again on ﬁ'q(l) for post-filtering. Since BTJ'q(l) is expected to contain
low speech distortion, it can be used as the input to the single-channel model for post-
filtering, although the model is trained on noisy mixtures. Clearly, using BTJ'q(l) +post-
Jfiltering obtained via the model trained with Lg;4mag leads to the best performance. This
is consistent with the single-channel results in Table 7-1. Another approach, denoted as

3652) (see Figure 7-1), combines E??q(l) and Y; to train another DNN for multi-channel
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Table 7-5. Comparison of ASR performance (%WER) with other approaches (single-

channel).

Approaches .DeV. Set : Test Set
Simu. | Real | Simu. | Real
Mixtures + Trigram 824 [6.67 1298 |10.70
+ Five-gram and RNNLM 6.58 |4.84 | 11.17| 8.38
+ LSTMLM 5.65 14.06]10.58 | 8.12
+ Iterative Speaker Adaptation 499 [3.54| 941 | 6.82
Kaldi baseline [18] 6.81 [5.58]12.15[11.42
Du et al. [32] 6.61 [4.55]11.81] 9.15
Wang and Wang [164] (No LSTMLM) | 6.77 |4.99 | 11.14 | 8.28

complex spectral mapping. Clearly better results are observed over BT?q(l) +post-filtering,

but at the expense of using one more DNN. Note that both of them show clear
improvements over single-channel enhancement.

Table 7-4 compares the proposed approach with other competitive approaches in the
literature. Bu et al. [13] utilize estimated masks produced by BLSTM based single-channel
masking to compute the signal statistics for MVDR beamforming and magnitude-domain
post-filtering. Tu et al. [154] combine the estimated mask produced by complex Gaussian
mixture models (CGMM) with the estimated ideal ratio mask (IRM) provided by an LSTM
for masking-based block-wise MVDR, and use another LSTM for monaural magnitude
mapping based post-filtering for further noise reduction. In [139], Shimada et al. combine
CGMM based spatial clustering and multi-channel non-negative matrix factorization based
spectral modeling to estimate time-varying speech and noise covariance matrices for time-
varying beamforming. As can be observed from Table 7-4, substantially better

enhancement results are obtained by our approach over the comparison approaches.
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7.5.2. Recognition Performance

Table 7-5 reports ASR performance on the single-channel task of CHiME-4. Our
single-channel system directly uses unprocessed noisy signals for recognition and obtains
6.82% WER after lattice-rescoring and iterative speaker adaptation. This result is
significantly better than the previous best WERSs reported by Du et al. [32], and Wang and
Wang [164]. This result suggests that our backend is a strong one and can be very indicative
at measuring the effectiveness of frontend enhancement for recognition. It should be noted
that we tried to use the enhancement results of our single-channel frontends for recognition.
The ASR performance is however worse than using unprocessed mixtures. This is likely
due to the speech distortion introduced by DNN based enhancement and the large mismatch
between the training and test conditions of CHiME-4.

Table 7-6 presents the ASR results of TI- and TV-MVDR using single- and multi-
channel models, based on the trigram language model for decoding. We explain the results
by using the two-channel task as an example. Entries 1-8 are obtained by using various
single-channel models to compute the statistics for TI-MVDR, either by using Eq. (6.5)
and Eq. (6.6) or Eq. (6.11) for covariance matrix computation. Among these entries, we
found that entry 8 obtains the highest score, which indicates the effectiveness of DNN

based phase estimation for beamforming. Entry 9 is obtained by using multi-channel
complex spectral mapping to compute .§IEZ), and then deriving a TI-MVDR (see Figure 7-1
for more details). Slightly better WER is observed over entry 8, suggesting that the second

DNN leads to better signal statistics for beamforming than the first one. Entry 10 uses 3152)
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Table 7-6. ASR Performance (% WER) of using various single- and multi-channel
models for TI- and TV-MVDR, and trigram language model for decoding.

