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Abstract 

 

Microphone arrays are widely deployed in modern speech communication systems. 

With multiple microphones, spatial information is available in addition to spectral cues to 

improve speech enhancement, speaker separation and robust automatic speech recognition 

(ASR) in noisy-reverberant environments. Conventionally, multi-microphone 

beamforming followed by monaural post-filtering is the dominant approach for multi-

channel speech enhancement. This approach requires an accurate estimate of target 

direction, and power spectral density and covariance matrices of speech and noise. Such 

estimation algorithms usually cannot achieve satisfactory accuracy in noisy and 

reverberant conditions. Recently, riding on the development of deep neural networks 

(DNN), time-frequency (T-F) masking and spectral mapping based approaches have been 

established as the mainstream methodology for monaural (single-channel) speech 

separation, including speech enhancement and speaker separation. This dissertation 

investigates deep learning based microphone array processing and its application to speech 

separation and localization, and robust ASR. 

We start our work by exploring various ways of integrating speech enhancement and 

acoustic modeling for single-channel robust ASR. We propose a training framework that 

jointly trains enhancement frontends, filterbanks and backend acoustic models. We also 
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apply sequence-discriminative training for sequence modeling and run-time unsupervised 

adaptation to deal with training and testing mismatches. 

One essential aspect of multi-channel processing is sound localization. We utilize deep 

learning based T-F masking to identify T-F units dominated by target speaker and only use 

these T-F units for speaker localization, as they contain much cleaner phases that are 

informative for localization. This approach dramatically improves the robustness of 

conventional cross-correlation, beamforming and subspace based approaches for speaker 

localization in noisy-reverberant environments. 

Building upon speaker localization, we next tightly integrate complementary spectral 

and spatial cues for deep learning based multi-channel speaker separation in reverberant 

environments. The key idea is to localize individual speakers and use the localization 

results to design spatial features that can indicate whether each T-F unit is dominated by 

the speech arriving from the estimated speaker direction. The spatial features are combined 

with spectral features in an enhancement network to extract the speaker from an estimated 

direction and with trained spectral structure. Strong separation performance has been 

observed on reverberant talker-independent speaker separation tasks. 

Before addressing multi-channel speech enhancement, we explore various magnitude 

based phase reconstruction algorithms for monaural speaker separation. We also study 

complex spectral mapping based phase estimation, where we directly predict the real and 

imaginary components of target speech. We find that deep learning based magnitude 

estimates clearly benefit phase reconstruction, and complex spectral mapping leads to 

better phase estimation.  
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We then apply complex spectral mapping to multi-channel speech dereverberation and 

enhancement, where phase estimation is used to improve sound localization, time-invariant 

and time-varying beamforming, and post-filtering. State-of-the-art performance has been 

obtained on the enhancement and recognition tasks of the REVERB corpus and the 

CHiME-4 dataset. 

Finally, for fixed-geometry arrays, we propose multi-microphone complex spectral 

mapping for speech dereverberation, where DNNs are used for time-varying non-linear 

beamforming. We find that concatenating multiple microphone signals for complex 

spectral mapping is a simple and effective way of integrating spectral and spatial 

information for fixed-geometry arrays. 
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Chapter 1. Introduction 

 

1.1. Motivation 

Recent years have witnessed a dramatic demand in voice-based interfaces for speech 

communication, thanks in part to the wide adoption of deep learning. Amazon Echo and 

Google Home, which feature an intelligent voice-controlled assistant, have been sold to 

tens of millions of customers over the last five years. As such devices are deployed in 

homes and offices, major technical challenges arise including how to reliably localize and 

enhance a target speaker, separate competing speakers, and recognize their speech in 

everyday environments with room reverberation and environmental noises. Far-field ASR, 

for instance, is a widely acknowledged difficulty due to reverberation and noise.  

Driven by Moore’s law in the past decades, modern electronic devices have gained 

more and more computing capability. It is nowadays very common for a modern smart 

device to have more than one microphone. For example, Amazon Echo features seven 

microphones, Google Home two, and iPhone-7 has four microphones. An array of 

microphones produces multiple recordings at the same time. Similar to the human auditory 

system, spatial origins of the underlying sound sources can be computed from these 

recordings as, for each source, the signal arrives at each microphone at a different time. 

Such time difference of arrival (TDOA) information provides an informative cue 
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complementary to spectral (monaural) information for speech enhancement and separating 

multiple speakers; for example, one can enhance or maintain signals from a particular 

direction and suppress signals arriving from other angles. 

Classical methods for multi-channel speech enhancement are mainly focused on using 

beamforming to combine multiple signals and utilizing post-filtering for further noise and 

reverberation reduction [40]. The beamforming approach designs a linear filter to boost or 

maintain the signal from the target direction, while attenuate interferences from other 

directions [157], [83], [40]. It requires accurate direction of arrival (DOA) estimation, and 

speech and noise covariance matrix estimation. However, conventional DOA algorithms 

such as generalized cross correlation with phase transform (GCC-PHAT) [80] and multiple 

signal classification (MUSIC) [134] localize sound sources based on signal energy, and are 

not robust to noise and reverberation. In addition, spatial covariance matrices are computed 

based on silence intervals detected by conventional voice activity detectors. Such voice 

activity detectors make strong stationarity assumptions on noise and usually fail to produce 

satisfactory performance in real-world conditions where a variety of highly non-stationary 

intrusions occur. 

Multi-talker separation has been an active research area in the past two decades. Earlier 

research efforts were mainly focused on multi-channel separation, as it was considered a 

very difficult problem separating multiple speakers based on only spectral information. 

The major cue exploited in multi-channel multi-talker separation is inter-channel phase 

patterns, as they naturally form clusters within each frequency for spatially separated 

directional sources with different time delays to the array [124]. This observation leads to 

the popular narrow-band and wideband spatial clustering algorithms [70], [102], [131], and 
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independent component analysis based methods [78]. However, these algorithms only 

utilize spatial information and do not offer a clear and promising mechanism to leverage 

spectral information. 

In recent years, DNNs [133] have been firmly established as the state-of-the-art 

approach for single-channel speech enhancement [165], [161]. In this approach, a DNN is 

typically trained to estimate a real-valued T-F mask to attenuate T-F units dominated by 

reverberation and noise. Build upon the first DNN study on speech enhancement [165], a 

subsequent study [55] found that DNN based monaural speech enhancement algorithms 

led to, for the first time, substantial speech intelligibility improvements for hearing-

impaired listeners. Breakthroughs have also been made in single-channel talker-

independent speaker separation in [57] and [206], where novel neural network training 

mechanisms are introduced to solve the label-permutation problem. These studies suggest 

that magnitude estimation can be substantially improved using deep learning based T-F 

masking, and point to new directions for single-channel speech enhancement and speaker 

separation. 

These studies also reveal new opportunities for multi-channel processing, since the 

mask or magnitude estimation provides a powerful means for multi-channel tasks such as 

acoustic beamforming, sound source localization and post-filtering. If a mask value at a T-

F unit is close to one, the phase at that unit is little contaminated, meaning that the inter-

channel phase patterns are relatively well manifested. Such T-F units can be utilized to 

extract reliable spatial information for multi-channel speech enhancement and speaker 

separation. 
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The rest of this chapter is organized as follows. Section 1.2 gives a more detailed review 

of the technical background, defines the objectives of this dissertation, and introduces the 

roadmap to achieve the objectives. Section 1.3 presents the organization of this dissertation. 

1.2. Background, Objectives and Roadmap 

Given a 𝑃 -microphone time-domain mixture signal 𝒚[𝑛] = =𝑦?[𝑛], … , 𝑦A[𝑛]B
C ∈

ℝA×? recorded in a reverberant and noisy enclosure, the physical model in the short-time 

Fourier transform (STFT) domain is formulated as 

𝒀(𝑡, 𝑓) = 𝑺(𝑡, 𝑓) + 𝑵(𝑡, 𝑓) = 𝒄(𝑡, 𝑓; 𝑞)𝑆Q(𝑡, 𝑓) + 𝑵(𝑡, 𝑓), (1.1) 

where 𝑆Q(𝑡, 𝑓) ∈ ℂ is the complex STFT coefficient of the direct-path signal of the target 

speaker captured by a reference microphone 𝑞 at time 𝑡 and frequency 𝑓, and 𝒄(𝑡, 𝑓; 𝑞) ∈

ℂA×?  is the relative transfer function with the 𝑞ST  element being one. 𝑺(𝑡, 𝑓) =

𝒄(𝑡, 𝑓; 𝑞)𝑆Q(𝑡, 𝑓), 𝑵(𝑡, 𝑓) and 𝒀(𝑡, 𝑓) ∈ ℂA×?, respectively, represent the STFT vectors of 

the direct-path signal of a target source (i.e. target speech), non-target signals, and received 

mixture at a T-F unit. Note that 𝑵 denotes any non-target signals we aim to remove, such 

as reverberation, noise or competing speakers. 

One popular approach for multi-channel speech enhancement is multi-channel Wiener 

filtering (MCWF) [40], which computes a linear filter per T-F unit to project the mixture 

STFT vector to target speech by minimizing the following error function 

ℒ V𝒘(XYZ[)(𝑡, 𝑓)\ = 𝛦 ^_𝒘(XYZ[)(𝑡, 𝑓)`𝒀(𝑡, 𝑓) − 𝑆Q(𝑡, 𝑓)_
a
b, (1.2) 
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where 𝒘(XYZ[)(𝑡, 𝑓) ∈ ℂA×?  denotes the oracle linear filter, 𝑆Q(𝑡, 𝑓) ∈ ℂ represents the 

STFT coefficient of the target speech captured by a reference microphone 𝑞 at time 𝑡 and 

frequency 𝑓 , (∙)`  computes conjugate transpose, and |∙|  extracts magnitude. The 

expectation operation is performed by assuming that 𝑵(𝑡, 𝑓)  and 𝑺(𝑡, 𝑓)  respectively 

follow a zero-mean complex Gaussian distribution. The closed-form solution of this 

optimization problem is 

𝒘(XYZ[)(𝑡, 𝑓) = VΦ(f)(𝑡, 𝑓)\
g?
Φ(h)(𝑡, 𝑓)𝒖Q

= VΦ(h)(𝑡, 𝑓) + Φ(j)(𝑡, 𝑓)\
g?
Φ(h)(𝑡, 𝑓)𝒖Q

= k_𝑆Q(𝑡, 𝑓)_
a𝒄(𝑡, 𝑓; 𝑞)𝒄(𝑡, 𝑓; 𝑞)` + Φ(j)(𝑡, 𝑓)l

g?
Φ(m)(𝑡, 𝑓)𝒖Q, 

(1.3) 

where Φ(m)(𝑡, 𝑓) , Φ(j)(𝑡, 𝑓) , and Φ(f)(𝑡, 𝑓) = Φ(m)(𝑡, 𝑓) + Φ(j)(𝑡, 𝑓) ∈ ℂA×A 

respectively denote the speech, noise and mixture spatial covariance matrices, respectively, 

and 𝒖Q  is a one-hot vector with the 𝑞 th element being one. Since the target speaker is 

directional (i.e. from a specific direction), the speech covariance matrix can be computed 

as Φ(m)(𝑡, 𝑓) = _𝑆Q(𝑡, 𝑓)_
a𝒄(𝑡, 𝑓; 𝑞)𝒄(𝑡, 𝑓; 𝑞)`,  where _𝑆Q(𝑡, 𝑓)_

a ∈ ℝ  denotes power 

spectral density.  

Under Woodbury matrix identity, Eq. (1.3) can be formulated as a product of a 

minimum variance distortion-less response (MVDR) beamformer [40] and a Wiener filter 

based real-valued post-filter 

𝒘(XYZ[)(𝑡, 𝑓) = 𝒘(Xnop)(𝑡, 𝑓)𝑃𝐹(𝑡, 𝑓) (1.4) 
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𝒘(Xnop)(𝑡, 𝑓) =
Φ(j)(𝑡, 𝑓)g?𝒄(𝑡, 𝑓; 𝑞)

𝒄(𝑡, 𝑓; 𝑞)`Φ(j)(𝑡, 𝑓)g?𝒄(𝑡, 𝑓; 𝑞)
 (1.5) 

𝑃𝐹(𝑡, 𝑓)

= q
𝒘(Xnop)(𝑡, 𝑓)`Φ(m)(𝑡, 𝑓)𝒘(Xnop)(𝑡, 𝑓)

𝒘(Xnop)(𝑡, 𝑓)`Φ(m)(𝑡, 𝑓)𝒘(Xnop)(𝑡, 𝑓) + 𝒘(Xnop)(𝑡, 𝑓)`Φ(j)(𝑡, 𝑓)𝒘(Xnop)(𝑡, 𝑓)
 
(1.6) 

The post-filter 𝑃𝐹(𝑡, 𝑓)  can be considered as a Wiener filter based on the energy of 

beamformed speech and the energy of beamformed noise. The classic MVDR 

beamforming results from solving the following constrained quadratic optimization 

problem 

𝒘(Xnop)(𝑡, 𝑓) = argmin𝒘(x,y) 	𝒘(𝑡, 𝑓)`Φ(j)(𝑡, 𝑓)𝒘(𝑡, 𝑓) 

subject	to			𝒘(𝑡, 𝑓)`𝒄(𝑡, 𝑓; 𝑞) = 1	
(1.7) 

The idea is to find a linear filter by minimizing noise energy while maintaining the signal 

from the target direction. 

The meaning of Eq. (1.4) is that the MVDR beamformer points a beam towards the 

target speaker of interest and constructively combines multiple signals into a single one so 

that the target speech is maintained distortionlessly while non-target signals from other 

directions are suppressed. The post-filter is necessary to further reduce the residual noise 

or reverberation in the beamformed signal, as linear beamforming is fundamentally limited 

when room reverberation is strong, when speech and noise sources are spatially close, or 

when the number of microphones is small.  

In practical systems, all the statistics including Φ(m)(𝑡, 𝑓), Φ(j)(𝑡, 𝑓), _𝑆Q(𝑡, 𝑓)_
a and 

𝒄(𝑡, 𝑓; 𝑞) need to be estimated based on the multi-channel mixture input 𝒀. 
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The relative transfer function 𝒄(𝑡, 𝑓; 𝑞) , also known as the steering vector, is 

traditionally computed based on sound localization algorithms such as GCC-PHAT [80], 

steered-response power with phase transform (SRP-PHAT) [28], and MUSIC [134]. These 

algorithms are originally designed for narrow-band antenna arrays and are not robust when 

dealing with wideband speaker localization in noisy and reverberant environments. 

The speech and noise covariance matrices, Φ(m)(𝑡, 𝑓)  and Φ(j)(𝑡, 𝑓) , are 

conventionally computed using voice activity detection (VAD), where a voice activity 

detector is utilized to identify noise-only segments for noise covariance matrix 

computation, or simply using the beginning and ending silence intervals of the mixture 

signal for estimation [40]. However, VAD algorithms usually assume that environmental 

noise is stationary, which is unrealistic as real-world noises are typically non-stationary. 

The post-filter 𝑃𝐹(𝑡, 𝑓) is usually computed based on multi-channel signal statistics as 

in Eq. (1.6), conventional single-channel speech enhancement algorithms [93], [40], or 

spatial filters computed using phase information [118], [136], [149], [40]. These algorithms 

usually cannot achieve high-quality noise reduction in reverberant multi-source 

environments. 

Recently, deep learning based T-F masking has substantially advanced monaural 

speech separation [161]. The key idea is to train a DNN to estimate the ideal binary mask 

(IBM)  [162] or the ideal ratio mask (IRM) [113] for enhancement. Deep learning 

dramatically improves mask (or magnitude) estimation, and the separated speech exhibits 

large speech intelligibility and quality improvements over conventional enhancement 

methods [55], [166]. 
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In this context, we investigate deep learning for microphone array processing and its 

application to speech separation and localization, and robust ASR. Motivated by the 

formulation of multi-channel Wiener filtering, this dissertation addresses the following 

issues in multi-channel processing. 

• Robust speaker localization. Localization determines the direction of the target 

speech. Better localization leads to better estimation of the relative transfer function 

𝒄(𝑡, 𝑓; 𝑞). Our study performs robust speaker localization by using DNN based T-

F masking to identify T-F units dominated by a single source, and only utilizing 

these T-F units for localization; 

• Acoustic beamforming. Similar to localization, we utilize DNN based T-F masking 

to identify T-F units dominated by speech and noise to compute speech and noise 

covariance matrices, Φ(m)(𝑡, 𝑓) and Φ(j)(𝑡, 𝑓). We also use enhanced speech and 

noise complex spectra to compute the covariance matrices. Better covariance 

matrix estimation leads to better beamforming; 

• Post-filtering. 𝑃𝐹(𝑡, 𝑓) in Eq. (1.6) is a real-valued mask bounded in the range 

[0,1] . It can be readily improved using deep learning based T-F masking. In 

addition, based on localization results, we explore spatial features, which can 

indicate whether the dominant source at each T-F unit is from the estimated 

direction, and combine them with spectral features to extract the target speech from 

a particular direction and with specific spectral structure; 

• Phase estimation. Better phase estimation can lead to better covariance matrix 

estimation for beamforming and better phase difference estimation for sound 

localization. It can also help post-filtering to improve the phase produced by linear 
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beamforming. Our study proposes multiple magnitude based phase reconstruction 

algorithms. We also investigate complex-domain ratio masking and mapping for 

phase estimation, following [39], [146], [192]; 

• Non-linear time-varying beamforming. Conventional beamforming techniques are 

linear and based on second-order statistics. Based on a fixed-geometry array, we 

investigate DNN based multi-microphone modeling to exploit non-linear spatial 

information contained in multi-channel inputs for non-linear time-varying 

beamforming; 

• Multi-channel speech dereverberation, enhancement and speaker separation. We 

apply the above ideas to enhance target speech in noisy and reverberant conditions 

where only a single speaker is assumed active, and also to multi-talker separation 

tasks where all the speakers need to be separated and enhanced; 

• Single- and multi-channel robust ASR. A key application of speech enhancement 

and source separation is to improve modern DNN based ASR systems. This 

dissertation addresses not only single- but also multi-channel robust ASR in noisy-

reverberant conditions, based on deep learning based T-F masking and multi-

channel processing.  

It is highly desirable to make trained models directly applicable to microphone arrays 

with various numbers of microphones arranged in diverse layouts. This is especially useful 

for cloud-based services, where client setup can vary significantly in terms of microphone 

array configuration. This demand poses challenges to supervised separation, which 

requires fixed input and output dimensions, and has potentially limited generalization 

capability to novel array geometries. On the other hand, modern electronic devices such as 
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Amazon echo and Google Home use a fixed array geometry. It is therefore of interest to 

develop algorithms for a fixed geometry. 

1.3. Dissertation Organization 

The rest of this dissertation is organized as follows. 

Chapter 2 explores ways of integrating speech enhancement frontends and ASR 

backends for single-channel robust ASR in noisy-reverberant conditions. We propose a 

joint training approach that jointly trains frontends, filterbanks and acoustic models. We 

also apply sequence-discriminative training and unsupervised adaptation to further 

improve the performance on the CHiME-2 dataset. 

Chapter 3 studies robust speaker localization, a key step towards multi-channel speech 

enhancement and source separation. The idea is to utilize a DNN to identify T-F units 

dominated by direct sound and only use these T-F units for sound localization. This 

approach dramatically improves the robustness of conventional cross-correlation, 

beamforming and subspace based approaches for speaker localization in noisy-reverberant 

environments. 

Chapter 4 integrates complementary spectral and spatial features for deep learning 

based multi-channel speaker separation in reverberant environments. The main idea is to 

localize individual speakers so that an enhancement DNN can be trained on spatial as well 

as spectral features to extract the speaker from an estimated direction and with specific 

spectral structure. To determine the direction of the speaker of interest, we identify T-F 

units dominated by that speaker and only use them for direction estimation. The T-F unit 

level speaker dominance is determined by a two-channel separation network, which 
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integrates spectral and inter-channel phase patterns at the input feature level. In addition, 

T-F masking based beamforming is tightly integrated in the system by leveraging the 

magnitudes and phases produced by beamforming. 