fémics | Entry Methods O, o™ Sir?l?l\./. i:gal Sixls.t Sf(z;al
1 | BE (Lysa-masking) | 9. (6.11),(7.4) | 6.23 | 5.58 | 8.45 |8.44
2 | BE® (Lpsa_masking) | E9- (6.11), (6.13) | 6.23 | 5.48 | 8.43 | 8.58
3 | BE™Y (Lysa-masking) 6.06 | 5.54 | 7.83 |8.63
4 | BE® (Lysa-Mapping) 6.06 |5.48| 7.86 |8.46
) 5 | BE™" (Lpsa-masking) 6.05 |5.50 | 7.85 |8.37
6 | BE™" (Losa mapping) | EQ- (6.5),(6.6) | 6.15 | 550 | 8.18 | 8.36
7 | BE® (Lp) 598 |5.52| 7.82 |8.23
8 | BE (Larymag) 593 |5.48 | 7.68 |8.29
9 | BE® (Larsmag) 591 542 7.74 | 8.11
10 | BE® (Layymag) Eq. (6.5),(7.1) | 5.32 [5.03| 6.85 |7.72
11 | BE™Y (Lysa-masking) | Ea- (6.11), (74) | 4.16 |4.24 | 5.16 | 5.75
12 | BE™Y (Lpsa_masking) | Eq. (6.11), (6.13) | 4.04 | 4.15 | 4.87 |5.55
13 | BE™Y (Lysa-Masking) 3.98 |4.24 | 475 | 6.08
14 | BE™ (Lyisa-Mapping) 3.97 |4.20| 4.64 |5.95
o LIS 1@“) (Lpsa_Masking) 3.97 |4.19 | 4.66 |5.78
16 | BEY (Lpsa_mapping) | Ed- (6.5),(6.6) | 4.05 |4.28 | 5.02 | 6.10
17 | BEXY (Lgy) 3.79 | 4.16 | 4.47 |5.59
18 | BE™ (Layymag) 391 |4.15] 4.55 |5.69
19 | BE® (Laysmag) 3.86 |4.12 | 4.42 |5.34
20 | BE® (Layymag) Eq. (6.5),(7.1) | 3.58 [3.99 | 4.22 |5.18

to compute a TV-MVDR. Clearly better WER 1is observed over entry 9, indicating the
effectiveness of using estimated complex spectra to compute time-varying noise
covariance matrices for beamforming. Similar trend is observed on the six-channel task.
Table 7-7 and Table 7-8 further apply five-gram, RNN and LSTM language models for
lattice re-scoring and perform iterative speaker adaptation for the two- and six-channel
tasks, based respectively on the TV-MVDR frontends produced in the entry 10 and entry

20 of Table 7-6.
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Table 7-7. Comparison of ASR performance (% WER) with other approaches (two-
channel).

Dev. Set Test Set

Approaches Simu. | Real | Simu. | Real

BE® (Lgysmag» EQ. (6.5) and (7.1)) + Trigram | 532 | 5.03 | 6.85 | 7.72
+ Five-gram and RNNLM 3.74 |332] 4.84 |5.54
+ LSTMLM 2.52 |2.15] 3.28 | 3.80

+ Iterative Speaker Adaptation 2.17 1199 ] 2.53 | 3.19
Kaldi baseline [18] 3.94 12.85| 5.03 |5.40
Du et al. [32] 346 1233 5.74 391

Table 7-8. Comparison of ASR performance (% WER) with other approaches (six-
channel).

Dev. Set Test Set

Approaches Simu. | Real | Simu. | Real

BE® (Lgysmag» EQ. (6.5) and (7.1)) + Trigram | 3.58 |3.99 | 422 | 5.18
+ Five-gram and RNNLM 244 12581297 |3.73
+ LSTMLM 1.43 |1.69 | 1.80 | 2.34

+ Iterative Speaker Adaptation 1.26 | 1.51 | 1.46 | 2.04
Kaldi baseline [18] 2.10 |1.90 | 2.66 | 2.74
Du et al. [32] 1.78 [1.69] 2.12 |2.24