Chapter 5 investigates STFT-domain monaural magnitude-based phase reconstruction 

for talker-independent speaker separation. For a two-source mixture, with the magnitude 

of each source accurately estimated and under a geometric constraint, the absolute phase 

difference between each source and the mixture can be uniquely determined. In addition, 

the source phases at each T-F unit can be confined to only two candidates. In order to pick 

the correct candidate, we propose three algorithms based on iterative phase reconstruction, 

group delay estimation, and phase-difference sign prediction. State-of-the-art results are 

obtained on the publicly available wsj0-2mix and 3mix corpus at the time of publication. 

Chapter 6 leverages a complex spectral mapping approach for phase estimation and 

proposes a target cancellation algorithm for multi-channel speech dereverberation. For 

single-channel processing, we extend magnitude-domain masking and mapping based 

dereverberation to complex-domain mapping, where DNNs are trained to predict the real 

and imaginary (RI) components of the direct-path signal from reverberant (and noisy) ones. 

For multi-channel processing, we first compute a beamformer to cancel the direct-path 

signal, and then feed the RI components of the cancelled signal, corresponding to a filtered 

version of non-target signals, as additional features to perform dereverberation. Our models 

outperform other state-of-the-art models on the test set of the REVERB challenge in terms 

of speech dereverberation and recognition performance. 

Chapter 7 applies complex spectral mapping to multi-channel speech enhancement, 

building upon Chapter 6. A novel time-varying beamforming algorithm is proposed to deal 
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with highly nonstationary environmental noise. State-of-the-art robust ASR performance 

is obtained on the CHiME-4 corpus. 

Chapter 8 combines the RI components of multiple microphones for DNN training. The 

proposed approach essentially amounts to non-linear time-varying beamforming. It is 

evaluated on multi-channel dereverberation and robust ASR, and contrasted with single-

microphone modeling and conventional dereverberation algorithms.  

Chapter 9 concludes this dissertation and discusses future directions.  

Equation break  
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Chapter 2. Single-Channel Speech Enhancement and 
Robust ASR 

 

This chapter investigates the integration of deep learning based single-channel speech 

enhancement and acoustic modeling, which lays a foundation for later multi-channel robust 

ASR. The key idea is to jointly train enhancement frontends with backend ASR models. 

This work has been published in Interspeech 2015 [171] and IEEE/ACM T-ASLP in 2016 

[172]. 

2.1. Introduction 

DNN-HMM hybrid methods [65] have become the dominant approach in ASR, 

producing large improvements over conventional GMM-HMM methods. Although a lot of 

progress has been made in ASR on clean speech, the performance drops sharply in the 

presence of reverberation, mismatched noises and low SNR conditions. Improving the 

robustness of ASR systems in such environments remains a challenge. 

 Although DNN based acoustic models are robust to noisy input with small variations 

[207], speech separation algorithms are able to significantly improve recognition 

performance even when DNNs are used for acoustic modeling [25]. Recently, different 

DNN based speech separation methods, such as T-F masking [167], [168], [165] and 
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spectral mapping [6], [52], [202], are developed and shown to perform surprisingly well 

even in highly adverse environments. 

When incorporating speech separation into ASR, there are three commonly used 

strategies. The first one is to conduct acoustic modeling on clean speech, and at run time, 

a separation frontend is used to enhance noisy speech before recognition [114], [31]. A 

disadvantage would occur when the separation frontend introduces distortions unseen by 

the acoustic model trained on clean speech [114]. The second strategy alleviates the 

distortion problem to some extent by using a separation frontend to enhance both training 

and test set, and conducts acoustic modeling on the enhanced training set. It may be able 

to improve the recognition performance since the features may become cleaner after 

enhancement. The third strategy performs acoustic modeling on noisy speech and at the 

test stage, noisy or enhanced features are fed to the acoustic model for decoding. The 

resulting multi-condition training strategy is shown to be very effective [159] but gives 

unimpressive performance in matched conditions [89]. Clearly, different strategies have 

their own advantages and disadvantages. Which strategy to adopt highly depends on the 

situation.  

Speech separation and recognition are not two independent tasks and they can clearly 

benefit from each other. Previous studies [42], [43], [171], proposed to integrate speech 

separation and acoustic modeling via joint adaptive training. This chapter further develops 

this approach and proposes various techniques to elevate the performance. The present 

work makes the following four contributions. First, we concatenate a DNN based speech 

separation frontend, a trainable mel-filterbank and a DNN based acoustic model together 

to build a larger and deeper DNN, and jointly adjust the weights in each module via the 
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back-propagation algorithm. With joint training, the separation frontend and filterbank are 

able to provide enhanced features expected by the acoustic model. In addition, the linguistic 

information contained in the acoustic model is allowed to flow back to influence the 

separation frontend and filterbank. Furthermore, the filterbank can be trained according to 

the separation frontend and acoustic model [128]. Second, concatenating the separation 

frontend and acoustic model to form a bigger DNN naturally leads us to sequence-

discriminative training applied to the jointly trained DNN for further improvement. This 

way, at the training stage, the information from language models can be flowed back to 

influence not only the acoustic model but also the separation frontend by optimizing 

sequence-discriminative criterion. Third, utterance-level unsupervised adaptation is 

performed at run time to adapt the jointly trained DNN to potentially mismatched 

conditions or new speakers. Fourth, we find that adding additional features, which are 

robust to noise and reverberation, for acoustic modeling significantly improves the 

robustness.  

The proposed sequence-discriminative jointly-trained models trained with additional 

robust features achieves 10.63% average WER on the test set of the noisy and reverberant 

CHiME-2 dataset (task-2) [159]. This represented the best result on this dataset at the time 

of publication.  

The rest of this chapter is organized as follows. We describe our joint training approach 

in Chapter 2.2, followed by experiments and evaluations in Chapter 2.3 and conclusions in 

Chapter 2.4.  
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2.2. System Description 

 Our system is built in a step-by-step way. We first train a separation frontend and an 

acoustic model separately, both using DNNs. Then we concatenate the separation frontend, 

mel-filterbank and acoustic model together to construct a deeper and larger DNN, and 

 
 
 Figure 2-1. Schematic diagram of the proposed joint training framework. The layer shown 
in gray means that the weights or operations of that layer are fixed. Solid and dotted arrows 
respectively indicate the directions of forward pass and backward pass. See text for more 
details. 
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jointly adjust the weights in all modules. After that, we replace the cross-entropy criterion 

used at the joint training stage with sequence-discriminative criterion for sequence training. 

Finally, we perform utterance-level unsupervised adaptation at run time. The overall 

framework of our system is shown in Figure 2-1. 

2.2.1. Deep Learning Based T-F Masking 

Originated in computational auditory scene analysis (CASA) [163], T-F masking has 

shown considerable potential for removing additive noise in noisy speech. The key idea is 

to estimate the IBM [162] that identifies speech dominant and noise dominant T-F units, 

or the IRM [113], which represents the ratio of speech energy to the sum of speech energy 

and noise energy within each T-F unit. This framework formulates speech separation as a 

supervised mask estimation problem. Recently, DNN is employed for mask estimation, 

and achieves very promising separation performance in both matched and un-matched test 

conditions [165]. Recent listening tests show that DNN based IBM estimation produces 

substantial speech intelligibility improvements of noisy utterances for both hearing-

impaired and normal-hearing listeners [55]. In addition, different training targets are 

carefully analyzed recently [166], and it is suggested that the IRM is likely to be a better 

training target for supervised speech separation. Therefore, we utilize DNNs to estimate 

the IRM in this study. 

The ideal mask can be defined in different T-F representation domains. In line with 

later joint training, the IRM in this study is defined in the power spectrogram domain [166] 

𝑀(𝑡, 𝑓) =
|𝑆(𝑡, 𝑓)|a

|𝑆(𝑡, 𝑓)|a + |𝑁(𝑡, 𝑓)|a, (2.1) 
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where 𝑀 is the IRM of a noisy signal created by mixing a noise-free utterance with a noise 

signal at a specific SNR level, and |𝑆(𝑡, 𝑓)|a and |𝑁(𝑡, 𝑓)|a respectively denote the power 

spectrograms of the noise-free utterance and the noise signal at time 𝑡 and frequency 𝑓. 

At run time, the IRM must be estimated from noisy utterances. We employ a DNN as 

the learning machine for IRM estimation. The DNN has four hidden layers each with 1,024 

rectified linear units (ReLUs) [43]. There are 161 sigmoidal units in the output layer, 

corresponding to the dimension of each frame in the power spectrogram. Starting from 

random initialization, the network is trained to minimize the cross-entropy loss function 

within each T-F unit. The loss function is 

ℒ�𝑀�� = −
1
𝑇�^𝑀(𝑡, 𝑓) log𝑀�(𝑡, 𝑓) + �1 −𝑀(𝑡, 𝑓)� log V1 −𝑀�(𝑡, 𝑓)\b

x,y

, (2.2) 

where 𝑀�  is the estimated mask. 

The feature used for mask estimation is log-compressed power spectrogram. We splice 

a large context window of 19 frames centered at the current frame as the input to DNN. 

The frame length is 20 ms and frame shift 10 ms. For a signal with 16 kHz sampling rate, 

the input dimension corresponding to one frame is 3,059 (161×19). The log power 

spectrogram feature is globally mean-variance normalized before splicing.  

At run time, we multiply 𝑀�  point-wisely with the power spectrogram of noisy speech 

to get the enhanced power spectrogram 

𝑋� = 𝑀� ⊗ |𝑋|a, (2.3) 

where 𝑋�  is the resulting enhanced power spectrogram, |𝑋|a  denotes the noisy power 

spectrogram, and ⊗ represents point-wise matrix multiplication.  
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2.2.2. Acoustic Modeling 

The DNN-HMM hybrid approach is dominant in ASR today. We utilize a DNN with 7 

hidden layers each with 2,048 ReLUs for acoustic modeling. The DNN is trained to 

estimate the posterior probability of each senone state by minimizing the cross-entropy 

criterion. 

Log mel-spectrogram is widely used as the only feature for acoustic modeling. 

However, mel-spectrogram itself is not robust to noise and reverberation. We incorporate 

robust features for acoustic modeling as different features contain different and perhaps 

complementary information for senone state discrimination. We consider a subset of the 

following features. 

•  40-dimensional log mel-spectrogram together with its delta and double deltas (MEL). 

We perform sentence level mean normalization before splicing an 11-frame context 

window; 

•  256-dimensional multi-resolution cochleagram (MRCG) [17] with its delta and 

double deltas. This feature is shown to be relatively robust to additive noise for mask 

estimation; 

•  31-dimensional power-normalized cepstral coefficients (PNCC) [74] together with 

their deltas and double deltas. Sentence level mean normalization is performed before 

splicing an 11-frame context window. The PNCC feature is found to be robust to 

reverberation and additive noise; 

•  13-dimensional RASTA-PLP [56]. The context window is set to 7; 

•  15-dimensional amplitude modulation spectrogram (AMS) [82] extracted from each 

of 26 channels;  
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•  31-dimensional narrowband mel-frequency cepstral coefficients (MFCC) with the 

analysis window of 20 ms. The context window is set to 7; 

•  31-dimensional wideband MFCC with the analysis window of 200 ms. The context 

window size is 7. 

The last four features, denoted as Fset, are shown to have complementary power for mask 

estimation [169]. This study directly uses Fset features for acoustic modeling. With the 

features mentioned above, the input dimension is 4,026 (40×3×11+256×3+31×3×11 

+13×7+15×26+31×7+31×7). They are globally mean-variance normalized before DNN 

training. To facilitate comparison, we always include MEL for acoustic modeling.  

2.2.3. Joint Training 

As illustrated in Figure 2-1, the key idea of joint training is to concatenate an acoustic 

model DNN and a speech separation DNN to form a larger and deeper neural network, and 

jointly adjust the weights in all modules. The link for concatenating the separation frontend 

and the acoustic model is a trainable filterbank layer and a set of layers with fixed 

operations, which represent the extraction of the enhanced MEL features (with delta and 

double deltas and an 11-frame context window) (see also [115], [116], [171]). More 

specifically, after obtaining the estimated IRM from the separation frontend based on the 

log power spectrogram of a noisy utterance, we multiply it point-wisely with the noisy 

power spectrogram to get the enhanced power spectrogram. The enhanced power 

spectrogram is then fed into the trainable filterbank layer to get the enhanced filterbank 

feature. Afterwards, we compress it logarithmically, add delta and double deltas, perform 

sentence-level mean normalization, conduct global mean-variance normalization, and 

splice 11 frames to yield the enhanced MEL features. The enhanced MEL features, together 
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with other robust features, are finally passed to the acoustic model to estimate state 

posterior probabilities. The joint training framework can be performed in a single neural 

network because the point-wise multiplication, filtering, sentence- and global-level 

normalization, adding delta and double deltas are all linear transformations. Therefore, we 

can flow the error signal from the acoustic model back to the filterbank layer and the 

separation frontend, and jointly train all modules using back-propagation.  

A similar frontend and backend joint training approach was presented by Gao et al. 

[41], where feature mapping is employed as the frontend. It has been suggested that 

masking is likely a better approach than mapping for speech separation [166]. In addition, 

the output dimension of their frontend is equal to the input dimension, which consists of 

many consecutive frames and is large. In contrast, we obtain enhancement results per single 

frame. Furthermore, their frontend obtains enhanced MEL features by direct mapping 

instead of using a trainable filterbank layer and fixed layers to transform the enhanced 

power spectrogram. 

Parameter initialization is critical before joint training. Here we use the weights in a 

separately trained acoustic model and a separately trained separation frontend to initialize 

the corresponding parts of the DNN before joint training. Following [128], we initialize 

the parameters in the trainable filterbank (FB) layer using 

𝑊�� = exp(𝑊∗),  (2.4) 

where 𝑊∗ is initialized to 

𝑊∗ = log	�max	(𝑀𝑒𝑙_𝐹𝐵, 𝑒𝑝𝑠)� (2.5) 
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Here 𝑀𝑒𝑙_𝐹𝐵  denotes the standard 40-dimensional mel-filterbank and 𝑒𝑝𝑠	 is a small 

constant (10g� in this study). With Eq. (2.4), every time 𝑊∗ is updated, all the parameters 

in the filterbank are ensured to be non-negative. 

The whole network is trained to minimize the cross-entropy criterion from the acoustic 

model alone. We tried to put a weight between the loss of the acoustic model and the loss 

of the separation frontend. However, no clear improvement on the ASR performance was 

observed. The sentence-level mean of each utterance and global mean and variance are 

updated at the beginning of each epoch in the forward pass. 

2.2.4. Sequence-Discriminative Training 

The previous sections describe how the DNN-based acoustic models are trained to 

minimize the cross-entropy criterion at the frame level. As ASR is a sequence classification 

problem, it is sensible to optimize sequence-discriminative criterion to better capture the 

essence of this problem. It is widely known that sequence training is helpful for GMM-

HMM systems. In recent studies, sequence training is also found to be useful for DNN-

HMM hybrid systems [158], [116]. Here, we investigate the effectiveness of sequence 

training criterion on the joint training system. We replace the frame-wise cross-entropy 

criterion with the state-level minimum Bayes risk (sMBR) [75] and back-propagate the 

error signal from this criterion to adjust the weights in the acoustic model, filterbank and 

separation frontend. This method is expected to improve recognition performance. We 

believe that this method may also benefit mask estimation since the error signal from the 

sequence training criterion contains information from language models, which is rarely 

exploited in speech separation research. 
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2.2.5. Unsupervised Adaptation 

Adaptation is commonly performed on well-trained acoustic models to compensate the 

differences between training and test conditions. It can be supervised or unsupervised, 

depending on whether the labels of adaptation data are available. Many adaptation methods 

have been proposed for DNN based acoustic models, such as linear transformation [135], 

[114], conservative training [208], and subspace based methods [129]. In [105], it is 

suggested that the linear input network (LIN) and linear hidden network based approaches 

are better than linear output network, factorization and KL-divergence based adaptation.  

We perform unsupervised adaptation to our jointly trained acoustic models following 

the LIN approach. At run time, given a single test utterance, we first use the un-adapted 

jointly-trained sequence-discriminative model to generate initial decoding results. The 

first-pass decoded state sequence is then used as the labels for learning a linear 

transformation of the input features of the separation frontend by minimizing the cross-

entropy criterion calculated from the acoustic model, with all the other parameters fixed. 

The linear transformation is defined as follows: 

𝑥�x,y = 𝑤y𝑥x,y + 𝑏y, (2.6) 

where 𝑥x,y  denotes the globally mean-variance normalized log power spectrogram, 

corresponding to the un-adapted input of the separation frontend, 𝑥�x,y denotes the adapted 

features, and 𝑤y and 𝑏y are the parameters to be learned. For a test utterance, the number 

of parameters to learn is 322 (161+161), which is approximately in the same range of the 

number of frames in the test utterance. 
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For each utterance, the adaptation process is run for 20 epochs with a mini-batch size 

equal to the length of the utterance. We simply adopt the learned parameters at the last 

epoch due to the lack of a development set. After obtaining all the linear transformation for 

each test utterance, we re-generate the likelihood and run a second-pass decoding to obtain 

the final results. 

A similar adaptation method was proposed in [114]. One key difference is that we 

perform adaptation on the input of the separation frontend rather than on the output of the 

separation frontend. We think that our strategy is better since, if we perform adaptation on 

the input of the separation frontend, the enhancement results would be changed in a highly 

non-linear way rather than in a simple linear fashion. 

This unsupervised adaptation technique with the learned linear transformation can also 

adapt a well-trained separation frontend to new test environments to some extent. 

2.3. Experimental Setup 

We evaluate the proposed algorithms on the reverberant and noisy CHiME-2 dataset 

(task-2) [159]. The CHiME-2 dataset is created by first convolving clean utterances in the 

WSJ0-5k dataset with time-varying binaural room impulse responses (BRIRs) and then 

mixing with reverberant noises at six SNR levels equally spaced from -6 to 9 dB. The 

BRIRs and reverberant noises are recorded with the same microphone and living room 

setup. The recorded noises contain major noise sources in a typical kitchen or living room, 

such as competing speakers, electronic devices, footsteps, laughter, and distant noises. The 

multi-conditional training set (si_tr_s) contains 7,138 utterances (~14.5h), the development 

set (si_dt_05) contains 409 utterances at each SNR level (~4.5h), and the test set (si_et_05) 
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contains 330 utterances at each SNR level (~4h). The CHiME-2 dataset provides 

reverberant noises, and reverberant noise-free utterances corresponding to the multi-

conditional training set. With the noises, clean speech, reverberant noise-free utterances, 

and noisy-reverberant utterances available, we can readily evaluate the recognition 

performance together with speech separation performance of our system. 

Our system is monaural in nature. We simply average the signals from the left and right 

channel before extracting features. This technique shows better performance than only 

using one of these two channels. A GMM-HMM system is built using the Kaldi toolkit 

[121] on the clean utterances in the WSJ0-5k to get the senone state for each frame of the 

corresponding noisy-reverberant utterances. Following the common pipeline in the Kaldi 

toolkit, the GMM-HMM system is first built using the MFCC feature. Then we concatenate 

13-dimensional MFCC feature within a 7-frame context window, and utilize linear 

discriminant analysis (LDA) to compress the concatenated feature to 40 dimensions. After 

that, we de-correlate it via maximum likelihood linear transform (MLLT) and use feature-

space maximum likelihood linear regression (fMLLR) to reduce speaker variance, which 

is estimated by speaker adaptive training. The resulting cross-word tied-state tri-phone 

GMM-HMM system contains 1,965 senone states. The initial clean alignments are 

obtained by performing forced alignment on the clean utterances. To refine the initial clean 

alignments, we further train a DNN-based acoustic model using the MEL features of the 

clean utterances, and re-generate clean alignments. Such clean alignments are used as the 

labels for training all the acoustic models in this study. Note that the DNN-HMM hybrid 

system built on the clean utterances is a powerful recognizer. It achieves 2.15% word error 

rates (WER) on the clean test set of the WSJ0-5k dataset. Therefore, we believe that these 
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high-quality labels can guide the DNN-based acoustic model to perform well on 

discriminating different senone states even when the input features are very noisy and the 

input SNR very low. We use the CMU pronunciation dictionary and the official 5k close-

vocabulary tri-gram language model in our experiments. This language model is used for 

decoding at run time and generating the lattices of the training utterances at the sequence 

training stage. 

The training data for mask estimation is obtained from parallel noisy-reverberant and 

reverberant noise-free data. The mixed noise signals can be obtained by direct subtraction. 

With these datasets, we train a separation frontend to remove additive noise in noisy-

reverberant utterances. The noisy-reverberant dataset, i.e. the multi-conditional training 

data, is used for both mask estimation and acoustic modeling.  

 Our experiments are done in an incremental manner. We first build our acoustic 

models using feature subsets selected according to the performance on the development 

set. Then we jointly train the acoustic models with the separation frontend. Afterwards, we 

perform sequence training on the jointly trained DNN. Finally, we perform unsupervised 

adaptation to the sequence-discriminative jointly-trained DNN at run time. 

2.3.1. Expanded Feature Set for Acoustic Modeling 

We first report the results of incorporating robust features for acoustic modeling. In 

this experiment, no speech enhancement or separation is performed. We simply train 

acoustic models multi-conditionally by adding robust features and do not tune the network 

structure or training recipes for each feature set. To push up the baselines, we perform 

sequence training on the multi-conditionally trained acoustic models, followed by run-time 

unsupervised adaptation. The WER results are presented in Table 2-1.  
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If we only train our acoustic models using the cross-entropy criterion, with the 

commonly used MEL features alone, we obtain 16.16% average WER on the test set. Note 

that if we just use the default DNN code for the CHiME-2 dataset in the Kaldi toolkit, we 

only obtain 17.49% average WER on the test set. This is consistent with the results obtained 

in [53]. The major differences are that we use ReLUs, dropout and Adagrad for training, 

while the default DNN code uses sigmoidal units, pre-training and stochastic gradient 

descent. By adding PNCC, the average WER can be reduced to 14.74%. After appending 

MRCG, the WER is brought down to 13.97%. The performance is further pushed to 

13.46% average WER after we add Fset. Note that this result is already better than our 

previous best result [171] using the same set of features on this dataset, mainly because 

better clean alignments are generated using the Kaldi toolkit.  

We then apply sequence training to the multi-conditionally trained acoustic models. 

We observe that sequence training leads to large improvement for all the input features, 

and the relative improvement becomes smaller if more features are used for acoustic 

modeling. 

Table 2-1. Performance (%WER) using multi-condition training with robust features for 
acoustic modeling. 

Features for Acoustic Modeling Dev. Set Test Set 
Average -6dB -3dB 0dB 3dB 6dB 9dB Average 

MEL 19.40 26.77 20.49 16.14 12.80 10.67 10.11 16.16 
+sMBR 17.24 23.87 17.35 13.64 11.30 9.10 8.28 13.92 

+adaptation 16.81 22.64 16.85 12.78 10.44 8.69 7.79 13.20 
MEL+PNCC 18.54 25.13 18.57 14.94 11.73 9.51 8.57 14.74 

+sMBR 16.52 23.22 16.59 12.46 10.52 8.24 7.49 13.09 
+adaptation 16.10 22.03 16.33 12.22 10.29 7.66 7.36 12.65 

MEL+PNCC+MRCG 17.99 23.33 17.92 14.20 11.36 8.95 8.05 13.97 
+sMBR 15.97 22.01 15.62 12.18 10.59 8.18 7.12 12.62 

+adaptation 15.57 21.17 15.21 11.83 10.55 7.77 6.80 12.22 
MEL+PNCC+MRCG+Fset 17.93 23.09 17.17 13.32 10.41 8.71 8.07 13.46 

+sMBR 15.63 21.17 14.96 12.24 9.83 7.68 7.14 12.17 
+adaptation 15.48 20.51 14.68 11.77 9.70 7.49 7.02 11.86 
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Finally, we apply utterance-level unsupervised adaptation to the sequence-

discriminative acoustic models. Similar to Chapter 2.2.5, given a test utterance, we first 

decode it to obtain a hypothesized state sequence, from which we learn a linear 

transformation of the input features. To reduce the number of parameters to learn and make 

a fair comparison with later experiments, we only learn a linear transformation for the MEL 

features. Learning linear transformations for other features may decrease the performance, 

simply because too many parameters are learned. Thus, the total number of parameters to 

be learned is 240 (40×3+40×3) for each test utterance. From Table 2-1, we see that 

unsupervised adaptation leads to consistent improvement, while the relative improvement 

for acoustic models with more features becomes smaller as well. 

Compared with only using the MEL features, adding all the extra robust features for 

acoustic modeling reduces the average WER by 2.7% (16.16% to 13.46%), 1.75% (13.92% 

to 12.17%),  and 1.34% (13.20% to 11.86%) without sequence training or adaptation, with 

sequence training but no adaptation, and with sequence training and adaptation, 

respectively. These considerable improvements occur probably because features are 

extracted from different domains using different filterbanks, compression operations and 

environmental compensations, and therefore they likely complement each other for 

acoustic modeling on multi-conditional data. This suggests that relying on the DNN to 

learn optimal non-linear features from relatively raw input, e.g. the MEL features, may not 

be the optimal strategy for robust ASR. Combining the feature learning ability of DNNs 

and domain knowledge may be a better way for improving the robustness of ASR systems.  

As shown in Table 2-1, the average WER on the development set keeps decreasing as 

we add more and more features. Therefore, in the following experiments, we add the 
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PNCC, MRCG and Fset features for acoustic modeling. Note that we do not perform any 

kind of enhancement on these extra features since they are considered to be inherently 

robust. To facilitate comparisons, we also report the results based on the MEL features 

alone.  

2.3.2. Plug-and-Play and Re-Training Approaches 

Before presenting the results of the joint training approach, we explore two alternative 

strategies when incorporating speech separation into ASR systems.  

The first strategy, denoted as plug-and-play, is to train our acoustic models using the 

MEL features alone or the MEL+PNCC+MRCG+Fset features. At run time, we use the 

trained separation frontend to get the enhanced power spectrogram which is then passed to 

the mel-filterbank to get the enhanced MEL features. Finally, together with other robust 

features, the enhanced MEL features are passed to the acoustic model for decoding. As 

Table 2-2. Performance (%WER) comparison of proposed approach without extra robust 
features 

Approaches Acoustic Model dev. set test set 
Average -6dB -3dB 0dB 3dB 6dB 9dB Average 

Plug-and-Play 
MEL 18.22 23.58 18.53 14.85 12.42 9.68 9.56 14.77 

+sMBR 16.63 22.72 16.12 13.81 10.84 8.61 8.39 13.42 
+adaptation 16.05 21.18 15.82 12.16 10.54 8.14 7.88 12.62 

Re-training 
Enhanced MEL 18.67 25.85 19.20 15.93 12.52 9.96 9.21 15.45 

+sMBR 17.08 24.38 17.19 13.66 11.10 8.69 8.20 13.87 
+adaptation 16.59 23.54 16.40 12.76 10.55 8.37 7.66 13.21 

Re-training 
Enhanced MEL + MEL 18.31 25.31 18.83 15.69 11.94 9.23 8.89 14.98 

+sMBR 16.50 24.10 16.68 14.18 10.42 8.63 7.88 13.65 
+adaptation 16.07 22.70 16.14 13.32 9.96 7.88 7.40 12.9 

Jointly training 
frontend, 

AM and filterbank 

Jointly enhanced MEL 17.63 22.55 17.65 14.42 11.36 9.23 8.74 13.99 
+sMBR 15.28 20.44 14.66 12.39 9.81 7.73 7.38 12.07 

+adaptation 14.56 18.72 13.77 11.36 9.32 7.32 6.86 11.23 

Jointly training frontend 
and AM 

Jointly enhanced MEL 17.62 23.15 17.69 14.72 11.38 9.30 9.15 14.23 
+sMBR 15.30 20.61 14.89 12.48 9.81 7.85 7.49 12.19 

+adaptation 14.60 19.13 13.67 11.40 9.19 7.51 7.08 11.33 
Directly training a large 

DNN  
Log power spectrogram + 

MEL 19.06 24.88 18.91 15.15 12.57 10.44 9.25 15.2 
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shown in the first entry of Table 2-2, if we only use the MEL features for acoustic 

modeling, the frontend leads to 1.39% (16.16% to 14.77%), 0.5% (13.92% to 13.42%), and 

0.58% (13.20% to 12.62%) absolute improvement without sequence training or adaptation, 

with sequence training but no adaptation, and with sequence training and adaptation, 

respectively. We can see that the relative improvement of using our frontend becomes 

much smaller if the acoustic model has been sequence-trained. Note that for unsupervised 

adaptation, we learn a linear transformation of the enhanced MEL features. The first-pass 

decoding results for adaptation are obtained by applying the plug-and-play approach to the 

sequence-discriminative acoustic model. Again, the number of parameters to be learned is 

240 (40×3+40×3). Performing unsupervised adaptation on the enhanced MEL features 

leads to 0.8% (13.42% to 12.62%) average WER reduction. Similar observations can be 

found in the first entry of Table 2-3, in which we use the MEL+PNCC+MRCG+Fset 

features for acoustic modeling.  

The second alternative, denoted as re-training, is to train our acoustic models using the 

enhanced MEL features alone or the enhanced MEL+PNCC+MRCG+Fset features. At run 

time, after obtaining the enhanced MEL features, together with other robust features, we 

feed all of them to the acoustic model for decoding. Note that, again, Fset, MRCG and 

PNCC are directly extracted from the original noisy-reverberant utterances. The results are 

shown in the second entries of Table 2-2 and Table 2-3, respectively. Motivated by deep 

stacking [27], [191], the unenhanced MEL features are additionally incorporated for 

acoustic modeling. The results are reported in the third entry of Table 2-2 and Table 2-3, 

without and with extra robust features, respectively. We can see that adding the unenhanced 

MEL features for acoustic modeling brings some gains for the re-training approach. 
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Comparing the results from plug-and-play and re-training, we find that the former 

strategy typically scores higher. One possible reason is that, when re-training is used, the 

separation frontend significantly reduces the variations seen by the acoustic model at the 

training stage [137]. In addition, the distortion it introduces for the training utterances may 

be different from that for the test utterances. Another possible explanation is related to 

overfitting. Since the separation frontend is also trained on the multi-conditional training 

data, we can reasonably assume that the separation frontend performs better on the training 

set than on the development and test set. Therefore, if the enhanced training data is 

subsequently used to re-train the acoustic models, overfitting would likely happen. This is 

exactly what we encountered in our experiments. For the re-training approach, the loss of 

the acoustic model on the development set is much better than that of the plug-and-play or 

the direct multi-condition training approach; however it gives us worse performance after 

decoding. 

Table 2-3. Performance (%WER) comparison of proposed approach with extra robust 
features. 

Approaches Acoustic Model dev. set test set 
Average -6dB -3dB 0dB 3dB 6dB 9dB Average 

Plug-and-Play 
MEL+PNCC+MRCG+Fset 16.90 21.32 15.26 12.52 10.11 7.83 7.44 12.41 

+sMBR 15.34 20.04 13.64 11.56 9.56 7.64 7.08 11.59 
+adaptation 14.98 19.65 13.49 11.32 9.30 7.34 6.91 11.34 

Re-training 
Enhanced MEL+PNCC+MRCG+Fset 16.98 23.20 16.72 12.89 10.37 8.24 7.57 13.17 

+sMBR 15.80 22.96 16.16 12.55 9.55 7.86 7.34 12.74 
+adaptation 15.28 22.04 15.49 12.16 9.21 7,66 7.12 12.28 

Re-training 
Enhanced Mel+MEL+PNCC+MRCG+Fset 17.08 22.60 16.53 12.74 10.14 8.24 7.38 12.94 

+sMBR 15.52 22.87 15.58 12.61 9.40 7.70 6.76 12.49 
+adaptation 14.97 20.85 14.68 12.07 9.06 7.42 6.61 11.78 

Jointly training frontend, 
AM and filterbank 

Jointly enhanced MEL+PNCC+MRCG+Fset 15.58 20.23 14.40 11.73 9.73 7.38 7.45 11.82 
+sMBR 14.33 19.20 13.30 10.74 8.76 6.89 6.84 10.96 

+adaptation 13.81 18.23 13.02 10.39 8.67 6.86 6.61 10.63 
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2.3.3. Joint Training 

Considering that more variations are seen by the acoustic models trained on noisy-

reverberant utterances and the plug-and-play approach normally gets better performance 

on the development set as shown in Table 2-2 and Table 2-3, we use the parameters in the 

acoustic models from this approach, together with the separation frontend, to initialize the 

corresponding parameters in the joint-training DNN, and then perform joint training. When 

joint training is done, sMBR training and run-time adaptation are conducted. Note that for 

the run-time adaptation, we learn a linear transformation of the input of the separation 

frontend. The number of parameters to be learn is 322 (161+161) for each utterance. 

As reported in Table 2-2, after joint training, the performance can be improved from 

14.77% to 13.99% average WER. After sMBR training, the performance is improved to 

12.07%. The performance is further pushed up to 11.23% after run-time unsupervised 

adaption, which is helpful especially in low SNR conditions. For example, when the input 

SNR is -6 dB, the WER is reduced from 20.44% to 18.72%.  

If we do not use extra robust features for acoustic modeling, compared with plug-and-

play, we reduce the average WER by absolute 0.78% or relative 5.3% (14.77% to 13.99%) 

if only the cross-entropy criterion is used for joint training. The performance gap is 

enlarged to absolute 1.35% or relative 10.06% (13.42% to 12.07%) after sequence training 

is applied. If we further perform run-time unsupervised adaptation, the performance 

difference is further increased to absolute 1.39% or relative 11.01% (12.62% to 11.23%). 

Interestingly, the relative improvement becomes larger after sequence training and 

unsupervised adaptation are applied to the joint-training DNN. This trend can also be 

observed by comparing the first entry with the fourth one in Table 2-3, where more features 
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are used for acoustic modeling. This is desirable since, in joint modeling, the noise 

compensation module can be seamlessly combined with other ASR techniques, such as 

sequence training and adaptation, to obtain further improvement.  

As presented in the fourth and fifth entries of Table 2-2, co-adapting the filterbank with 

the separation frontend and acoustic model leads to slightly better results. If the parameters 

in the filterbank are co-adapted, the performance is 0.24% (14.23% to 13.99%) average 

WER better after joint training, 0.12% (12.19% to 12.07%) better after sMBR training, and 

0.1% (11.33% to 11.23%) better after run-time adaptation. 

These results clearly demonstrate the effectiveness of joint training. We think that it is 

due to the reduction of the distortion problem and the linguistic information back-

propagated from the acoustic model to the separation frontend. In addition, the separation 

frontend used in this study treats all the frames and T-F units equally important, without 

considering the underlying linguistic information that is critical for senone states 

discrimination. In contrast, with joint modeling, the separation frontend can be informed 

by the acoustic model to produce more discriminative enhancement results. 

The best performance we obtained on the test set is 11.23% average WER if no extra 

robust features are used. With extra robust features, the performance is further improved 

to 10.63%. With more sophisticated training and adaptation techniques, the effectiveness 

of extra features is reduced. This would be welcome as using a small number of features, 

such as log mel-spectrogram, is favored in industry. On the other hand, incorporating more 

robust features for acoustic modeling is a simple and effective technique towards improved 

robustness of ASR systems.  
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It might be argued that the joint training approach just performs acoustic modeling 

multi-conditionally by training a very deep and large DNN on a combination of features. 

To address this possibility, we train a DNN with 12 (4+1+7) hidden layers, each with 1,600 

ReLUs, on the combination of the log power spectrogram and MEL features (without 

robust features) using multi-condition training directly. Note that the number of parameters 

in this new DNN is almost the same as that in the joint-training DNN. The performance, 

shown in the last entry of Table 2-2, is much worse than that of joint training. This is likely 

because the joint training approach has better network architecture and better parameter 

initialization. 

2.3.4. Comparison with Other Studies 

In Table 2-4, we list the results of several other studies that report competitive results 

on the same dataset. All of them use the DNN-HMM hybrid approach and clean alignments 

from clean utterances as the labels to train their acoustic models. The system described in 

[190] employs an RNN to perform acoustic modeling on the noisy-reverberant training 

data and does not use any speech enhancement or separation. Chen et al. [19] utilize LSTM 

for both speech separation and acoustic modeling. Their ASR systems follow the re-

 

Table 2-4. Performance (%WER) comparison of proposed approach with other studies. 

Study dev. set test set 
Average -6dB -3dB 0dB 3dB 6dB 9dB Average 

Weng et al. [190] - 38.11 29.07 22.98 17.92 14.96 13.60 22.77 
Chen et al.[19] 20.11 - - - - - - 16.04 

Narayanan-Wang [116] - 25.1 19.2 15.1 12.8 10.5 9.5 15.4 
Weninger et al. [191] 17.87 23.48 17.02 13.71 10.72 8.95 8.67 13.76 

sMBR+joint training+multi-stream 
+run-time adaptation (proposed) 13.81 18.23 13.02 10.39 8.67 6.86 6.61 10.63 
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training approach, and an iterative strategy using alignment information from their ASR 

system is proposed to improve speech separation and recognition simultaneously. 

Weninger et al. [191] build their frontend by training an RNN with the LSTM activation 

function to predict a phase-sensitive spectrum approximation objective function. They also 

use re-training and additional alignment information from ASR systems to boost the 

performance of speech separation. Their DNN based acoustic models are built in a way 

similar to the standard recipes in the Kaldi toolkit. Both enhanced and unenhanced log mel-

filterbank features without delta components are utilized for acoustic modeling, and no 

extra robust features are used in their study. Han et al. [53] use a spectral mapping based 

separation frontend to enhance both the training and test set first, and perform acoustic 

modeling on the enhanced training set using the standard DNN training recipes in the Kaldi 

toolkit. Their overall WER is 15.6%, which is slightly worse than obtained by Narayanan 

and Wang [116]. To our knowledge, the results by Weninger et al. [191] are the best on 

the CHiME-2 dataset reported in the literature. As shown in Table 2-4, we have now pushed 

the performance to 10.63% average WER. This represents a 22.75% relative error 

reduction over [191], and the best result at the time of publication.  

2.4. Conclusion 

Speech separation and recognition are two closely related problems. In this study, a 

joint training strategy is presented to integrate speech separation and acoustic modeling at 

the training stage. By further applying sequence training and run-time adaptation, the 

performance advantage of the joint modeling approach becomes even larger. Still, speech 

separation is done in a bottom-up fashion at the test stage. How to leverage top-down 
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information, such as the knowledge from language models, to help speech separation at the 

test stage is an interesting direction for future research. We think that the joint modeling 

approach presented in this paper could be an important step towards this goal, because 

language models are about the relations among words, or in a wider sense, among 

phonemes or states, while speech separation is commonly done in the T-F domain or at the 

signal level [173]. There is clearly a gap between them. The joint modeling approach 

utilizes acoustic models to bridge these two modules so that the information can be 

potentially flowed back and forth. 

Equation break  
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Chapter 3.   Robust Speaker Localization 

 

This chapter studies robust speaker localization in noisy and reverberant conditions, 

which serves as a key step for multi-channel speech enhancement and source separation. 

The main idea is to identify T-F units dominated by direct sound and only use these T-F 

units for speaker localization. This work has been published in Interspeech 2018 [174] and 

IEEE/ACM T-ASLP in 2019 [175]. 

3.1. Introduction 

Robust speaker localization has many applications in real-world tasks. The ability to 

localize a speaker in daily environments is important for a voice-based interface such as 

Amazon Echo. Localization is also widely used in beamforming for speech separation or 

enhancement [40]. 

Conventionally, GCC-PHAT [80] (or SRP-PHAT [28]) and MUSIC [134] are the two 

most popular algorithms for sound source localization. However, their speaker localization 

performance is unsatisfactory in noisy and reverberant environments; in such 

environments, the summation of GCC coefficients exhibits spurious peaks and the noise 

subspace constructed in the MUSIC algorithm does not correspond to the true noise 

subspace. 
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To improve the robustness, frequency-dependent SNR weighting is designed to 

emphasize frequencies with higher SNR for the GCC-PHAT algorithm. SNR can be 

computed in various ways, such as rule-based methods [155] and VAD based algorithms 

[127]. T-F unit level SNR based on minima controlled recursive averaging or inter-channel 

coherence has also been applied to emphasize T-F units with higher SNR or coherence [9], 

[124], [156]. However, these algorithms typically assume stationary noise, which is an 

unrealistic assumption in real-world acoustic environments. 

While it is difficult to perform localization in noisy and reverberant environments, with 

two ears the human auditory system shows a remarkable capacity at localizing sound 

sources. Psychoacoustic evidence suggests that sound localization largely depends on 

sound separation [12], [54], [163], which operates according to auditory scene analysis 

principles [12]. Motivated by perceptual organization, we approach robust speaker 

localization from the angle of monaural speech separation. 