Table 7-5, Table 7-7 and Table 7-8 also compare the proposed system with other state-
of-the-art systems. Our system advances state-of-the-art ASR results on all the tasks. The
system in Du et al. [32] (and their journal version [153]) was the winning solution in the
CHiME-4 challenge, and produces the best WER results reported to date. It ensembles one
DNN and four CNN based acoustic models as the backend, using a combination of log Mel
filterbank, fMLLR and i-vectors as the input features. Their frontend uses T-F masking
based MVDR beamforming, where the estimated masks are combined on the basis of an
unsupervised CGMM model, a supervised LSTM based IRM estimator, and frame-level
voice activity detection results produced by a speech recognizer. An LSTM language
model is used for lattice re-scoring. As can be seen, their frontend and backend are both

ensembles of multiple models. In contrast, our system does not use any model ensemble,
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and obtains better ASR results on all the three tasks (6.82% vs. 9.15%, 3.19% vs. 3.91%,
and 2.04% vs. 2.24% WER). These amount to 25.5%, 18.4%, and 8.9% relative WER
reductions for the single-, two-, and six-microphone tasks, respectively. The improvement
is especially large on the simulated test data of the two- and six-microphone tasks (2.53%
vs. 5.74%, and 1.46% vs. 2.12% WER), indicating that the proposed system is particularly
effective when training and testing conditions are not very different. Another system worth
mentioning is a recently-proposed CHiME-4 baseline [18] available in Kaldi. The frontend
is a masking based generalized eigenvector beamformer based on a BLSTM, the acoustic
model is a time-delay DNN trained with a lattice-free version of the maximum mutual
information criterion, and an LSTM language model, which is the one we use in our study,
is trained for lattice re-scoring. Our system obtains much better ASR results, demonstrating

the effectiveness of the proposed frontend and backend.

7.6. Conclusion

We have proposed a complex spectral mapping approach for single- and multi-channel
speech enhancement. Experiments on the CHiME-4 corpus show that complex spectral
mapping leads to better single-channel enhancement, beamforming and post-filtering, over
magnitude-domain masking and mapping. Our adaptive noise covariance matrix estimation
yields further ASR improvements over TI-MVDR, especially on the two-channel task.
State-of-the-art results have been obtained on the enhancement and recognition tasks of the

CHiME-4 corpus.
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Chapter 8. Multi-Microphone Complex Spectral
Mapping for Speech Dereverberation

This chapter investigates multi-channel speech dereverberation on fixed-geometry
arrays, where we train DNNs using multi-microphone inputs based on complex spectral

mapping. This work has been published in ICASSP 2020 [188].

8.1. Introduction

The multi-channel systems in Chapter 6 and Chapter 7 assume a relatively blind setup,
where the trained models are designed to be directly applicable to arrays with any number
of microphones arranged in an unknown geometry. Although this flexibility is desirable,
in applications such as Amazon Echo and Google Home, the device only has a fixed
microphone array with a known number of microphones and geometry. How to leverage
this fixed geometry for robust speech processing is therefore an interesting research
problem to investigate.

This chapter proposes a multi-microphone complex spectral mapping approach for
speech dereverberation based on a fixed array geometry, where the real and imaginary (RI)
components of multiple microphones are concatenated as input features for a DNN to
predict the RI components of the direct-path signal(s) captured at a reference microphone

or at all the microphones. The initially estimated target speech can be utilized to compute
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a beamformer, and the RI components of the beamforming results can be further combined
with the RI components of all the microphone signals for post-filtering.

Why should this approach work? We believe that, for a fixed-geometry array, the neural
network could learn to enhance the speech arriving from a specific direction by exploiting
the spatial information contained in multiple microphones. This approach is in a way
similar to recent studies of classification-based sound source localization for arrays with
fixed geometry, where a DNN is trained to learn a one-to-one mapping from the inter-
channel phase patterns of multiple microphones to the target direction [16], [38], [99],
[199]. Based on deep learning, the proposed approach has the potential to model the non-
linear spatial information contained in multi-microphone inputs, while conventional
beamforming is only linear and typically utilizes second-order statistics [40] within each
frequency.