It is well-known that, even for a severely corrupted utterance, there are still many T-F 

units dominated by target speech [163]. As analyzed [45], [106], [156], [196], [211], [216], 

these T-F units carry relatively clean phase and may be sufficient for speaker localization. 

Motivated by this observation, our approach aims at identifying speech dominant T-F units 

at each microphone channel and only using such T-F units for multi-channel localization. 

A profound consequence of this new approach is that deep learning can be brought to bear 

on T-F unit level classification or regression for robust localization.  

In this context, we perform robust DOA estimation by utilizing deep learning based T-

F masking. We make three contributions. First, DNN estimated masks are utilized to 

improve the robustness of conventional cross-correlation, beamforming and subspace 
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based algorithms [28] for DOA estimation in environments with strong noise and 

reverberation, following previous research along similar directions [119], [201]. A key 

ingredient, we believe, is balancing the contributions of individual frequency bands for the 

DOA estimation of broadband speech signals. Second, we find that using the IRM and its 

variants, which consider direct sound as the target signal, leads to high localization 

accuracy, suggesting that such training targets are very effective for robust speaker 

localization (see also [119]). Third, we show that the trained model is versatile in 

application to sensor arrays with diverse geometries and with various numbers of 

microphones. 

The rest of this chapter is organized as follows. The proposed algorithms are presented 

in Chapter 3.2. Experimental setup and evaluation results are reported in Chapter 3.3, and 

3.4. Chapter 3.5 concludes this paper.  

3.2. System Description 

We start with a review of the classic GCC-PHAT algorithm, which motivates our 

algorithm design. The following three sections propose three localization algorithms based 

on mask-weighted GCC-PHAT, mask-weighted steered-response SNR, and steering 

vectors. They respectively represent cross-correlation , beamforming and subspace based 

approaches for localization. Deep learning based T-F masking for the purpose of speaker 

localization is described in the last subsection. 
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3.2.1. GCC-PHAT 

Suppose that there is only one target speaker, the physical model for a pair of signals 

in noisy and reverberant environments under the narrowband approximation assumption 

can be formulated as 

𝒀(𝑡, 𝑓) = 𝒄(𝑓; 𝑞)𝑆Q(𝑡, 𝑓) + 𝑯(𝑡, 𝑓) + 𝑵(𝑡, 𝑓), (3.1) 

where 𝑆(𝑡, 𝑓) is the STFT value of the direct-path signal of the target speaker captured by 

a reference microphone 𝑞 at time 𝑡 and frequency 𝑓, and 𝒄(𝑓; 𝑞) is the relative transfer 

function. 𝒄(𝑓; 𝑞)𝑆Q(𝑡, 𝑓), 𝑯(𝑡, 𝑓), 𝑵(𝑡, 𝑓), and 𝒀(𝑡, 𝑓) respectively represent the STFT 

vectors of the direct signal, its reverberation, reverberated noise, and received mixture. By 

designating the first microphone as the reference, the relative transfer function 𝒄(𝑓; 𝑞) in 

the two-microphone case can be described as 

𝒄(𝑓; 𝑞) = �1, 𝐴(𝑓)𝑒g�a�
y
�y ¡

∗
¢
£
, (3.2) 

where 𝜏∗  denotes the time difference of arrival (TDOA) between the two signals in 

seconds, 𝐴(𝑓) is a real-valued relative gain, 	𝑗 is the imaginary unit, 𝑓m is the sampling rate 

in Hz, 𝐷 is the number of discrete Fourier transform (DFT) frequencies, and [∙]£ stands for 

transpose. The range of 𝑓 is from 0 to 𝐷 2⁄ .  

The classical GCC-PHAT algorithm [80], [28] estimates the time delay of a pair of 

microphones 𝑝 and 𝑞 by computing their generalized cross-correlation coefficients with a 

weighting mechanism based on phase transform 

𝐺𝐶𝐶ª,Q(𝑡, 𝑓, 𝑘) = Real ­
𝑌ª(𝑡, 𝑓)𝑌Q(𝑡, 𝑓)`

_𝑌ª(𝑡, 𝑓)__𝑌Q(𝑡, 𝑓)`_
𝑒g�a�

y
�y ¡®,¯(°)± (3.3) 



41 

= cos k	 ∠𝑌ª(𝑡, 𝑓) − ∠𝑌Q(𝑡, 𝑓) − 2𝜋
𝑓
𝐷 𝑓m𝜏ª,Q(𝑘)l, 

where Real{∙} extracts real component and ∠(∙) extracts phase. 𝜏ª,Q(𝑘) = (𝑑°Q − 𝑑°ª) 𝑐m⁄  

denotes the time delay of a candidate direction or location 𝑘, where 𝑐m is the speed of sound 

in the air, and 𝑑°Q and 𝑑°ª respectively represent the distance between the hypothesized 

sound source to microphone 𝑝 and 𝑞. Assuming that the target speaker is still within a 

single utterance, the GCC coefficients are then summated and the time delay producing the 

largest summation represents the delay estimate. 

Intuitively, this algorithm first aligns two microphone signals using a candidate time 

delay 𝜏 and then computes their cosine distance at each T-F unit pair. If the cosine distance 

is close to one, it means that the candidate time delay is close to the true time delay at that 

T-F unit. The summation functions as a voting mechanism to combine the observations at 

all the unit pairs. Since each GCC coefficient is naturally bounded between -1 and 1, each 

T-F unit pair has an equal contribution to the summation. We emphasize that PHAT 

weighting [14], [210], i.e. the magnitude normalization term in Eq. (3.3), is essential, as 

the energy of human speech is mostly concentrated in lower frequency bands. If the 

magnitude normalization is not performed, lower frequency components would have much 

larger GCC coefficients and dominate the summation, making it less sharp. In addition, the 

scales of the two signals are usually different in near-field or binaural cases. It is hence 

beneficial to remove the influence of different energy levels. 

We emphasize that summation over frequencies is very important for broadband speech 

signals. Because of spatial aliasing [40], the cross-correlation function at high frequencies 
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is typically periodic, containing multiple peaks. It is important to summate over all the 

frequencies to sharpen the peak corresponding to the true timed delay [163].  

Although GCC-PHAT performs well in environments with low to moderate 

reverberation, it is susceptible to strong reverberation and noise. To see this, suppose that 

there is a strong directional noise source. There would be many T-F units dominated by the 

noise source. In this case, the noise source would exhibit the highest peak in the summated 

GCC coefficients. Similarly, diffuse noise and reverberation would broaden GCC peaks 

and corrupt TDOA estimation. 

3.2.2. Mask-Weighted GCC-PAHAT 

The time delay information is contained in the direct-path signal 𝒄(𝑓; 𝑞)𝑆Q(𝑡, 𝑓) . 

Including the GCC coefficients of any T-F unit pairs dominated by noise or reverberation 

in the summation would weaken localization performance. To improve robustness, we 

multiply the GCC coefficients for a pair of microphones and a masking-based weighting 

term following [156], [45] 

𝑀𝐺𝐶𝐶ª,Q(𝑡, 𝑓, 𝑘) = 𝑀�ª,Q
(m)(𝑡, 𝑓)𝐺𝐶𝐶ª,Q V𝑡, 𝑓, 𝜏ª,Q(𝑘)\, (3.4) 

where 𝑀�ª,Q
(m)(𝑡, 𝑓) represents the importance of the T-F unit pair for TDOA estimation 

(superscript (s) indicates target signal – see Eq. (3.1)). It is computed using 

𝑀�ª,Q
(m)(𝑡, 𝑓) = 𝑀�ª(𝑡, 𝑓)𝑀�Q(𝑡, 𝑓), (3.5) 

where 𝑀�ª and 𝑀�Q are the T-F masks representing the estimated speech portion at each T-

F unit of microphone 𝑝 and 𝑞, respectively. The estimated masks should be close to one 

for T-F units dominated by direct sound signals and zero for T-F units dominated by noise 
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or reverberation. Mask estimation based on deep learning will be discussed later in Chapter 

3.2.5. The time delay or direction is then computed as 

𝑘� = argmax
°

� ��𝑀𝐺𝐶𝐶ª,Q(𝑡, 𝑓, 𝑘)
�/a

y¸?x(ª,Q)¹º

, (3.6) 

where Ω represents the set of microphones pairs in an array used for the summation. Note 

that the above delay estimation is formulated for a general array with at least two sensors. 

Through the product of the masks of individual microphone channels, the weighting 

mechanism in Eq. (3.5) places more weights on the T-F units dominated by target speech 

across all the microphone channels. This makes sense as target-dominant T-F units carry 

cleaner phase information for localization than other ones. Therefore, adding this weighting 

term should sharpen the peak corresponding to the target source in the summation and 

suppress the peaks corresponding to noise sources and reverberation. 

At a conceptual level, T-F masking guides localization in the following sense. First, T-

F masking serves to specify what the target source is through supervised training. Although 

we are interested in speaker localization in this study, the framework does not change if 

one is interested in localizing, for example, musical instruments instead. Second, masking 

suppresses the impact of interfering sounds and reverberation in localization. Without the 

guidance of masking, traditional DOA estimation could be considered blind as it is 

indiscriminately based on sound energy in one form or another.      

One property of the proposed algorithm is that, for relatively clean utterances, 

estimated mask values would all be close to one. In such a case, the proposed algorithm 

simply reduces to the classic GCC-PHAT algorithm, which is known to perform very well 

in clean environments [28]. 
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We point out that our approach is different from applying the GCC-PHAT algorithm 

to enhanced speech signals obtained via T-F masking. To explain this, let us substitute 

𝑀�ª(𝑡, 𝑓)𝑌ª(𝑡, 𝑓) and 𝑀�Q(𝑡, 𝑓)𝑌Q(𝑡, 𝑓) for 𝑌ª(𝑡, 𝑓) and 𝑌Q(𝑡, 𝑓) in Eq. (3.3). Doing it this 

way produces the same GCC coefficients as using the unprocessed 𝑌ª(𝑡, 𝑓) and 𝑌Q(𝑡, 𝑓), 

because the real-valued masks are cancelled out due to the PHAT weighting (unless time-

domain re-synthesis is performed). The proposed algorithm utilizes estimated masks as a 

weighting mechanism to identify for localization speech dominant T-F units where the 

phase information is less contaminated, as localization cues are mostly contained in inter-

channel phase differences. 

Our study first estimates a T-F mask for each single-channel signal and then combines 

the estimated masks using their product. In this way, the resulting DNN for mask 

estimation can be readily applied to microphone arrays with various numbers of 

microphones arranged in arbitrary geometry, although geometrical information is still 

necessary for DOA estimation. This flexibility distinguishes our algorithms from 

classification based approaches [15], [38], [98], [99], [199] for DOA estimation, which 

typically require fixed microphone geometry, fixed number of microphones and fixed 

spatial resolution for DNN training and testing. In addition, the trained neural network for 

mask estimation can be directly employed for related tasks such as VAD, spatial covariance 

matrix estimation, beamforming, and single-channel post-filtering [58], [213].  

Following [156], [45], a recent study [119] proposed to use DNN based T-F masking 

to improve the SRP-PHAT algorithm. This method first averages the log-magnitudes from 

all the channels and then uses a convolutional neural network to estimate an average mask 

from the averaged magnitudes. The estimated average mask is then used as weights for 



45 

SRP-PHAT. Averaging log-magnitudes would not be a good idea when the signals at 

different channels vary significantly, for example in the binaural case where interaural level 

differences can be large. In addition, averaging would incorporate contaminated T-F units 

for DOA estimation. In contrast, our approach estimates a mask from each microphone 

signal separately, using features extracted from that microphone. We then combine 

estimated masks using the product rule in Eq. (3.5). As a result, our approach places more 

weights on the T-F units dominated by target speech in all the microphone channels. It 

should, however, be noted that performing channel-wise mask estimation comes at the cost 

of increased computation compared to estimating an average mask. Furthermore, as 

described in Chapter 3.2.5, our study uses powerful recurrent neural networks (RNNs) to 

estimate the IRM [166] and phase-sensitive mask [35], [170], yielding better mask 

estimation for localization. 

3.2.3. Mask-Weighted Steered Response SNR 

The GCC-PHAT, SRP-PHAT or BeamScan [84], [217] algorithms steer a beam 

towards a hypothesized direction and compute the steered-response power of noisy speech 

to determine whether the hypothesized direction is the target direction, i.e. with the 

strongest response. The proposed mask-weighted GCC-PHAT algorithm utilizes a T-F 

mask to emphasize speech dominant T-F units so that the steered-response power of 

estimated target speech, rather than noisy speech, is used as the location indicator. This 

section uses steered-response SNR as the indicator, as SNR considers both speech power 

and noise power, and more importantly, the SNR at each frequency can be bounded 

between zero and one so that DOA estimation would not be biased towards high-energy 

lower-frequency components. Specifically, for each direction of interest, we design a 
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beamformer to point towards that direction, and the direction producing the highest SNR 

is considered as the predicted target direction [9]. Speech and noise covariance matrices 

for beamforming and SNR computation can be robustly estimated with the guidance of T-

F masking. 

Let 𝒀ª,Q(𝑡, 𝑓) = =𝑌ª(𝑡, 𝑓), 𝑌Q(𝑡, 𝑓)B
£ . The speech and noise covariance matrices 

between microphone 𝑝 and 𝑞 at each frequency are computed in the following way, 

Φ�ª,Q
(m) (𝑓) =� 𝑀�ª,Q

(m)(𝑡, 𝑓)𝒀ª,Q(𝑡, 𝑓)	𝒀ª,Q(𝑡, 𝑓)`
x

� 𝑀�ª,Q
(m)(𝑡, 𝑓)

x
¼  (3.7) 

Φ�ª,Q
(½)(𝑓) =� 𝑀�ª,Q

(½)(𝑡, 𝑓)𝒀ª,Q(𝑡, 𝑓)𝒀ª,Q(𝑡, 𝑓)`
x

� 𝑀�ª,Q
(½)(𝑡, 𝑓)

x
¼  (3.8) 

where 𝑀�ª,Q
(m)(𝑡, 𝑓)  is given in Eq. (3.5) and 𝑀�ª,Q

(½)(𝑡, 𝑓)  is computed as (superscript (n) 

indicates noise or interference) 

𝑀�ª,Q
(½)(𝑡, 𝑓) = V1 −𝑀�ª(𝑡, 𝑓)\ V1 − 𝑀�Q(𝑡, 𝑓)\ (3.9) 

Motivated by the work in masking-based beamforming for ASR [203], [58] (see also 

[213]), the weights in Eq. (4.11) are empirically designed so that only the T-F units 

dominated by speech in both microphone channels are utilized to compute the speech 

covariance matrix, and the more speech-dominant a T-F unit is, the more weight is placed 

on it. The noise covariance matrix is computed in a similar fashion, where the noise mask 

is simply obtained in Eq. (3.9) as the complement of the speech mask. 

Next, under the plane-wave and far-field assumption [40], the steering vector for a 

candidate direction 𝑘 is hypothesized as 
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𝒄ª,Q(𝑓, 𝑘) = ¾𝑒g�a�
y
�y 
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 (3.10) 

Then, 𝒄ª,Q(𝑓, 𝑘) is normalized to unit length 

𝒄Ãª,Q(𝑓, 𝑘) =
𝒄ª,Q(𝑓, 𝑘)
Ä𝒄ª,Q(𝑓, 𝑘)Ä

 (3.11) 

and an MVDR beamformer is constructed 

𝒘Åª,Q(𝑓, 𝑘) =
Φ�ª,Q
(½)(𝑓)g?𝒄Ãª,Q

𝒄Ãª,Q`Φ�ª,Q
(½)(𝑓)g?𝒄Ãª,Q

 (3.12) 

Afterwards, the SNR of the beamformed signal is estimated as the ratio between the 

beamformed speech energy and beamformed noise energy 

SNRª,Q(𝑓, 𝑘) =
𝒘Åª,Q(𝑓, 𝑘)`Φ�ª,Q

(m) (𝑓)𝒘Åª,Q(𝑓, 𝑘)

𝒘Åª,Q(𝑓, 𝑘)`Φ�ª,Q
(½)(𝑓)𝒘Åª,Q(𝑓, 𝑘)

 (3.13) 

Finally, the speaker location is estimated as 

𝑘� = argmax
°

� �SNRª,Q(𝑓, 𝑘)
�/a

y¸?(ª,Q)¹º

 (3.14) 

One issue with Eq. (3.13) is that the computed energy and SNR are unbounded at each 

frequency band. In such cases, several frequency bands may dominate the SNR calculation. 

To avoid this problem, we restrict it to between zero and one in the following way 

SNRª,Q(𝑓, 𝑘) =
	𝒘Åª,Q(𝑓, 𝑘)`Φ�ª,Q

(m) (𝑓)𝒘Åª,Q(𝑓, 𝑘)

𝒘Åª,Q(𝑓, 𝑘)`Φ�ª,Q
(m) (𝑓)𝒘Åª,Q(𝑓, 𝑘) + 𝒘Åª,Q(𝑓, 𝑘)`Φ�ª,Q

(½)(𝑓)𝒘Åª,Q(𝑓, 𝑘)
 (3.15) 

Eq. (3.15) shares the same spirit as PHAT weighting, where the GCC coefficient at each 

unit pair is bounded between -1 and 1, making each frequency contribute equally to the 

summation. 
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One can also explore alternative ways of weighting different frequency bands. One of 

them is to place more weights on higher-SNR frequency bands, i.e. 

SNRª,Q(𝑓, 𝑘) =
𝑀Èª,Q(𝑓)	𝒘Åª,Q(𝑓, 𝑘)`Φ�ª,Q

(m) (𝑓)𝒘Åª,Q(𝑓, 𝑘)

𝒘Åª,Q(𝑓, 𝑘)`Φ�ª,Q
(m) (𝑓)𝒘Åª,Q(𝑓, 𝑘) + 𝒘Åª,Q(𝑓, 𝑘)`Φ�ª,Q

(½)(𝑓)𝒘Åª,Q(𝑓, 𝑘)
 (3.16) 

𝑀Èª,Q(𝑓) =� 𝑀�ª,Q
(m)(𝑡, 𝑓)

x
� 𝑀�ª,Q

(m)(𝑡, 𝑓)
x,y

¼  (3.17) 

where the sum of the speech mask 𝑀�ª,Q
(m)(𝑡, 𝑓)  within each frequency band is used to 

indicate the importance of that band for localization. This frequency weighting, which 

counters the energy normalization, is motivated by the mask-weighted GCC-PHAT 

algorithm, which implicitly places more weights on frequencies with larger 𝑀Èª,Q(𝑓). In 

our experiments, consistently better performance is observed using Eq. (3.16) than using 

Eq. (3.13) and (3.15)  (see Chapter 3.4). 

3.2.4. DOA Estimation Based on Steering Vectors  

In the recent CHiME-3 and 4 challenges [8], [160], deep learning based T-F masking 

has been prominently employed for acoustic beamforming and robust ASR [58], [203], 

[213]. The main idea is to utilize estimated masks to compute the spatial covariance 

matrices and steering vectors that are critical for accurate beamforming. Remarkable 

improvements in terms of ASR performance have been reported over conventional 

beamforming techniques that employ traditional DOA estimation algorithms such as GCC-

PHAT [2] and SRP-PHAT [8] for steering vector computation. This success is largely 

attributed to the power of deep learning based mask estimation [161]. In this context, we 
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propose to perform DOA estimation from estimated steering vectors, as they contain 

sufficient information about the underlying target direction.  

 Following [203], [213], the steering vector for microphone 𝑝  and 𝑞 , 𝑐̂ª,Q(𝑓) , is 

estimated as the principal eigenvector of the estimated speech covariance matrix computed 

using Eq. (3.7). If Φ�ª,Q
(m) (𝑓) is accurately estimated, it would be close to a rank-one matrix, 

as the target speaker is a directional source and its principal eigenvector is a reasonable 

estimate of the steering vector [40]. 

To derive the underlying time delay or direction, we enumerate all the candidate 

directions and find the direction that maximizes the following similarity: 

Figure 3-1. Illustration of DOA estimation based on estimated steering vectors for a 2.4 s 
two-microphone (spacing: 24 cm) signal with babble noise. The SNR level is -6 dB and 
reverberation time is 0.16 s. Dots indicate the estimated phase differences ∠(𝑐ª̂,Q(𝑓))? −
∠(𝑐ª̂,Q(𝑓))a obtained using the IRM, and crosses the fitted phase differences 2𝜋 y

�
𝑓m𝜏ª,Q(𝑘) 

for a candidate direction 𝑘 at each frequency. 
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𝑆𝑖𝑚ª,Q(𝑓, 𝑘) = 𝑐𝑜𝑠 k∠ V𝑐̂ª,Q(𝑓)\
?
− ∠V𝑐̂ª,Q(𝑓)\

a
− 2𝜋

𝑓
𝐷 𝑓m𝜏ª,Q(𝑘)l (3.18) 

𝑘� = argmax
°

� �𝑆𝑖𝑚ª,Q(𝑓, 𝑘)
�/a

y¸?	(ª,Q)¹º

 (3.19) 

The rationale is that 𝒄�ª,Q(𝑓) is independently estimated at each frequency, and therefore 

the estimated phase difference, ∠V𝑐̂ª,Q(𝑓)\
?
− ∠V𝑐̂ª,Q(𝑓)\

a
, between the two complex 

values in 𝒄�ª,Q(𝑓) does not strictly follow the linear phase assumption. We enumerate all 

the candidate directions and find as the final estimate a direction 𝑘 with its hypothesized 

phase delay 2𝜋 y
�
𝑓m𝜏ª,Q(𝑘)  that best matches the estimated phase difference at every 

frequency band. As illustrated in Figure 3-1, this approach can be understood as performing 

circular linear regression between the estimated phase difference and frequency index 𝑓, 

where the slope is determined by 𝜏ª,Q(𝑘) and the periodic cosine operation is employed to 

deal with phase wrapping. The cosine operation is naturally bounded between -1 and 1, 

thus explicit energy normalization as in Eq. (3.3) and (3.15) is not necessary. When there 

are more than two microphones, we simply combine all the microphone pairs by the 

summation. We optimize the similarity function through explicit enumeration. Eq. (3.18) 

in form is similar to Eq. (3.3). The key difference is that the phase difference per frequency 

is obtained from robustly estimated steering vectors rather than from the observed phase 

difference at each unit pair. 

Similar to Eq. (3.16), we emphasize the frequency bands with higher SNR using 

𝑀Èª,Q(𝑓) given in Eq. (3.17). 
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𝑆𝑖𝑚ª,Q(𝑓, 𝑘) = 𝑀Èª,Q(𝑓)𝑐𝑜𝑠 k∠V𝑐̂ª,Q(𝑓)\
?
− ∠V𝑐̂ª,Q(𝑓)\

a
− 2𝜋

𝑓
𝐷 𝑓m𝜏ª,Q(𝑘)l (3.20) 

Previous studies [124], [3], [151] have computed time delays from estimated steering 

vectors at each frequency band or each T-F unit pair. They divide the estimated phase 

difference by the angular frequency to get the time delay, assuming that the microphones 

are placed sufficiently close and no phase wrapping occurs. However, using closely spaced 

microphones would make the time delay too small to be accurately estimated and also make 

location triangulation harder. When phase wrapping is present, multiple time delays could 

give exactly the same phase difference at a specific frequency band. Our method addresses 

this ambiguity via enumerating all the time delays and checking the similarity measure in 

Eq. (3.18) of each time delay. This method is sensible because a time delay 

deterministically corresponds to a phase difference. Another difference is that we use DNN 

based T-F masking for steering vector computation. In contrast, previous studies use spatial 

clustering [3] or empirical rules [151]. 

Our proposed algorithm differs from the classic MUSIC algorithm [134] and its recent 

extension in [201] where a recurrent neural network with uni-directional long short-term 

memory (LSTM) is used to estimate the IBM and the estimated mask is then utilized to 

weight spatial covariance matrix estimation for MUSIC. Whereas these studies find the 

target direction with its hypothesized steering vector orthogonal to the noise subspace, the 

proposed algorithm directly searches for a direction that is closely matched to target 

steering vectors between each pair of microphones at all frequencies. The steering vector 

in our study is robustly estimated using supervised T-F masking. Similar to GCC-PHAT, 

our algorithm implicitly equalizes the contribution of each frequency as all frequencies 
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contain information for the DOA estimation of broadband speech signals. In contrast, the 

pseudospectrum at each frequency in the broadband MUSIC algorithm used in [201] is 

unbounded, and some frequencies could dominate the summation of the pseudospectrams.  

3.2.5. Deep Learning Based T-F Masking 

Clearly, the estimated mask of each microphone signal 𝑀�ª plays an essential role in 

the proposed algorithms.  Deep learning based T-F masking has advanced monaural speech 

separation and enhancement performance by large margins [161]. Many DNNs have been 

applied to T-F masking. Among them, RNNs with bi-directional LSTM (BLSTM) have 

shown consistently better performance over feed-forward neural networks, convolutional 

neural networks, simple RNNs [176], and RNNs with uni-directional LSTM [191], [66], 

due to their better modeling of contextual information. In this study, we train an RNN with 

BLSTM to estimate the IRM (see Chapter 3.3 for more details of BLSTM training). When 

computing the IRM of a noisy and reverberant utterance, we consider the direct sound as 

the target signal and the remaining components as interference, as the direct sound contains 

phase information for DOA estimation. 

IRMª(𝑡, 𝑓) = Î
_𝑐ª(𝑓; 𝑞)𝑆ª(𝑡, 𝑓)_

a

_𝑐ª(𝑓; 𝑞)𝑆ª(𝑡, 𝑓)_
a + _𝐻ª(𝑡, 𝑓) + 𝑁ª(𝑡, 𝑓)_

a (3.21) 

See Eq. (3.1) for relevant notations in the above equation.  

In single-channel speech enhancement, the estimated real-valued mask is element-wise 

multiplied with the STFT coefficients of unprocessed noisy speech to obtain enhanced 

speech [166].  In this study, we use an estimated IRM to weight T-F units for DOA 

estimation. Our study uses log power spectrogram features for mask estimation. 
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The IRM is ideal for speech enhancement only when the mixture phase is the same as 

the clean phase at each T-F unit. The phase-sensitive mask (PSM) [35], [170] takes the 

phase difference into consideration by scaling down the ideal mask when the mixture phase 

is different from the clean phase using a cosine operation. In a way, it represents the best 

mask if a real-valued mask is multiplied with the STFT coefficients of unprocessed noisy 

speech for enhancement [35], [192]. We define a form of the phase-sensitive mask in the 

following way: 

PSMª(𝑡, 𝑓) = max	 Ñ0, IRMª(𝑡, 𝑓)	cos	 k∠𝑌ª(𝑡, 𝑓) − ∠ V𝑐ª(𝑓; 𝑞)𝑆ª(𝑡, 𝑓)\lÒ (3.22) 

The inclusion of phase in an ideal mask seems particularly suited for our task as phase 

is key for localization and we need to identify T-F units with cleaner phase for this task. 

The cosine term serves to reduce the contributions of contaminated T-F units for 

localization. Note the difference between the PSM defined in Eq. (3.22) and the definition 

in [35]. 

3.3. Experimental Setup 

The proposed localization algorithms are evaluated in reverberant environments with 

strong diffuse babble noise. Our neural network is trained only on simulated RIRs using 

just single-channel information for mask estimation, and directly tested on three unseen 

sets of RIRs for DOA estimation using microphone arrays with various numbers of 

microphones arranged in diverse ways. An illustration of the test setup is shown in Figure 

3-2. The first test set includes a relatively matched set of simulated two-microphone RIRs, 
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the second set consists of real RIRs measured on an eight-microphone array, and the third 

set contains real binaural RIRs (BRIR) measured on a dummy head. 

The RIRs used in the training and validation data are simulated using an RIR generator 

[47], which is based on the classic image method. An illustration of this setup is shown in 

Figure 3-2(a). For the training and validation set, we place 36 different interfering speakers 

at the 36 directions uniformly spaced between -87.5° and 87.5° in steps of 5°, i.e. one 

different competing speaker in each direction, resulting in a 36-talker diffuse babble noise. 

The target speaker is randomly placed at one of the 36 directions. For the testing data, we 

put 37 different interference speakers at the 37 directions spanning from −90° to 90° in 

steps of 5° (one different competing speaker in each direction), and the target speaker 

randomly at one of the 37 directions. This way, the test RIRs are different from the RIRs 

used for training and validation. The distance between each speaker and the array center is 

1.5 m (see Figure 3-2(a)). The room size is fixed at 8 × 8 × 3 m, and the two microphones 

are placed around the center of the room. The spacing between the two microphones is 0.2 

m and the microphone heights are both set to 1.5 m. The reverberation time (T60) of each 

mixture is randomly selected from 0.0 s to 1.0 s in steps of 0.1 s. Target speech comes from 

the IEEE corpus [68] with 720 sentences uttered by a female speaker. We split the 

 
 

 
Figure 3-2. Illustration of (a) two-microphone setup, (b) eight-microphone setup, and (c) 

binaural setup. 
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utterances into sets of 500, 100 and 120 (in the same order as listed in the IEEE corpus) to 

generate training, validation and test data. To create the diffuse babble noise for each 

mixture, we randomly pick 37 (or 36) speakers from the 462 speakers in the TIMIT training 

set and concatenate all the utterances of each speaker, and then place them at all 37 (or 36) 

directions, with a randomly chosen speech segment of each speaker per direction. Note that 

we use the first half of the concatenated utterance of each speaker to generate the training 

and validation diffuse babble noise, and the second half to generate the test diffuse noise. 

There are in total 50,000, 1,000, and 3,000 two-channel mixtures in the training, validation 

and test set, respectively. The average duration of the mixtures is 2.4 s. The input SNR 

computed from reverberant speech and reverberant noise is fixed at -6 dB. Note that if the 

direct sound is considered as target speech and the remaining signal as noise, as is done in 

Eq. (3.21) and (3.22), the SNR will vary a lot and be much lower than -6 dB, depending on 

the direct-to-reverberant ratio (DRR) of the RIRs. We therefore fix the SNR between the 

reverberant speech and reverberant noise at -6 dB and systematically vary the RIRs to 

change the SNR between the direct sound signal and the remaining components. 

We train our BLSTM using all the single-channel signals (50,000×2 in total) in the 

training data. The log power spectrogram is used as the input features for mask estimation. 

Global mean-variance normalization is performed on the input features. The BLSTM 

consists of two hidden layers each with 600 units in each direction. Sigmoidal units are 

utilized in the output layer, as the IRM and PSM are bounded between zero and one. During 

training, the Adam algorithm is utilized to minimize the mean squared error. The frame 

length is 32 ms, the frame shift is 8 ms, and the sampling rate is 16 kHz. A 512-point FFT 

(fast Fourier transform) is performed to extract 257-dimensional log spectrogram feature 
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at each frame. The input and output dimension are thus both 257. The sequence length for 

BLSTM training and testing is just the utteance length. 

The proposed algorithms are also evaluated on the Multi-Channel Impulse Responses 

Database [50] measured at Bar-Ilan University using a set of eight-microphone linear 

arrays. We use the microphone array with 8 cm spacing between the two center 

microphones, and 4 cm spacing between the other adjacent microphones in our 

experiments, i.e. 4-4-4-8-4-4-4. The setup is depicted in Figure 3-2(b). The RIRs are 

measured in a room with the size 6×6×2.4 m in steps of 15° from −90° to 90°, at a 

distance of 1.0 and 2.0 m to the array center, and at three reverberation time (0.16, 0.36 

and 0.61 s). Similar to the two-microphone setup, the IEEE and TIMIT utterances are 

utilized to generate 3,000 eight-channel test utterances for each of the two distances. We 

put one different interference speaker at each of the 26 locations, resulting in a 26-talker 

diffuse babble noise. For each of the two distances, the target speaker is placed at one of 

the 11 interior locations on the hemi-circle (to avoid endfire directions). Note that the RIRs, 

number of microphones, source-to-array distance, and microphone geometry in this dataset 

are all unseen during training. In addition, the diffuse babble noise is generated using 

different locations and different number of interfering speakers. The trained BLSTM is 

directly tested on the generated test utterances using randomly selected sets of microphones 

to demonstrate the versatility of our approach to arrays with varying numbers of 

microphones arranged in diverse geometries. 

We also evaluate our algorithm on a binaural setup illustrated in Figure 3-2(c). The real 

BRIRs1 captured using a Cortex head and torso simulator (HATS dummy head) in four real 

 
1Available at https://github.com/IoSR-Surrey/RealRoomBRIRs. 
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rooms with different sizes and T60s at the University of Surrey are utilized to generate the 

test utterances. The dummy head is placed at various heights between 1.7 m and 2.0 m in 

each room, and the source to array distance is 1.5 m. The real BRIRs are measured using 

37 directions ranging from −90° to 90° in steps of 5°. The IEEE and TIMIT utterances are 

utilized to generate 3,000 binaural test utterances in the same way as in the two-microphone 

setup. The only difference from the two-microphone setup illustrated in Figure 3-2(a) is 

that now real BRIRs rather than simulated two-channel RIRs are used to generate test 

utterances. Note that we directly apply the trained BLSTM on this new binaural test set for 

DOA estimation, although the BLSTM is not trained specifically on any binaural data and 

the binaural setup is completely unseen during training. 

For setup (a) and (b), the location or direction of interest 𝑘 is enumerated from −90° 

to 90° in steps of 1° on the hemi-circle. The hypothesized time delay between microphone 

𝑝 and 𝑞 for location or direction 𝑘, 𝜏ª,Q(𝑘), is computed as (𝑑°Q − 𝑑°ª) 𝑐m⁄ , where 𝑐m is 

343 m/s in the air. Note that setup (b) uses real RIRs measured by a given microphone 

array, so the distance between each candidate location and each microphone, and 

microphone configurations are all subject to inaccuracies. In addition, the assumed sound 

speed may not equal the actual sound speed. These factors complicate accurate localization. 

For setup (c), the hypothesized time delay cannot be obtained from the distance difference 

due to the shadowing of head and torso. 𝜏?,a(𝑘) is instead enumerated from -15 to 15 

samples in steps of 0.1 sample. The estimated time delay is then mapped to the azimuth 

giving the closest time delay. This mapping is obtained from the group delay of the 

measured BRIRs of the HATS dummy head in the anechoic condition, as is done in [196].  
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Note that we assume that the target speaker is fixed within each utterance (average 

length is 2.4 s), and compute a single DOA estimate per utterance. For setup (a) and (c), 

which use 5o step size for the candidate directions, we measure localization performance 

using gross accuracy, which considers a prediction correct if it is within 5o (inclusive) of 

the true target direction. For the Multi-Channel Impulse Response Database with a coarser 

spatial resolution, we consider a prediction correct if it is within 7.5° of the true direction. 

Gross accuracy is given as percent correct over all test utterances.  

In Eq. (3.6), (3.14) and (3.19), Ω contains all the microphone pairs of an array for the 

summation.  

3.4. Evaluation Results 

Table 3-1 presents localization gross accuracy results for two-microphone setup (a), 

together with the DRR at each T60 and the oracle performance marked in grey. We report 

DRR together with T60 as it is an important factor for the performance of sound 

localization in reverberant environments. The rows of eIRM and ePSM in the table mean 

that estimated IRM and estimated PSM are used for DOA estimation, respectively. All the 

three proposed algorithms lead to large improvements over GCC-PHAT and MUSIC (on 

average 72.0%, 86.7% and 75.1% using ePSM vs. 21.6% and 25.2%). PSM estimation 

yields consistently better performance than IRM estimation for all the algorithms; similar 

trends are observed from later results in Table 3-2, Table 3-3, and Table 3-4. As is reported 

in Table 3-1, frequency weighting based on estimated masks, i.e. using Eq. (3.16) and 

(3.20), leads to consistent improvements (more than 5% on average). Among the three 

proposed algorithms, mask-weighted steered-response SNR performs the best, especially 
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when reverberation time is high and DRR is low. For all the three proposed algorithms, 

using the PSM or IRM results in close to 100% gross accuracy, even when reverberation 

time is as high as 1.0 s, the DRR is as low as -8.0 dB, and the SNR between reverberant 

speech and reverberant noise is as low as -6 dB. These oracle results demonstrate the 

effectiveness of T-F masking: the PSM and IRM can be considered as strong training 

targets for robust speaker localization, just like for speech separation and enhancement 

[162], [166]. Better estimated masks in the future will likely produce better localization 

results.  

For the mask-weighted GCC-PHAT algorithm, we have also evaluated the average of 

estimated mask instead of the product in Eq. (3.5), motivated by [119]. We find that the 

product rule produces significantly better localization than the average, 68.3% vs. 55.3% 

using eIRM and 72.0% vs. 61.6% using ePSM. We should note that the average mask is 

not exactly what is used in [119] and there are many differences between our system and 

 

Table 3-1. DOA estimation performance (%gross accuracy) of different methods in two-
microphone setup. 

Method Frequency 
Weighting Mask T60(s)/DRR(dB) AVG 0.0/Inf 0.2/3.8 0.3/-0.4 0.4/-2.5 0.5/-4.0 0.6/-5.1 0.7/-6.0 0.8/-6.8 0.9/-7.4 1.0/-8.0 

GCC-PHAT - - 33.7 35.6 30.1 26.1 16.7 15.6 19.5 14.3 15.2 8.9 21.6 
MUSIC - - 35.1 41.6 33.9 26.7 20.6 20.5 23.6 16.7 19.3 13.9 25.2 

Mask-weighted 
GCC-PHAT 

- eIRM 94.3 95.7 87.0 80.1 74.6 64.0 53.4 49.0 47.2 38.6 68.3 
- IRM 99.3 99.7 98.7 96.1 96.9 97.1 96.8 94.9 96.2 95.7 97.1 
- ePSM 96.4 95.4 88.3 82.7 80.1 69.2 59.1 53.7 51.0 44.6 72.0 
- PSM 100.0 100.0 100.0 100.0 100.0 99.7 99.7 99.3 100.0 99.3 99.8 

Mask-weighted 
Steered-response SNR 

Eq. (3.15) eIRM 94.6 93.7 84.8 78.5 80.1 80.2 68.1 59.5 59.7 57.8 75.7 
Eq. (3.16) eIRM 95.0 95.0 87.7 84.0 85.7 87.7 75.7 69.7 66.6 64.7 81.2 
Eq. (3.16) IRM 100.0 99.7 99.1 99.3 99.3 99.4 99.4 99.3 99.3 99.3 99.4 
Eq. (3.15) ePSM 94.6 95.4 87.0 82.7 87.1 84.7 75.1 65.6 66.6 62.0 80.1 
Eq. (3.16) ePSM 96.1 96.4 91.1 89.6 91.3 89.0 84.0 76.9 76.9 75.9 86.7 
Eq. (3.16) PSM 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7 100.0 

DOA Estimation from 
Steering Vectors 

Eq. (3.19) eIRM 89.6 92.4 84.2 73.3 70.4 64.6 55.6 51.4 50.0 40.6 67.2 
Eq. (3.20) eIRM 93.5 95.7 86.4 80.8 76.7 69.2 61.0 58.8 55.2 47.2 72.4 
Eq. (3.20) IRM 98.9 99.7 99.1 97.1 97.2 96.8 96.2 94.2 95.9 96.4 97.1 
Eq. (3.19) ePSM 90.7 92.4 84.5 76.5 72.5 67.9 60.1 51.4 50.7 43.9 69.0 
Eq. (3.20) ePSM 96.1 97.0 88.3 82.7 80.8 70.5 66.1 58.8 57.2 54.1 75.1 
Eq. (3.20) PSM 99.6 100.0 100.0 100.0 100.0 99.7 99.7 99.3 99.7 99.3 99.7 
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[119], as discussed in Chapter 3.2.2. These differences complicate a direct comparison. 

Another way is to compare the relative improvement over a baseline where no masking is 

performed. It appears that our overall system obtains larger improvements.  

Figure 3-3 illustrates IRM estimation for a very noisy and reverberant mixture. As can 

be observed by comparing the IRM in Figure 3-3(c) and the estimated IRM in Figure 

3-3(d), the estimated mask well resembles the ideal mask in this case, indicating the 

effectiveness of BLSTM based mask estimation. Upon a closer examination, we observe 

that the IRM is more accurately estimated at speech onsets and lower frequencies, likely 

because the direct speech energy is relatively stronger in these T-F regions.   