Although there are time-domain approaches that use multi-microphone modeling for
speech enhancement and source separation [90], [141], [150], their effectiveness in
environments with moderate to strong reverberation is not yet established [96]. In addition,
our study tightly integrates multi-microphone complex spectral mapping with
beamforming and post-filtering.

The rest of this paper presents the physical model and proposed algorithms in Chapter
8.2 and 8.3, experimental setup and evaluation results in Chapter 8.4 and 8.5, and

conclusions in Chapter 8.6.
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Figure 8-1. System overview.
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8.2. Physical Model and Objectives

The hypothesized physical model and objectives are the same as in Chapter 6.2.
Different from Chapter 6, we assume that the same microphone array is used for both

training and testing.

8.3. Proposed Algorithms

We propose four approaches (denoted as SISO;-BF-SISO,, MISO;, MISO;-BF-
MISO,, and MIMO-BF-MISO;3, see Figure 8-1) for multi-channel speech dereverberation.
This section discusses each one of them and their combination with beamforming and post-

filtering. All the TI-MVDR beamforming results are computed based on Eq. (6.5)-(6.10).

8.3.1. SISO1-BF-SISO: System

The SISO:-BF-SISO, system contains two single-input and single-output (SISO)
networks. The first one (SISO1) performs single-channel complex spectral mapping at each
microphone. The enhanced speech is used to compute a TI-MVDR beamformer. The
beamforming result BT"q is then combined with the mixture at the reference microphone Y,
as the input to the second SISO network (SISO.) for complex spectral mapping based post-
filtering.

This system is essentially similar to the one described in Chapter 6.

8.3.2. MISOg System
The multiple-input and single-output system (denoted as MISO;) stacks the RI
components of the mixtures at all the microphones and predicts the RI components of the

direct-path signal at a reference microphone. This algorithm essentially trains a DNN for
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non-linear time-varying beamforming. It is simple, fast, and can be easily modified for
real-time processing. The model is trained using L, ri4+mag-

We emphasize that conventional multi-channel Wiener filtering computes a linear filter
per frequency or per T-F unit to project the mixture ¥ (¢, f) onto S, (¢, f), typically based
on second-order statistics [40]. In contrast, we utilize a DNN to learn a highly non-linear
function to map ¥ to S;. Although this seems challenging for arrays with arbitrary
geometry, for a fixed geometry, this could work as the inter-channel phase patterns are

almost fixed for the signal arriving from a specific direction.

8.3.3. MISO:-BF-MISO; System

The MISO-BF-MISO; system includes a MISO network, an MVDR beamformer, and
another MISO network. This system is similar to SISO;-BF-SISO», but we use two MISO
networks rather than two SISO networks, since MISO is expected to be better than SISO
by doing multi-microphone modeling.

We circularly shift the microphones to estimate the direct-path signal at each
microphone. For example, we stack an ordered microphone sequence < Y7, ..., Yp > as the
inputs to MISO, to obtain .§1(1), and feed in <Y, ..., Yp, 13, ..., ¥,_1 > to obtain §,§1). This
strategy would work as we use a circular array with uniformly spaced microphones.

An MVDR beamformer is then computed using §. The beamforming result BTTq is
combined with ¥ to predict S, using a MISO network (denoted as MISO>) via complex

spectral mapping. This way, post-filtering can also leverage multi-microphone modeling.
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8.3.4. MIMO-BF-MISQOs3 System

The MIMO-BF-MISO; system consists of a multiple-input and multiple-output
(MIMO) network, an MVDR beamformer, and a MISO network. The MIMO network takes
in the mixture RI components of all the microphones to predict the RI components of the
direct-path signals at all the microphones. This way, we can get an estimate of S for
beamforming by performing feed-forwarding only once, rather than P times as in SISO;-
BF-SISO> and MISO;-BF-MISO;. The amount of computation is therefore dramatically

reduced. The loss function for the MIMO network is

1 P
['1,...,P,RI+Mag+PhaseDiff = Fz Lp,RI+Mag +
p=1
(8.1)
1

P P R R
Pz _p Zp,=1|5p,| zp”=1 <1 — Cos (LSp, — LSpH — (LSP, — LSp,,)))/Z

where the first term is defined as in Eq. (6.3), and the second term is a magnitude-weighted
cosine distance between the predicted phase differences and the actual phase differences
of all the microphone pairs. In our experiments, the second term leads to faster convergence
and better performance over using the first term alone.

After obtaining S, we compute an MVDR beamformer. The beamforming result B?q is
combined with ¥ to predict S, using a MISO network (denoted as MISO3) via complex

spectral mapping.
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Input: WSICAMO;
Output: spatialized reverberant (and noisy) WSICAMO;
For dataset, REP in {train:5, validation:4, test:3} set of WSICAMO do
For each anechoic speech signal s in dataset do
Repeat REP times do
- Draw room length 7,, and width ;, from [5,10] m, and height 7, from [3,4] m;
- Sample mic array height a, from [1,2] m;
- Sample array displacement n, and n,, from [—0.5,0.5] m;
- Place array center at (%x + nx,%y +ny,,a,) m;
- Set array radius a, to 0.1 m;
- Sample angle of first mic 9 from [0, E];

- Place P(= 8) mics uniformly on the circle, starting from angle 9;

- Sample target speaker locations: {s,, s,, s,(= a,)) such that distance
from target speaker to array center is in between [0.75,2.5] m, and target
speaker is at least 0.5 m from each wall;

- Sample T60 from [0.2,1.3] s;

- Generate multi-channel impulse responses and convolve them with s;

If dataset in {train, validation} do
-Sample a P-channel noise signal n from REVERB training noise;

Else
- Sample a P-channel noise signal n from REVERB testing noise;
End

- Concatenate channels of reverberated s and n respectively, scale them to an SNR randomly
sampled from [5,25] dB, and mix them;
End
End
End

Algorithm 8-1. Data spatialization process.

8.4. Experimental Setup

We use the WSJOCAM corpus and a large set of simulated RIRs (in total 39,305 eight-

channel RIRs) to simulate room reverberation. See Algorithm 8-1 for the detailed
simulation procedure. For each utterance, we randomly generate a room with different
room characteristics, microphone and speaker locations, array configurations, and noise
levels. Our study considers an eight-microphone circular array with the radius fixed at 10
cm. The target speaker is in the same plane as the array, at a distance sampled from

[0.75,2.5] m. The training and testing noise (mostly air-conditioning noise) used in
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REVERB [77] is utilized to simulate noisy-reverberant mixtures for training and testing,
respectively. The reverberation time (T60) is randomly drawn from the range [0.2,1.3] s.
The average direct-to-reverberation energy ratio is -3.7 dB with 4.4 dB standard deviation.
There are 39,305 (7,861x5, ~80 h), 2,968 (742x4, ~6 h) and 3,264 (1,088x%3, ~7 h) eight-
channel utterances in the training, validation and test set, respectively.

We validate our algorithms on speech dereverberation using one, two and four
microphones. We use the first microphone for the single-microphone task, the first and
fifth for the two-microphone task, and the first, third, fifth and seventh for the four-
microphone task. Note that the two- and four-microphone setups both have an aperture size
of 20 cm. The first microphone is considered as the reference microphone for metric
computation.

To evaluate the generalization ability of the trained models, we directly apply them to
the recorded data of REVERB [77] for ASR. The recording device is an eight-microphone
circular array with 10 cm radius. Note that the array geometry is subject to manufacturing
error, which introduces a geometry mismatch between training and testing. The T60 is
around 0.7 s and the speaker-to-array distance is 1 m in the near-field case and 2.5 m in the
far-field case. We always consider the first microphone as the reference microphone. The
ASR backend is built using the most recent Kaldi toolkit.

The network architectures follow the one depicted in Figure 6-3. The RI components
of multiple microphones are stacked as feature maps for the network input and output. The
window size is 32 ms and hop size 8 ms. The sampling rate is 16 kHz. A 512-point DFT is

performed to extract 257-dimensional STFT features at each microphone.
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Table 8-1. Average SI-SDR and PESQ of different methods on monaural

dereverberation.
Methods SI-SDR (dB) | PESQ
Unprocessed -3.8 1.93
Estimated SMM 0.6 2.92
Estimated PSM 2.2 2.54
L 6.1 2.79
Lyi4Mag 6.5 3.10
Oracle SMM (TO“’(|Sq|/|Yq|)) 1.5 3.39
Oracle PSM (T01(|Sq [cos (£S, — 2Y) /1Y, D) 4.4 3.09

Table 8-2. Average SI-SDR and PESQ of various methods on two- and four-channel de-
reverberation using simulated test data, and average WER (%) on REVERB real test data.