Table 3-2 presents the accuracy of DOA estimation in setup (b), which uses measured 

real RIRs. For each utterance, we randomly choose two microphones from the eight 

microphones for testing. Note that the microphone distances can vary from 4 cm at 

Figure 3-3. Illustration of an estimated IRM for a mixture with babble noise in the two-
microphone setup (SNR = -6 dB and T60 = 0.9 s). (a) Mixture log power spectrogram; (b) 
clean log power spectrogram; (c) IRM; (d) estimated IRM. 
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minimum to 28 cm at maximum for the test utterances. As the DNN in our algorithms only 

utilizes single-channel information, our approach can still apply even as geometry varies 

substantially. As can be seen, the proposed algorithms using PSM lead to large 

improvements over GCC-PHAT and MUSIC, 84.9%, 86.5% and 82.8% vs. 36.1% and 

34.1% for 1 m distance, and 78.1%, 78.2% and 74.6% vs. 28.1% and 25.0% for 2 m 

Table 3-2. DOA estimation performance (%gross accuracy) of different methods in multi-
microphone setup by randomly selecting two microphones for each test utterance. 

Method Mask Distance T60(s)/DRR(dB) AVG Distance T60(s)/DRR(dB) AVG 0.16/10.5 0.36/7.4 0.61/4.7 0.16/6.3 0.36/1.6 0.61/-1.3 
GCC-PHAT - 

1 m 

37.9 38.5 31.7 36.1 

2m 

31.7 29.8 22.8 28.1 
MUSIC - 34.6 35.8 31.7 34.1 30.0 23.9 21.1 25.0 

Mask-weighted 
GCC-PHAT 

eIRM 84.0 83.0 84.3 83.7 82.1 74.4 67.5 74.6 
IRM 92.7 91.6 93.0 92.4 92.8 93.0 91.7 92.5 

ePSM 85.6 85.9 83.0 84.9 85.2 78.3 70.6 78.1 
PSM 94.0 94.0 92.5 93.5 93.3 93.2 92.4 93.0 

Mask-weighted 
Steered-response SNR 

eIRM 84.0 84.2 82.5 83.6 81.5 69.3 66.6 72.4 
IRM 93.2 92.9 92.7 92.9 93.1 92.2 92.7 92.6 

ePSM 86.7 86.5 86.4 86.5 85.0 77.1 72.4 78.2 
PSM 92.8 93.8 92.5 93.1 95.2 92.6 91.8 93.2 

DOA Estimation from 
Steering Vectors 

eIRM 80.4 80.6 81.6 80.8 79.5 67.9 65.3 70.9 
IRM 92.3 90.2 92.8 91.7 92.8 92.6 91.1 92.2 

ePSM 83.6 83.4 81.3 82.8 81.9 73.8 68.1 74.6 
PSM 93.8 93.9 92.2 93.3 92.9 92.9 92.4 92.8 

 

Table 3-3. DOA estimation performance (%gross accuracy, averaged over all reverberation 
times) of different methods at 2 m distance in multi-microphone setup by randomly 
selecting different numbers of microphones for each test utterance. 

Method Mask # microphones 
2 3 4 5 6 7 8 

GCC-PHAT - 28.1 36.1 38.9 41.8 41.5 41.4 42.8 
MUSIC - 25.0 30.4 31.3 32.2 32.8 32.7 32.8 

Mask-weighted GCC-PHAT 

eIRM 74.6 89.3 93.8 94.6 95.1 96.0 96.1 
IRM 92.5 98.2 99.6 100.0 100.0 100.0 100.0 

ePSM 78.1 90.3 93.7 95.5 95.9 96.2 96.2 
PSM 93.0 98.7 99.7 100.0 100.0 100.0 100.0 

Mask-weighted Steered-response 
SNR 

eIRM 72.4 85.8 90.1 92.1 92.9 93.4 93.5 
IRM 92.6 98.7 99.6 100.0 100.0 100.0 100.0 

ePSM 78.2 90.0 93.5 94.7 95.6 95.8 95.8 
PSM 93.2 98.9 99.8 100.0 100.0 100.0 100.0 

DOA Estimation from Steering 
Vectors 

eIRM 70.9 85.6 89.8 91.3 92.2 92.4 92.6 
IRM 92.2 98.3 99.6 100.0 100.0 100.0 100.0 

ePSM 74.6 88.9 92.6 94.4 94.8 95.1 95.1 
PSM 92.8 98.7 99.7 100.0 100.0 100.0 100.0 
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distance. In this setup, the three proposed algorithms perform similarly, with the mask- 

weighted steered-response SNR performing slightly better. Clearly, the performance is 

better when the source to array distance is 1 m than 2 m. Using the IRM or the PSM does 

not reach 100% accuracy in this setup, likely because the aperture size can be as small as 

4 cm, posing a fundamental challenge for accurate localization of a distant speaker.  

In Table 3-3, we show that our algorithms can be directly extended to multi-channel 

cases. This is done by combining different microphone pairs as in the classic SRP-PHAT 

algorithm. For each utterance, we randomly select a number of microphones for testing. 

As can be seen from the results, using more microphones leads to better performance for 

all the algorithms. A significant improvement occurs going from two to three microphones, 

likely because three microphone pairs become available for localization in a three-sensor 

array versus one pair in a two-sensor array. The performance starts to plateau after five 

 

Table 3-4. DOA estimation performance (%gross accuracy) of different methods in 
binaural setup. 

Method Mask 
Room - T60(s)/DRR(dB) 

AVG Anechoic 
0.0/Inf 

A 
0.32/7.2 

B 
0.47/7.0 

C 
0.68/10.9 

D 
0.89/7.3 

GCC-PHAT - 56.7 28.7 36.6 33.4 25.3 36.0 
MUSIC - 56.4 26.0 36.1 28.0 26.1 34.3 

Mask-
weighted 

GCC-PHAT 

eIRM 96.6 94.7 94.8 95.1 91.2 94.5 
IRM 100.0 99.4 99.8 99.3 100.0 99.7 

ePSM 97.4 95.3 96.6 95.6 94.3 95.8 
PSM 100.0 99.5 100.0 99.3 100.0 99.8 

Mask-
weighted 
Steered-

response SNR 

eIRM 96.6 88.6 89.1 87.6 85.8 89.5 
IRM 99.7 99.5 99.5 99.2 99.8 99.5 

ePSM 97.4 93.6 93.8 89.3 90.4 92.9 
PSM 100.0 100.0 99.7 99.8 100.0 99.9 

DOA 
Estimation 

from Steering 
Vectors 

eIRM 97.6 91.3 91.3 86.0 85.2 90.2 
IRM 100.0 99.4 99.8 99.2 99.8 99.6 

ePSM 97.6 95.3 93.9 89.6 89.9 93.3 
PSM 100.0 99.5 99.8 99.0 100.0 99.7 
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microphones. Among the proposed algorithms, the mask-weighted GCC-PHAT algorithm 

performs slightly better than the other two when more microphones become available.  

Table 3-4 reports the results on binaural setup (c). Although the neural network trained 

for mask estimation has not seen binaural signals and binaural geometry, directly applying 

it to binaural speaker localization results in substantial gains over GCC-PHAT and MUSIC. 

Notably, the mask-weighted steered-response SNR algorithm is slightly worse than the 

other two (92.9% vs. 95.8% and 93.3% using ePSM). The reason, we think, is that the 

energy levels at the two channels cannot be treated as equal as is done in Eq. (3.10), as 

head shadow effects occur in the binaural setup. For the microphone array setup (a) and 

(b), assuming equal energy levels is reasonable as there is no blockage from sound sources 

to an array. Also the localization performance in this binaural setup appears much higher 

than the two-microphone setup, likely because the DRR is much higher.   

3.5. Conclusion 

We have investigated a new approach to robust speaker localization that is guided by 

T-F masking. Benefiting from deep learning based monaural masking, our approach 

dramatically improves the robustness of conventional cross-correlation, beamforming and 

subspace based approaches for speaker localization in noisy-reverberant environments. We 

have found that balancing the contribution of each frequency is important for the DOA 

estimation of broadband speech signals. Although the neural network is trained using 

single-channel information, our study shows that it is versatile in its application to arrays 

with various numbers of microphones and diverse geometries. 
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Before closing, we emphasize that the proposed approach achieves robust speaker 

localization as guided by T-F masking. Our experiments find that even for severely 

corrupted utterances, ratio masking in the proposed algorithms leads to accurate 

localization. Our study suggests that ideal ratio masks can serve as strong training targets 

for robust speaker localization. Clearly, the major factor limiting the localization 

performance is the quality of estimated masks. Nonetheless, the proposed T-F masking 

guided approach promises further localization improvements as robust speaker localization 

can directly benefit from the rapid development of deep learning based T-F masking. 

Through training, masking guidance plays the dual role of specifying the target source and 

attenuating sounds interfering with localization. T-F masking affords a view of the signal 

to be localized, as opposed to traditional localization that blindly relies on signal energy. 

Equation break 
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Chapter 4. Multi-Channel Blind Speaker Separation 

 

This chapter investigates multi-channel talker-independent speaker separation, by 

tightly integrating complementary spectral and spatial features for deep learning based 

multi-channel speaker separation in reverberant environments. The primary idea is to 

localize individual speakers so that an enhancement network can be trained on spatial as 

well as spectral features to extract the speaker from an estimated direction and with specific 

spectral structure. This work has been published in ICASSP 2018 [177], [178], Interspeech 

2018 [179], and IEEE/ACM T-ASLP in 2019 [180]. 

4.1. Introduction 

Recent years have witnessed major advances of monaural talker-independent speaker 

separation since the introduction of deep clustering [57], [69], [177], [181], deep attractor 

networks [20], [94], and permutation invariant training (PIT) [206], [81]. These algorithms 

address the label permutation problem in the challenging monaural speaker-independent 

setup [161], [122] and demonstrate substantial improvements over conventional 

algorithms, such as spectral clustering [5], CASA based approaches [163] and target- or 

speaker-dependent systems [212], [161].  

When multiple microphones are available, spatial information can be leveraged to 

alleviate the label permutation problem, as speaker sources are directional and typically 
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spatially separated in real-world scenarios. One conventional stream of research is focused 

on spatial clustering [40], [103], [70], where individual T-F units are clustered into sources 

using complex GMMs or their variants based on spatial cues such as inter-channel time, 

phase or level differences (ITDs, IPDs or ILDs) and spatial spread, under the speech 

sparsity assumption. However, such spatial cues degrade significantly in reverberant 

environments and lead to inadequate separation when the sources are co-located, close to 

one another or when spatial aliasing occurs. In addition, conventional spatial clustering 

does not exploit spectral information. In contrast, recent developments in deep learning 

based monaural speaker separation suggest that, even with spectral information alone, 

remarkable separation can be obtained [122], although most of such studies are only 

evaluated in anechoic conditions. 

One promising research direction is hence to harness the merits of these two streams of 

research so that spectral and spatial processing can be tightly combined to improve 

separation and at the same time, make the trained models as blind as possible to microphone 

array configuration. In [29], [62], monaural deep clustering is employed for T-F masking 

based beamforming. Their methods follow the success of T-F masking based beamforming 

in the CHiME challenges [160]. Although beamforming is very helpful in tasks such as 

robust ASR, for tasks such as speaker separation and speech enhancement, it typically 

cannot achieve sufficient separation in reverberant environments, when sources are close 

to each other, or when the number of microphones is limited. For such tasks, further 

spectral masking would be very helpful. The studies in [21], [22] apply single-channel 

separation on the outputs of a set of fixed beamformers. A major motivation is that fixed 

beamformers together with a separate beam prediction network can be efficient to compute 
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in an online low-latency system. However, their approach requires the information of 

microphone geometry to carefully design the fixed beamformers, which are manually 

designed for a single fixed device and typically not as powerful as data-dependent 

beamformers that can exploit signal statistics for significant noise reduction. In addition, 

the fixed beamformers point towards a set of discretized directions. This leads to resolution 

problems and would become cumbersome to apply when elevation is a consideration. 

Different from the approaches that apply deep clustering and its variants on monaural 

spectral information, a recent study [178] includes inter-channel phase patterns for the 

training of deep clustering networks to better resolve the permutation problem. However, 

this approach only produces a magnitude-domain binary mask and does not exploit 

beamforming, which is capable of phase enhancement and is known to perform very well 

especially in modestly reverberant conditions or when many microphones are available.  

In this context, our study tightly integrates spectral and spatial processing for blind 

source separation (BSS), where spatial information is encoded as additional input features 

to leverage the representational power of deep learning for better separation. The overall 

proposed approach is a Separate-Localize-Enhance strategy. More specifically, a two-

channel chimera++ network that takes inter-channel phase patterns into account is first 

trained to resolve the label permutation problem and perform initial separation. Next, the 

resulting estimated masks are used in a localization-like procedure to estimate speaker 

directions and signal statistics. After that, directional (or spatial) features, computed by 

compensating IPDs or by using data-dependent beamforming, are designed to combine all 

the microphones for the training of an enhancement network to further separate each 

source. Here, beamforming is incorporated in two ways: one uses the magnitude produced 
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by beamforming as additional input features of the enhancement networks to improve the 

magnitude estimation of each source and the other further considers the phase provided by 

beamforming as the enhanced phase. The proposed approach aligns with human ability to 

focus auditory attention on one particular source with its associated spectral structures and 

arriving from a particular direction, and suppress the other sources [24]. 

Our study makes five major contributions. First, inter-channel phase and level patterns 

are incorporated for the training of two-channel chimera++ networks. Second, two 

effective spatial features are designed for the training of an enhancement network to utilize 

the spatial information contained in all the microphones. Third, data-dependent 

beamforming based on T-F masking is effectively integrated in our system by means of its 

magnitudes and phases. Fourth, a run-time iterative approach is proposed to refine the 

estimated masks for T-F masking based beamforming. Fifth, the trained models are blind 

to the number of microphones and microphone geometry. On reverberant versions of the 

speaker-independent wsj0-2mix and wsj0-3mix corpus [57], spatialized by measured and 

simulated RIRs, the proposed approach exhibits large improvements over various 

algorithms including MESSL [102], oracle and estimated time-invariant multi-channel 

Wiener filter, GCC-NMF [195], ILRMA [78] and multi-channel deep clustering [178]. 

In the rest of this chapter, we first introduce the physical model in Chapter 4.2, followed 

by a review of the monaural chimera++ networks [177] in Chapter 4.3. Next, we extend 

them to two-microphone cases in Chapter 4.4.1. Based on the estimated masks obtained 

from pairwise microphone processing, Chapter 4.4.2 encodes the spatial information 

contained in all the microphones as directional features to train an enhancement network 

for further separation, with or without utilizing the estimated phase produced by 
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beamforming. An optional run-time iterative mask refining algorithm is presented in 

Chapter 4.4.3. Figure 4-1 illustrates the proposed system. We present our experimental 

setup and evaluation results in Chapter 4.5 and 4.6, and conclude this paper in Chapter 4.7.  

4.2. Physical Models and Objectives 

Given a reverberant 𝑃 -microphone 𝐶 -speaker time-domain mixture 𝒚[𝑛] =

∑ 𝒔(Á)Ú
Á¸? [𝑛], the physical model in the STFT domain is formulated as: 

𝒀(𝑡, 𝑓) =� 𝑺(Á)(𝑡, 𝑓)
Ú

Á¸?
, (4.1) 

where 𝑺(Á)(𝑡, 𝑓) and 𝒀(𝑡, 𝑓) respectively represent the 𝑃-dimensional STFT vectors of the 

reverberant image of source 𝑐 and the reverberant mixture captured by the array at time 𝑡 

and frequency 𝑓 . Our study proposes multiple algorithms to separate the mixture 𝑌ª 

captured at a reference microphone 𝑝 to individual reverberant sources 𝑆Ûª
(Á), by integrating 

single- and multi-channel processing under a deep learning framework. Note that the 
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Figure 4-1. Illustration of proposed system for BSS. A two-channel chimera++ network 
is applied to each microphone pair of interest for initial mask estimation. A multi-channel 
enhancement network is then applied for each source at a reference microphone for further 
separation. 
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proposed algorithms focus on separation and do not address de-reverberation, although 

they can be straightforwardly modified for that purpose.  

4.3. Monaural Chimera++ Networks 

A recent study [177] proposed for monaural speaker separation a novel multi-task 

learning approach, which combines the permutation resolving capability of deep clustering 

[57], [69] and the mask inference ability of PIT [206], [81], yielding significant 

improvements over the individual models. The objective function of deep clustering pulls 

in the T-F units dominated by the same speaker and pushes away those dominated by 

different speaker, creating hidden representations that can be utilized by PIT to predict 

continuous mask values more easily and more accurately. The objective function is also 

considered as a regularization term to improve the permutation resolving ability of 

utterance-level PIT. This subsection first introduces deep clustering and PIT, and then 

reviews the chimera++ networks.  

The key idea of deep clustering [57] is to learn a unit-length embedding vector for each 

T-F unit using a DNN such that for the T-F units dominated by the same speaker, their 

embeddings are close to one another, while farther otherwise. This way, simple clustering 

algorithms such as k-means can be applied to the embeddings at run time to determine the 

speaker assignment at each T-F unit. More specifically, let 𝒗à denote the 𝐷-dimensional 

embedding vector of the 𝑖xá  T-F unit and 𝒖à  represent a 𝐶-dimensional one-hot vector 

denoting which of the 𝐶  sources dominates the 𝑖xá  T-F unit. Vertically stacking them 

yields the embedding matrix 𝑉 ∈ ℝ£�×� and the label matrix 𝑈 ∈ ℝ£�×Ú . The embeddings 

are learned to approximate the affinity matrix 𝑈𝑈£ 
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ℒäå = ‖𝑉𝑉£ − 𝑈𝑈£‖�a  (4.2) 

Recent studies [177] suggested that a variant deep clustering loss function that whitens 

the embeddings based on a k-means objective leads to better separation performance. 

ℒäå,ç = è𝑉(𝑉£𝑉)g
?
a − 𝑈(𝑈£𝑈)g?𝑈£𝑉(𝑉£𝑉)g

?
aè

�

a
 (4.3) 

			= 𝐷 − 𝑡𝑟𝑎𝑐𝑒((𝑉£𝑉)g?𝑉£𝑈(𝑈£𝑈)g?𝑈£𝑉) (4.4) 

 It is important in deep clustering to discount the importance of silence T-F units, as 

their labels are ambiguous and they do not carry directional phase information for multi-

channel separation [178]. Following [177], the weight of each T-F is computed as the 

magnitude of each T-F unit over the sum of the magnitudes of all the T-F units. This 

BLSTM 𝐸 × 𝐸 

BLSTM 𝐹′ × 𝐸 

Linear 𝐸 × 𝐷, 	∀𝑓  Linear 𝐸 × 𝐶, ∀𝑓 

Sigmoid+ 
unit norm, ∀𝑓  Sigmoid 

𝑄�ª
(Á)(𝑡, 𝑓) 𝑉ª(𝑡, 𝑓) 

=log�_𝑌ª(𝑡)_� ; spatial�𝑌ª(𝑡), 𝑌Q(𝑡)�B 

Figure 4-2. Illustration of two-channel chimera++ networks on microphone pair < 𝑝, 𝑞 >. 
spatial�𝑌ª(𝑡), 𝑌Q(𝑡)�  can be a combination of cos�∠𝑌ª − ∠𝑌Q� , sin	�∠𝑌ª − ∠𝑌Q�  and 
log	(|𝑌ª| |𝑌Q|)⁄  for microphones 𝑝 and 𝑞 . 𝐹′ represents input feature dimension and 𝐸  is 
number of units in each BLSTM layer. 
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weighting mechanism can be simply implemented by broadcasting the weight vector to 𝑉 

and 𝑈 before computing the loss.  

A recurrent neural network with BLSTM units is usually utilized to model the 

contextual information from past and future frames. The network architecture of deep 

clustering is shown in the left branch of Figure 4-2. 