Metrics SI-SDR (dB) PESQ WER on REVERB
#mics 1|2 4 1 2 4 1 2 4

SISO: 65| - - 1310 - - | 9.62 - -

SISO:-BF-SISO; - 180194 | - [3.20]3.29 - 837 | 7.63
SISO-BF-SISO> - |82]10.6] - |3.22]3.38 - 7.96 | 7.25
MISO: - 176190 | - |3.22]3.33 - 7.38 | 6.88
MISO:-BF-MISO2 | - [8.6]10.9| - |3.24|3.43 - 7.38 | 6.30
MIMO - (72178 | - |3.23]3.33 - 7.46 | 6.74
MIMO-BF-MISO3 | - |8.7]10.6| - |3.28]3.41 - 7.92 | 6.62
WPE - - - - - - [14.01]13.14|11.45
WPE+Beamformlt | - - - - - - - 12.64 ] 9.30

8.5. Evaluation Results

Table 8-1 compares the performance of complex spectral mapping with real-valued
masking on monaural dereverberation. Much better SI-SDR is obtained using complex
spectral mapping based models over using estimated SMM and PSM. In addition, Lgy4mag
leads to much better PESQ than Lg;, and slightly better SI-SDR. This indicates the
importance of magnitude estimation when PESQ is used as the evaluation metric. The
magnitude loss is always included for complex spectral mapping in the following

experiments.
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Table 8-2 first reports the enhancement performance of various multi-channel
approaches. SISO represents a baseline of monaural complex spectral mapping. In SISO;-
BF-SISO1, we apply monaural complex spectral mapping on B?q to estimate target speech
S4» while in SISO:-BF-SISO,, complex spectral mapping is applied on the combination of
BEI and Y, to estimate S, as in Figure 8-1(a). SISO;-BF-SISO> produces better

performance than SISO:-BF-SISO: and SISO;. We emphasize that SISO;-BF-SISO;
represents a typical beamforming followed by post-filtering approach in DNN based multi-
channel speech enhancement [189]. In addition, both MISO; and MIMO are better than
SISO;. This indicates that concatenating multiple microphones for complex spectral
mapping clearly helps. MIMO is worse than MISO1, because producing multiple outputs
is a harder task. Overall, MISO;-BF-MISO, and MIMO-BF-MISO3 perform the best. This
is likely because MISO networks used for post-filtering can benefit from multi-microphone
modeling.

In Table 8-2 we also evaluate the trained models in terms of ASR performance directly
on the real test set of REVERB. Both MISO;-BF-MISO; and MIMO-BF-MISO; exhibit
strong generalization ability, and better ASR performance than SISO:-BF-SISO; and
SISO:-BF-SISOz, which are not sensitive to geometry mismatch. Clear improvements are
also observed using the trained models over the baseline WPE [77] and WPE followed by

Beamformlt algorithms, both available in Kaldi.

8.6. Conclusion

We have proposed a multi-microphone complex spectral mapping approach for speech

dereverberation, and integrated it with beamforming and post-filtering into a unified
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system. Experimental results suggest that on a fixed geometry, concatenating multiple
microphone signals for complex spectral mapping is a simple and effective way of

combining spectral and spatial information for speech dereverberation.
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Chapter 9. Conclusions and Outlook

9.1. Contributions

Microphone array processing is essential in modern hands-free speech communitation
such as speech enhacnement, speaker separation and robust ASR. In this dissertation, we
have employed deep learning to improve robust speaker localization, acoustic
beamforming, post-filtering, phase estimation, speech separation and robust ASR.