A permutation-free objective function was proposed in [57], and later reported to work 

well when combined with deep clustering in [69]. In [206], [81], a permutation invariant 

training technique was proposed, first showing that such objective function can produce 

comparable results by itself. The key idea is to train a neural network to minimize the 

minimum utterance-level loss of all the permutations. The PSM [35] is typically used as 

the training target. Following [81], the loss function for phase-sensitive spectrum 

approximation (PSA) is defined as 

ℒîïC = min
ð®∈ñ

� ò𝑄�ª
ð®(Á)_𝑌ª_ − 𝑇ó

|ô®|V|𝑆ª
(Á)|cos	(∠𝑆ª

(Á) − ∠𝑌ª)\ò
?Á
, (4.5) 

where 𝑝 indexes a microphone channel, Ψ is a set of permutations over 𝐶 sources, 𝑆ª
(Á) and 

𝑌ª are the STFT representations of source 𝑐 and the mixture captured at microphone 𝑝, 

𝑇ó
_ô®_(∙) = max	(0,min(|𝑌ª|,∙)) truncates the PSM to the range [0,1] and 𝑄�  denotes the 

estimated masks. We denote the best permutation as 𝜑�ª(∙). Following our recent studies 

[176], [177], the 𝐿?  loss is used as the loss function, as it leads to consistently better 

separation than the 𝐿a loss. Following [177], sigmoidal units are utilized in the output layer 

to obtain 𝑄�ª
(Á) for separation. See the right branch of Figure 4-2 for the network structure. 

In [177], a multi-task learning approach is proposed to combine the merits of both 

algorithms. The objective function is a combination of the two loss functions 
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ℒYTøùù = αℒäå,ç + (1 − α)ℒîïC (4.6) 

At run time, only the PIT output is needed to make predictions:  𝑆Ûª
(Á) = 𝑄�ª

(Á)𝑌ª.  

4.4. Proposed Algorithms 

4.4.1. Two-Channel Extension of Chimera++ Networks 

Following previous studies on multi-channel speech enhancement [73], [214] and 

speaker separation [178], the key idea of the proposed approach for two-channel separation 

is to utilize not only spectral but also spatial features for model training. This way, 

complementary spectral and spatial information can be simultaneously utilized to benefit 

from the representational power of deep learning to better resolve the permutation problem 

and achieve better mask estimation. See Figure 4-2 for an illustration of the network 

architecture.  

Given a pair of microphones 𝑝 and 𝑞, it is well-known that, because of speech sparsity, 

the STFT ratio 𝑌ª/𝑌Q = _𝑌ª_/_𝑌Q_𝑒�(∠ô®g∠ô̄ ), indicative of the relative transfer function 

[182], naturally forms clusters within each frequency for spatially separated speaker 

sources with different time delays to the array [103], [40]. This property establishes the 

foundations of conventional narrowband spatial clustering [33], [63], [132], [131], which 

typically first employs spatial information such as directional statistics and mixture STFT 

vectors for within-frequency bin-wise clustering based on complex GMM and its variants, 

and then aligns the clusters across frequencies. However, such approaches perform 

clustering largely based on spatial information, and typically do not leverage spectral cues, 

although there are recent attempts at using spectral embeddings produced by deep 
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clustering for spatial clustering [29]. In addition, the clustering is usually only conducted 

independently within each frequency because of the IPD ambiguity, and thus does not 

exploit inter-frequency structures. By IPD ambiguity we mean that IPD varies with 

frequency and the underlying time delay cannot be uniquely determined only from the IPD 

at a frequency when spatial aliasing and phase wrapping occur. 

Our study investigates the incorporation of the spatial information contained in 𝑌ª/𝑌Q 

for the training of a two-channel chimera++ network. We consider the following inter-

channel phase and level patterns 

IPD = ∠𝑒�(∠ô®g∠ô̄ ) = mod�∠𝑌ª − ∠𝑌Q + 𝜋, 2𝜋� − 𝜋 (4.7) 

cosIPD = 	 cos(∠𝑌ª − ∠𝑌Q) (4.8) 

sinIPD = 	 sin(∠𝑌ª − ∠𝑌Q) (4.9) 

ILD = log	(|𝑌ª| |𝑌Q|)⁄  (4.10) 

In our experiments, the combination of cosIPD and sinIPD leads to consistently better 

performance than the individual ones and the IPD. Our insight is that according to the 

Euler’s formula, the distribution of cosIPD and sinIPD for directional sources naturally 

follows a helix-like structure with respect to frequency. See Figure 4-3(c) for an illustration 

of the cosIPD and sinIPD distribution of an anechoic three-speaker mixture. Such helix 

structure could be exploited by a strong learning machine like deep neural networks to 

better model inter-frequency structures and achieve better separation. Indeed, in 

conventional spectral clustering, which significantly motivated the design of deep 

clustering [5], [57], it is suggested that spectral clustering has the capability of modeling 
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such a distribution for clustering [138]. The distribution of an alternative representation,  

IPD, is depicted in Figure 4-3(a). Clearly, the wrapped lines are not continuous across 

frequencies because of phase wrapping. Such abrupt discontinuity could make it harder for 

the neural network to exploit the inter-frequency structures. As a workaround, the 

distribution of cosIPD is depicted in Figure 4-3(b). Although the continuity improves, 

 
                                     (a)                                                                (b) 

 
(c) 

Figure 4-3. Distribution of inter-channel phase patterns of an example anechoic three-
speaker mixture with 𝑇þó = 0.54	𝑠  and microphone spacing 21.6	𝑐𝑚. Each T-F unit is 
colored according to its dominant source. (a) IPD vs. Frequency; (b) cosIPD vs. Frequency; 
(c) cosIPD and sinIPD vs. Frequency. 
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without sinIPD, the number of crossings among the wrapped lines significantly increases. 

Such crossings, also observed in Figure 4-3(a) and Figure 4-3(c), are mostly resulted from 

spatial aliasing and phase wrapping, indicating that the inter-channel phase patterns are 

indistinguishable even though the sources are spatially separated with different time delays 

and therefore posing fundamental difficulties for conventional BSS techniques that only 

utilize spatial information. In such cases, spectral information would be the only cue to rely 

on for separation. Our study hence also incorporates spectral features log	(_𝑌ª_) for model 

training, and leverages the recently proposed chimera++ networks [177], which have been 

shown to produce state-of-the-art monaural separation, although only tested in anechoic 

conditions. Another advantage of including spectral features is that IPD itself is ambiguous 

across frequencies when the microphone spacing is large, meaning that there does not exist 

a one-to-one mapping between IPDs and ideal mask values. The incorporation of spectral 

features could help at resolving this ambiguity, as is suggested in our recent study [178]. 

Note that the chimera++ network naturally models all the frequencies simultaneously to 

exploit inter-frequency structures, hence avoiding an error-prone second-stage frequency 

alignment step that is necessary in conventional narrowband spatial clustering. In addition, 

the BLSTM better models temporal structures than complex GMMs and their variants, 

which typically make strong independence assumptions along the temporal axis. 

We also incorporate ILDs, computed as in Eq. (4.10), to train chimera++ networks, as 

they become indicative about target directions especially when the microphone spacing is 

large and in setups like the binaural setup [163], [152].  
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4.4.2. Multi-Channel Speech Enhancement 

To extend the proposed two-channel approach to multi-channel cases, one 

straightforward way is to concatenate the inter-channel phase patterns and spectral features 

of all the microphone pairs as the input features for model training, as is done in [204]. 

However, this makes the input dimension dependent on the number of microphones and 

could make the trained model accustomed to one particular microphone geometry. Our 

recent study [178] proposes an ad-hoc approach to extend two-channel deep clustering to 

multi-channel cases by performing run-time K-means clustering on a super-vector obtained 

by concatenating the embeddings computed from each microphone pair. However, it only 

performs model training using pairwise microphone information, hence incapable of 

exploiting the geometrical constraints and the spatial information contained in all the 

microphones.  

To build a model that is directly applicable to arrays with any number of microphones 

arranged in diverse layouts, we think that it is necessary to constructively combine all the 

microphones into a fixed-dimensional representation. Under this guideline, we propose two 

fixed-dimensional directional features, one based on compensating ambiguous IPDs using 

estimated phase differences and the other based on T-F masking based beamforming, as 

additional inputs to train an enhancement network to improve the mask estimation of each 

source at the reference microphone. See Figure 4-1 for an illustration of the overall pipeline 

of our proposed approach. Note that at run time, we need to run the enhancement network 

once for each source for separation.  
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4.4.2.1. Compensated IPD 

Specifically, for the 𝑃(≥ 2)  microphones, we first apply the trained two-channel 

chimera++ network to each of the 𝑃 pairs consisting of one pair < 𝑝, 𝑞 > between the 

reference microphone 𝑝 and a randomly-chosen non-reference microphone 𝑞, and 𝑃 − 1 

pairs < 𝑞Þ, 𝑝 > for any non-reference microphone 𝑞Þ(≠ 𝑝). The motivation of using this 

set of pairs is that we try to obtain an estimated mask for each source at each microphone. 

Note that for any non-reference microphone 𝑞Þ, we can indeed randomly select another 

microphone to make a pair, but here we simply pair it and the reference microphone 𝑝. 

After obtaining the estimated masks 𝑄�?
(Á), …, 𝑄�A

(Á) of all the 𝑃 pairs from the two-channel 

chimera++ network, we permute the 𝐶 masks at each microphone to create for each source 

𝑐 a new set of masks 𝑀�?
(Á), …, 𝑀�A

(Á) such that they are all aligned to source 𝑐. At training 

time, such an alignment is readily available from Eq. (4.5), i.e. 𝑀�?
(Á) = 𝑄�?

ðÅ"(Á),…,	𝑀�A
(Á) =

𝑄�A
ðÅ#(Á). At run time, we align the masks using Algorithm 4-1, where an average mask is 

maintained for each source in the alignment procedure to determine the best permutation 

for each non-reference microphone. We then compute the speech covariance matrix of each 

source using the aligned estimated masks, following recent developments of T-F masking 

based beamforming [203], [58], [213]. 

Φ� (Á)(𝑓) = ?
£
∑ 𝜂(Á)(𝑡, 𝑓)𝒀(𝑡, 𝑓)	𝒀(𝑡, 𝑓)`x , (4.11) 

where 𝑇 is the number of frames within the utterance and 𝜂(Á)(𝑡, 𝑓) is the median [58] of 

the aligned estimated masks 

𝜂(Á) = medianV𝑀�?
(Á), … ,𝑀�A

(Á)\ (4.12) 
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 The key idea here is to only use the T-F units dominated by source 𝑐 for the estimation 

of its covariance matrix. The steering vector for each source 𝒓�(Á)(𝑓) is then computed as 

𝒓�(Á)(𝑓) = 𝒫'Φ�(Á)(𝑓)(, (4.13) 

where 𝒫{∙} compute the principal eigenvector. The motivation is that if Φ�(Á)(𝑓) is well-

estimated, it would be close to a rank-one matrix for a directional speaker source [203], 

[213], [40]. Its principal eigenvector is hence a reasonable estimate of the steering vector. 

Note that this steering vector estimation step is essentially similar to DOA estimation. 

Following our recent study [183], the directional features are then compensated in the 

following way: 

𝐷𝐹ª
(Á)(𝑡, 𝑓) =

1
𝑃 − 1 � cos Ñ∠𝑌QÝ(𝑡, 𝑓) − ∠𝑌ª(𝑡, 𝑓) − k∠𝑟̂QÝ

(Á)(𝑓) − ∠𝑟̂ª
(Á)(𝑓)lÒ

)QÝ,ª*¹º

, (4.14) 

Input: 𝑄�?
(Á), … , 𝑄�A

(Á), for 𝑐 = 1,… , 𝐶, and reference microphone 𝑝. 
Output: Aligned masks 𝑀�?

(Á), … ,𝑀�A
(Á), for 𝑐 = 1,… , 𝐶; 

(1) 𝑀�ª
(Á) = 𝑄�ª

(Á), for	𝑐 = 1,… , 𝐶; 
(2) 𝑀�+j,

(Á) = 𝑀�ª
(Á), for	𝑐 = 1,… , 𝐶; 

(3) 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1; 
For non-reference microphone 𝑞Þ in {1, … , 𝑝 − 1, 𝑝 + 1,… , 𝑃} do 
(4) 𝜑∗ = argminð¹ñ ∑ ò𝑊(𝑀�+j,

(Á) − 𝑄�QÝ
ð(Á))ò

?
Ú
Á¸? ; 

(5) 𝑀�QÝ
(Á) = 𝑄�QÝ

ð∗(Á), for	𝑐 = 1, … , 𝐶; 

(6) 𝑀�+j,
(Á) = (𝑀�+j,

(Á) ∗ 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 +𝑀�QÝ
(Á))/(𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1), for 𝑐 = 1,… , 𝐶; 

(7) 𝑐𝑜𝑢𝑛𝑡𝑒𝑟+= 1; 
End 

Algorithm 4-1. Mask alignment procedure at run time. Binary weight matrix 𝑊 used in 
step (4) indicates T-F units with energy larger than -40 dB of the mixture’s maximum 
energy. 
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where Ω contains all the 𝑃 − 1 pairs between each non-reference microphone 𝑞Þ and the 

reference microphone 𝑝. ∠𝑌QÝ(𝑡, 𝑓) − ∠𝑌ª(𝑡, 𝑓) represents the observed phase difference 

and ∠𝑟̂QÝ
(Á)(𝑓) − ∠𝑟̂ª

(Á)(𝑓) the estimated phase difference (or the phase compensation term 

for source 𝑐). The motivation is that if a T-F unit is dominated by source 𝑐, the observed 

phase difference is expected to be aligned with its estimated phase difference. The phase 

compensation term is used to establish the consistency of the directional features along 

frequency such that at any frequency and no matter which direction source 𝑐 arrives from, 

a value close to one in 𝐷𝐹ª
(Á)(𝑡, 𝑓) would indicate that the T-F unit is likely dominated by 

the source 𝑐 , while dominated by other sources if much smaller than one, only if the 

steering vector can be estimated accurately. This property makes the directional features 

highly discriminative for DNN based T-F masking to enhance the signal from a specific 

direction. In addition, by establishing the consistency along frequency, the phase 

compensation term alleviates the ambiguity of IPDs, which could be problematic when 

directly used for the training of the two-channel chimera++ networks in Chapter 4.4.1. 

When there are more than two microphones, we simply average the compensated IPDs 

together. This makes the trained models directly applicable to arrays with various numbers 

of microphones arranged in diverse geometry. The phase compensation term is designed 

to combine all the microphone pairs constructively.  

There were previous studies [73], [4], [118], [214] utilizing spatial features for deep 

learning based speech enhancement (i.e. speech vs. noise). The spatial features in those 

studies are only designed for binaural speech enhancement, where only two sensors are 

considered and the target is right in the front direction. However, in more general cases, 

the target speaker may originate in any directions and the spatial features used in those 
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studies would no longer work well. There was one speech enhancement study [118] 

considering compensating cosIPDs. However, it needs a separate DOA module that 

requires microphone geometry, and does not address DOA estimation in a robust way. 

Diffuseness features have also been applied in deep learning and T-F masking based 

beamforming for speech enhancement [183], [91]. However, such features are incapable 

of suppressing directional interferences, which we aim to suppress in this study. On the 

other hand, directional features are capable of suppressing diffuse noises. 

4.4.2.2. T-F Masking Based Beamforming 

Another alternative directional feature is derived using beamforming, as beamforming 

constructively combines target signals captured by different microphones and destructively 

for non-target signals, only if the signal statistics or target directions critical for 

beamforming can be accurately determined. Recent development in the CHiME challenges 

has suggested that deep learning based T-F masking can be utilized to compute such signal 

statistics accurately [160], demonstrating state-of-the-art robust ASR performance. Here, 

we leverage this recent development to construct a multi-channel Wiener filter [40] 

𝒘Åª
(Á)(𝑓) = VΦ� (f)(𝑓)\

g?
Φ� (Á)(𝑓)𝒖ª, (4.15) 

where Φ�(f)(𝑓) = ?
£
∑ 𝒀(𝑡, 𝑓)𝒀(𝑡, 𝑓)`x  is the mixture covariance matrix and 𝒖ª a one-hot 

vector with the 𝑝th element being one. Clearly, this way of constructing beamformers is 

blind to microphone geometry and the number of microphones. The directional feature is 

then computed as 

𝐷𝐹ª
(Á)(𝑡, 𝑓) = log V.𝒘Åª

(Á)(𝑓)`𝒀(𝑡, 𝑓).\ (4.16) 
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4.4.2.3. Enhancement Network I 

Using the spatial features alone for enhancement network training is not sufficient 

enough for accurate separation, as the sources could be spatially close and the reverberation 

components of other sources could also arrive from the estimated direction. We hence 

combine 𝐷𝐹ª
(Á)  with spectral features log	(_𝑌ª_) , and the initial mask estimates 𝑀�ª

(Á) 

obtained from the two-channel chimera++ network to train an enhancement network to 

estimate the phase-sensitve spectrum of source 𝑐 at microphone 𝑝. This way, the neural 

network can take in both spectral and spatial information, and learn to enhance the signals 

with particular spectral characteristics and arriving from a particular direction. The 

objective function for training the enhancement network (denoted as Enh1) is 

ℒ/0T" = ò𝑅�ª
(Á)_𝑌ª_ − 𝑇ó

|ô®|V|𝑆ª
(Á)|cos	(∠𝑆ª

(Á) − ∠𝑌ª)\ò
?
, (4.17) 

where 𝑅�ª
(Á) denotes the estimated mask from the Enh1 network. At run time, we execute 

the enhancement network once for each source, and the separated source 𝑐 is obtained as 

𝑆Ûª
(Á) = 𝑅�ª

(Á)𝑌ª. Here the mixture phase is used for signal re-resynthesis. 

4.4.2.4. Enhancement Network II 

The above approach however cannot utilize the enhanced phase provided by 

beamforming. When the number of microphones is large, the enhanced phase	𝜃�ª
(Á)(𝑡, 𝑓) =

∠V𝒘Åª
(Á)(𝑓)`𝒀(𝑡, 𝑓)\ is expected to be better than ∠𝑌ª, if the speech distortion introduced 

by beamforming is minimal. We hence use the former as the phase estimate of source 𝑐. 

To obtain a good magnitude estimate, we train an enhancement network (denoted as Enh2) 

to predict the phase-sensitive spectrum of source 𝑐 with respect to |𝑌ª|𝑒�3
�®
(4)

, based on the 
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same features used in Enh1, i.e. 𝐷𝐹ª
(Á) , log	(_𝑌ª_) and 𝑀�ª

(Á) . The loss function used for 

training is 

ℒ/0T5 = ò𝑍Ûª
(Á)_𝑌ª_−𝑇ó

|ô®| k|𝑆ª
(Á)|cos	V∠𝑆ª

(Á) − 𝜃�ª
(Á)\lò

?
, (4.18) 

where 𝑍Ûª
(Á) denotes the estimated mask of the Enh2 network. At run time, the separated 

source 𝑐 is obtained as 𝑆Ûª
(Á) = 𝑍Ûª

(Á)|𝑌ª|𝑒�3
�®
(4)

.  

Different from the above two ways of integrating beamforming, another alternative is 

to extract spectral features from the beamformed mixture, train an enhancement network 

to predict the ideal masks computed from the beamformed sources, and at run time apply 

the estimated masks to the beamformed mixture [214]. In contrast, our approach uses 

beamforming results as directional features to improve the mask estimation at the reference 

microphone 𝑝, with or without using the phase of the beamformed mixture, since 𝑆ª
(Á), 

rather than beamformed sources 𝒘(Á)(𝑓)`𝑺(Á)(𝑡, 𝑓), is considered as the reference for 

metric computation. This way, we can systematically compare the performance of single- 

and multi-channel processing, as well as the effects of various algorithms for reverberant 

source separation. Note that we do not use beamformed sources as the reference signals for 

metric computation, as they usually contain speech distortions in reverberant 

environments, and are sensitive to the number of microphones, microphone geometry, and 

the type of beamformer used to obtain 𝒘(Á)(𝑓). In addition, for BSS algorithms that do not 

involve any beamforming, such as spatial clustering or independent component analysis, it 

is not reasonable to use beamformed sources as the reference signals for evaluation.  
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We emphasize again that our models, once trained, can be directly applied to arrays 

with any numbers of microphones arranged in various layouts. At run time, we can first 

apply the trained two-channel chimera++ network on each microphone pair of interest, 

then use Eq. (4.14) or (4.16) to constructively combine the spatial information contained 

in all the microphones, and finally apply the well-trained Enh1 or Enh2 networks for further 

separation. Note that the two-channel chimera++ network essentially functions as a DOA 

module to estimate target directions and signal statistics for spatial feature computation 

and beamforming. Indeed, it can be replaced by a monaural chimera++ network, while the 

two-channel one produces much better initial mask estimation because of the effective 

exploitation of spatial information, although in a very straightforward way. 