In Chapter 2, we have proposed to jointly train an frontend, a mel-filterbank and an
acoustic model for robust ASR. We have explored several representitive noise- and
reverberation-robust features for acoustic modeling, applied sequence-discriminative
training for better seqeunce modeling, and conducted run-time unsupervised adaption to
address the mismatches between training and testing. At the time of publication, these
techniques together achieved the state-of-the-art performance on CHiME-2.

In Chapter 3, we have proposed three algorithms to utilize deep learning based T-F
masking for robust speaker localization. Experimental results suggest that these algorithms
dramatically improve conventional cross-correlation, beamforming and subspace based
approaches for speaker localization in noisy-reverberant environments. In addition, our
study finds that the ideal ratio mask can serve as a strong training target for robust speaker

localization.
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In Chapter 4, we have proposed a Separate-Localize-Enhance approach for deep
learning based multi-channel blind speaker separation, where spatial features are combined
with spectral features for DNN to extract target speech from an estimated direction and
with particular spectral structure. This novel approach leads to large improvements over
conventional methods and other DNN based algorithms that do not leverage spatial features
for model training.

In Chapter 5, we have proposed multiple algorithms for monaural phase reconstruction
based on magnitude estimates, based on a trigonometric perspective. The obtained state-
of-the-art speaker separation results at the time of publication indicate that DNN based
magnitude estimation can clearly help phase reconstruction. The proposed geometric
constraint affords a mechanism to confine the possible solutions of phase. It could play a
fundamental role in future research on phase estimation.

In Chapter 6, we have investigated a complex spectral mapping approach for phase
estimation and proposed a target cancellation algorithm for multi-channel speech
dereverberation. The trained single- and multi-channel models show clear improvements
over single- and multi-channel WPE and other DNN based models. The improved phase
produced by complex spectral mapping also leads to better beamforming. The trained
models exhibit strong generalization ability to new and representative reverberant
environments and array configurations.

In Chapter 7, we have applied single- and multi-channel complex spectral mapping for
multi-channel speech enhancement. We have proposed a new and effective approach for
time-varying beamforming. State-of-the-art performance has been obtained on the

enhancement and recognition tasks of CHIME-4.
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In Chapter 8, we have proposed a multi-microphone complex spectral mapping
approach for speech dereverberation, and integrated it with acoustic beamforming and
post-filtering. Experimental results indicate that, on a fixed geometry, concatenating
multiple microphone signals for complex spectral mapping is an effective and simple way
of integrating spectral and spatial information for robust speech processing.

Perhaps the most valuable insight I have gained in this dissertation study is that DNN
based single-channel processing provides reliable signal statistics for spatial processing,
even in environments with very strong noise and reverberation. By further combining such
spatial processing and spectral processing using a DNN, we can integrate spectral and

spatial cues for much better speech separation and recognition.

9.2. Future Work

This dissertation achieves large speech separation and ASR improvements over
conventional and other DNN based algorithms. The proposed algorithms represent
comprehensive solutions by exploiting spatial informaiton for modern speech
communication, and have the potential to benefit numerous commercial speech
applications. Here we put forth serveral directions for future research.

e Online and time-varying beamforming. This dissertation assumes offline
processing scenarios and that the speakers are still within each utterance. To make
the algorithms online, one can consider modifying DNN architectures causal by
making them look at past observations only. In addition, the beamforming
components can be made online by simply collecting statistics from past and

current frames. This strategy could potentially deal with moving speakers.
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o  Multi-channel multi-speaker separation in noisy and reverberant conditions.
Strong room reverberation and encironmental noise can drastically increase the
difficulty of speaker separation. Future research could consider simultaneous
speaker separation, denoising and dereverberation, which could be approached by
using direct sound as the training target. An end-to-end system that optimizes all
the modules could further elevate performance.

e Phase estimation. Phase estimation is a notoriously difficult but useful task in
speech enhancement and dereverberation, and speaker separation. Using supervised
learning where a model is trained to predict clean speech from a corrupted version,
be it in the complex or time domain, might be fundamentally limited. Generative
modeling could be a possible direction to produce more natural sounding, enhanced

speech [101], [23].
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