4.4.3. Iterative Mask Refinement 

In Eq. (4.12), 𝜂(Á)  is computed from the estimated masks 𝑀�ª
(Á)  produced by the 

chimera++ network that only exploits two-channel information. Such masks are expected 

to be not as accurate as 𝑅�ª
(Á) produced by Enh1, which can utilize the spatial information 

from all the microphones and suffers less from IPD ambiguity. Using 𝑅�ª
(Á) for T-F masking 

based beamforming would hence likely leads to better beamforming results, which can in 

turn benefit the enhancement networks. 

More specifically, at run time, after obtaining 𝑅�ª
(Á) using Enh1, we use it in Eq. (4.12) 

to recompute a multi-channel Wiener filter 𝒘Å�ª
(Á) and feed the combination of 

log	(|𝒘Å�ª
(Á)(𝑓)`𝒀(𝑡, 𝑓)|), log	(_𝑌ª_) and 𝑅�ª

(Á)  directly to Enh2 to get 𝑍ÛÛª
(Á) . The separated 

source is then obtained as 𝑆Ûª
(Á) = 𝑍ÛÛª

(Á)_𝑌ª_𝑒�3
��®
(4)

, where 𝜃��ª
(Á)(𝑡, 𝑓) = ∠V𝒘Å�ª

(Á)(𝑓)`𝒀(𝑡, 𝑓)\. 
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We denote this iterative mask estimation approach as Enh1+Enh2. We emphasize this 

approach is performed at run time and does not require any model training. 𝑅�ª
(Á) can be  

improved with more iterations, but we only do one iteration due to computation 

considerations. 

4.5. Experimental Setup 

We train our models using only simulated RIRs, while test on simulated as well as real-

recorded RIRs. The RIRs are convolved with the anechoic two-speaker and three-speaker 

Input: wsj0-3mix; 
Output: spatialized reverberant wsj0-3mix; 
For each source s1, source s2, source s3 in wsj0-3mix do 

Sample room length 𝑟7  and width 𝑟f from [5,10] m; 
Sample room height 𝑟8 from [3,4] m; 
Sample mic array height 𝑎8 from [1,2] m; 
Sample displacement 𝑛7  and 𝑛f of mic array from [−0.2,0.2] m; 
Place array center at ^9:

a
+ 𝑛7,

9;
a
+ 𝑛f, 𝑎8b m; 

Sample microphone spacing 𝑎9 from [0.02,0.09] m; 
For 𝑝 = 1:𝑃(= 8) do 

Place mic 𝑝 at ^9:
a
+ 𝑛7 −

Ag?
a
𝑎9 + (𝑝 − 1)𝑎9,

9;
a
+ 𝑛f, 𝑎8b m; 

End 
Sample speaker locations in the frontal plane: 

𝑠7
(?), 𝑠f

(?), 𝑠8
(?) = 	 𝑎8; 

𝑠7
(a), 𝑠f

(a), 𝑠8
(a) = 	 𝑎8; 

𝑠7
(�), 𝑠f

(�), 𝑠8
(�) = 	 𝑎8; 

such that any two speakers are at least 15° apart from each other with respect to the 
array center, and the distance from each speaker to the array center is in between 
[0.75,2] m; 

Sample T60 from [0.2,0.7] s; 
Generate impulse responses using RIR generator and convolve them with s1, s2 and s3; 
Concatenate channels of reverberated s1, s2 and s3, scale them to match SIR among 
original s1, s2 and s3, and add them to obtain reverberated mixture; 

End 

Algorithm 4-2. Data spatialization process (simulated RIRs). 
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mixtures in the recently proposed wsj0-2mix and wsj0-3mix corpus [57], each of which 

contains 20,000, 5,000 and 3,000 anechoic monaural speaker mixtures in its 30-hour 

training, 10-hour validation and 5-hour test data. Note that the speakers in the training set 

and test set are not overlapped. The task is hence speaker-independent. The signal to 

interference ratio (SIR) for wsj0-2mix mixtures are randomly drawn from -5 to 5 dB. For 

wsj0-3mix, the third speaker is added such that its energy is the same as that of the first 

two speakers combined. The sampling rate is 8 kHz.  

The data spatialization process using simulated RIRs for wsj0-3mix is detailed in 

Algorithm 4-2. The RIR generator [47] is employed to generate the simulated RIRs. The 

general guideline is to make the setup as random as possible while still subject to realistic 

constraints. For each wsj0-3mix mixture, we randomly generate a room with random room 

 

Figure 4-4. Illustration of experimental setup. 
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characteristic, speaker locations, and microphone spacing. Our study considers a linear 

array setup, where the target speakers are placed in the frontal plane and are at least 15° 

apart from each other. We generate 20,000, 5,000, and 3,000 eight-channel mixtures for 

training, validation and testing, respectively. A T60 value for each mixture is randomly 

drawn in the range [0.2, 0.7] s. See Figure 4-4(a) for an illustration of this setup. The 

spatialization of wsj0-2mix is performed similarly. The average speaker-to-microphone 

distance is 1.38 m with 0.37 m standard deviation and the average DRR is 0.49 dB with 

3.92 dB standard deviation.  

We also generate another 3,000 eight-channel mixtures using the Multi-Channel 

Impulse Responses Database [50], which is recorded using eight-microphone linear arrays 

with three different inter-microphone spacing, including 3-3-3-8-3-3-3, 4-4-4-8-4-4-4, 8-

8-8-8-8-8-8 cm, under three reverberant time (0.16, 0.36, 0.61 s) created by using a number 

of covering panels on the walls. The RIRs are measured in steps of 15° from −90° to 90° 

and at a distance of 1 m and 2 m to the array center, in a room with size approximately at 

6×6×2.4 m. See Figure 4-4(b) for an illustration of this setup. For each mixture, we place 

each speaker in a random direction and at a random distance, using a randomly-chosen 

linear array and a randomly-chosen reverberation time among 0.16, 0.36 and 0.61 s. Note 

that for any two speakers, they are at least 15° apart with respect to the array center. The 

average DRR is 2.8 dB with 3.8 dB standard derivation in this case. We emphasize that 

this is a very realistic setup, as it is speaker-independent and more importantly, we use 

simulated RIRs for training and real RIRs for testing.  
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At run time, we randomly pick a subset of microphones for each utterance for testing. 

The aperture size can be 2 cm at minimum and 63 cm at maximum for the simulated RIRs, 

and 3 cm and 56 cm for the real RIRs.  

The chimera++ and enhancement network respectively contains four and three BLSTM 

layers, each with 600 units in each direction. The window size is 32 ms and the hop size is 

8 ms. A 256-point DFT is applied to extract 129-dimensional log magnitude features after 

square-root Hann window is applied to the signal. The α in Eq. (4.6) is empirically set to 

0.975 and the embedding dimension set to 20, following [177]. We emphasize that the 

enhancement network is trained using the directional features computed from various 

numbers of microphones, as the quality of the directional features varies with the number 

of microphones. For all the input features, we apply global mean-variance normalization 

before feed-forwarding. 

Following the SiSEC challenges [142], average signal-to-distortion ratio (SDR) 

computed using the bss_eval_images software is used as the major evaluation metric. We 

also report average perceptual estimation of speech quality (PESQ) and extended short-

time objective intelligibility (eSTOI) [72] scores to measure speech quality and 

intelligibility.  

We consider the reverberant image of each source at the reference microphone, i.e. 

𝑠ª
(Á), as the reference signal for metric computation.  
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4.6. Evaluation Results 

We first report the results on the reverberant wsj0-2mix spatialized using the simulated 

RIRs in the second last column of Table 4-1. Clearly, the chimera++ network shows clear 

improvements over the individual models (8.4 vs. 7.5 and 7.3 dB), which align with the 

findings in [177]. Even with random microphone spacing, incorporating inter-channel 

phase patterns for model training produces large improvement compared with only using 

Table 4-1. SDR (dB) results on spatialized reverberant wsj0-2mix using up to two 
microphones.  

Approaches Input Features Simu RIRs Real RIRs 
Unprocessed - 0.0 0.0 

1ch PIT log	(_𝑌ª_) 7.5 7.3 
1ch deep clustering log	(_𝑌ª_) 7.3 7.4 

1ch chimera++ log	(_𝑌ª_) 8.4 8.4 
2ch chimera++ log	(_𝑌ª_),IPD 10.2 9.8 
2ch chimera++ log	(_𝑌ª_),cosIPD 9.7 10.0 
2ch chimera++ log	(_𝑌ª_),cosIPD,sinIPD 10.4 10.1 

+ Enh1 log	(_𝑌ª_),𝑀�ª
(Á) 10.7 10.5 

+ Enh1 log	(_𝑌ª_),𝐷𝐹ª
(Á)(Eq. (4.14)),𝑀�ª

(Á) 10.8 10.7 
+ Enh1 log	(_𝑌ª_),𝐷𝐹ª

(Á)(Eq. (4.16)),𝑀�ª
(Á) 11.1 11.1 

2ch chimera++ log	(_𝑌ª_),cosIPD,sinIPD,ILD 10.4 10.1 

Table 4-2. SDR (dB) results on spatialized reverberant wsj0-3mix using up to two 
microphones. 

Approaches Input Features Simu RIRs Real RIRs 
Unprocessed - -3.3 -3.2 

1ch chimera++ log	(_𝑌ª_) 4.0 4.0 
2ch chimera++ log	(_𝑌ª_),IPD 7.1 6.1 
2ch chimera++ log	(_𝑌ª_),cosIPD 5.8 5.9 
2ch chimera++ log	(_𝑌ª_),cosIPD,sinIPD 7.3 6.3 

+ Enh1 log	(_𝑌ª_),𝑀�ª
(Á) 7.6 6.7 

+ Enh1 log	(_𝑌ª_),𝐷𝐹ª
(Á)(Eq. (4.14)),𝑀�ª

(Á) 7.8 6.9 
+ Enh1 log	(_𝑌ª_),𝐷𝐹ª

(Á)(Eq. (4.16)),𝑀�ª
(Á) 7.9 7.1 
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monaural spectral information. This is likely because inter-channel phase patterns naturally 

form clusters within each frequency regardless of microphone spacing, and we use a 

clustering-based DNN model to exploit such information for separation. Among various 

forms of IPD features, the combination of cosIPD and sinIPD leads to consistently better 

performance over using IPD or cosIPD (10.4 vs. 10.2 and 9.7 dB), likely because this 

combination naturally maintains the helix structures that can be exploited by the network. 

Further including the ILD features for training does not lead to clear improvement (10.4 

vs. 10.4 dB), likely because level differences are very small in far-field conditions. Using 

the Enh1 network brings further improvement as it provides better magnitude estimates. 

Compensating IPDs (i.e. Eq. (4.14)) using estimated phase differences to reduce the 

ambiguity and using beamforming results (i.e. Eq. (4.16)) as directional features push the 

performance from 10.4 to 10.8 and 11.1 dB, respectively. The former feature is worse than 

the latter one, likely because the former is mathematically similar to the delay-and-sum 

beamformer, which is known to be less powerful than the multi-channel Wiener filter. In 

the following experiments, we use Eq. (4.16) to compute the directional feature if not 

specified. The last column of Table 4-1 presents the results on the real RIRs. The 

performance is as comparably good as on the simulated RIRs, although the model is trained 

only on the simulated RIRs.  

Table 4-2 presents the results obtained on the spatialized wsj0-3mix using the simulated 

RIRs and real RIRs, with up to two microphones. Similar trends as in Table 4-1 are 

observed.

Table 4-3 and Table 4-4 compare the proposed algorithms with other systems along 

with the oracle performance of various ideal masks, using up to eight microphones, and in 
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terms of SDR, PESQ and eSTOI. Because of utilizing the phase provided by beamforming, 

Enh2 shows consistent improvement over Enh1, especially when more microphones are 

available. This justifies the proposed way of integrating beamforming for separation. 

Performing run-time iterative mask refinement using Enh1+Enh2 leads to slight 

improvement over Enh2 in the two-speaker case, while clear improvement is observed in 

the three-speaker case, especially when more microphones are available. This indicates the 

effectiveness of using 𝑅�ª
(Á) for T-F masking based beamforming, especially when 𝑀�ª

(Á) is 

not good enough.  

Recent studies [62] apply monaural deep clustering on each microphone signal to 

derive a T-F masking based beamformer for each frequency for separation. To compare 

with their algorithms, we use the truncated PSM (tPSM), computed as 

Table 4-3. Performance comparison with other approaches on real RIRs using various 
numbers of microphones on spatialized reverberant wsj0-2mix. 

Metrics #mics Mixture MESSL 
[102] 

GCC- 
NMF 
[195]  

ILRMA 
[78] 

MCDC 
[178] 

MC- 
Chimera++ 

Using 𝜂(Á)  
in Eq. 
(4.12) 

eMCWF Enh1 Enh2 Enh1+ 
Enh2 

tPSM- 
MCWF 

Oracle Masks 

IRM IBM tPSM MC- 
tPSM 

SDR 
(dB) 

2 

0.0 

4.1 5.0 8.9 9.2 9.4 10.2 6.7 11.1 11.1 11.2 7.1 

12.1 13.0 14.1 

14.1 
3 - - 9.5 9.6 9.8 10.4 8.1 11.5 11.9 12.1 8.6 14.8 
4 - - 9.5 9.8 9.9 10.5 9.0 11.7 12.5 12.7 9.6 15.3 
5 - - 9.7 9.9 10.0 10.6 9.7 11.8 13.0 13.2 10.4 15.8 
6 - - 9.8 10.0 10.0 10.6 10.3 11.9 13.3 13.6 11.0 16.2 
7 - - 9.8 10.0 10.0 10.6 10.7 12.0 13.6 13.9 11.5 16.5 
8 - - 9.7 10.0 10.1 10.6 11.0 12.0 13.8 14.2 11.9 16.7 

PESQ 

2 

2.06 

2.27 2.16 2.73 2.19 2.20 2.98 2.51 3.12 3.21 3.24 2.53 

3.79 3.29 3.83 

3.92 
3 - - 2.80 2.24 2.24 2.98 2.66 3.23 3.35 3.40 2.69 3.97 
4 - - 2.82 2.26 2.26 3.01 2.75 3.29 3.43 3.48 2.79 4.00 
5 - - 2.83 2.27 2.27 3.01 2.81 3.33 3.49 3.54 2.86 4.02 
6 - - 2.84 2.27 2.27 3.03 2.86 3.35 3.52 3.58 2.91 4.04 
7 - - 2.84 2.27 2.27 3.02 2.90 3.37 3.55 3.60 2.96 4.06 
8 - - 2.84 2.27 2.27 3.03 2.93 3.38 3.57 3.63 2.99 4.07 

eSTOI 
(%) 

2 

54.8 

58.9 56.7 73.8 71.8 72.5 79.0 65.8 82.1 83.4 84.1 66.7 

92.1 87.7 92.7 

94.0 
3 - - 75.6 73.5 74.0 79.2 70.5 83.7 85.6 86.4 71.8 94.6 
4 - - 76.0 74.2 74.5 79.9 73.4 84.7 87.0 87.8 74.9 95.1 
5 - - 76.5 74.6 74.8 80.0 75.6 85.3 87.9 88.7 77.2 95.4 
6 - - 76.7 74.8 74.9 80.2 77.2 85.8 88.5 89.3 79.0 95.7 
7 - - 76.7 74.9 75.0 80.2 78.5 86.1 89.0 89.8 80.4 95.9 
8 - - 76.7 74.9 75.0 80.3 79.4 86.3 89.4 90.2 81.4 96.1 

 
 

Table 4-4. Performance comparison with other approaches on real RIRs using various 
numbers of microphones on spatialized reverberant wsj0-3mix. 

Metrics #mics Mixture MESSL 
[102] 

GCC- 
NMF 
[195]  

ILRMA 
[78] 

MCDC 
[178] 

MC- 
Chimera++ 

Using 𝜂(Á) 
in Eq. 
(4.12) 

eMCWF Enh1 Enh2 
Enh1+ 
Enh2 

tPSM- 
MCWF 

Oracle Masks 

IRM IBM tPSM MC- 
tPSM 

SDR 
(dB) 

2 

-3.2 

2.0 2.6 - 5.6 5.5 6.6 3.9 7.1 7.3 7.4 4.5 

9.2 10.1 11.3 

11.6 
3 - - 4.6 6.1 5.9 6.7 4.9 7.5 7.9 8.2 5.7 12.1 
4 - - 5.0 6.3 6.2 7.0 5.7 7.8 8.4 8.8 6.5 12.5 
5 - - 5.1 6.4 6.3 7.2 6.3 8.0 8.9 9.4 7.2 12.9 
6 - - 5.2 6.5 6.4 7.3 6.7 8.2 9.3 9.8 7.7 13.2 
7 - - 5.2 6.5 6.4 7.3 7.0 8.3 9.6 10.1 8.2 13.5 
8 - - 5.3 6.5 6.4 7.3 7.3 8.4 9.8 10.4 8.5 13.7 

PESQ 

2 

1.67 

1.87 1.68 - 1.49 1.48 2.45 2.10 2.48 2.55 2.59 2.14 

3.60 2.87 3.64 

3.73 
3 - - 2.22 1.55 1.54 2.46 2.26 2.64 2.74 2.81 2.30 3.79 
4 - - 2.26 1.57 1.56 2.53 2.35 2.73 2.85 2.94 2.41 3.83 
5 - - 2.28 1.58 1.57 2.54 2.43 2.81 2.95 3.05 2.48 3.85 
6 - - 2.29 1.59 1.58 2.56 2.48 2.84 3.00 3.12 2.54 3.87 
7 - - 2.30 1.59 1.59 2.56 2.52 2.88 3.05 3.17 2.59 3.89 
8 - - 2.31 1.59 1.59 2.57 2.55 2.90 3.09 3.21 2.63 3.91 

eSTOI 
(%) 

2 

37.5 

43.3 37.9 - 53.0 52.4 62.5 47.5 65.4 66.9 68.2 49.4 

87.6 80.4 88.5 

90.2 
3 - - 54.3 55.5 55.0 62.9 53.2 68.5 70.7 72.5 55.9 91.2 
4 - - 56.3 56.7 56.4 64.9 57.2 70.7 73.4 75.5 60.0 91.8 
5 - - 57.0 57.3 56.9 65.2 60.1 72.4 75.5 77.8 63.1 92.3 
6 - - 57.5 57.6 57.3 65.9 62.2 73.4 76.8 79.2 65.4 92.7 
7 - - 57.8 57.7 57.4 65.8 63.9 74.2 77.9 80.3 67.4 93.0 
8 - - 58.0 57.6 57.6 66.2 65.2 74.7 78.6 81.1 69.0 93.3 
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𝑇ó?.óV|𝑆ª
(Á)|cos	(∠𝑆ª

(Á) − ∠𝑌ª)/|𝑌ª|\, in Eq. (4.12) to compute oracle Φ�(Á) and report oracle 

time-invariant MCWF results (denoted as tPSM-MCWF). We also report the estimated 

time-invariant MCWF (eMCWF) performance obtained using 𝑀�ª
(Á)  computed from the 

two-channel chimera++ network. Clearly, the beamforming approach requires relatively 

large number of microphones to produce reasonable separation. Although using estimated 

masks, the eMCWF is comparable to tPSM-MCWF. As can be observed, both of them are 

not as good as Enh2, which combines beamforming with spectral masking. We also 

compare the proposed algorithms with MESSL2 [102], a popular wideband GMM based 

spatial clustering algorithm proposed for two-microphone arrays, and GCC-NMF3 [195], 

a location based stereo BSS algorithm, where dictionary atoms obtained from non-negative 

matrix factorization (NMF) are assigned to individual sources over time according to their 

time difference of arrival estimates obtained from GCC-PHAT. Note that oracle 

microphone spacing information is supplied to MESSL and GCC-NMF for the 

enumeration of time delays. Independent low-rank matrix analysis (ILRMA) 4  [78], 

originated from the ICA stream of research, is a strong and representative algorithm for 

determined and over-determined BSS. It unifies independent vector analysis (IVA) and 

multi-channel NMF by exploiting NMF decomposition to capture the spectral 

characteristics of each source as the generative source model in IVA. The recently 

proposed multi-channel deep clustering (MCDC) [178] integrates conventional spatial 

clustering with deep clustering by including inter-channel phase patterns to train deep 

 
2Available at https://github.com/mim/messl.  
3Available at https://github.com/seanwood/GCC-nmf.  
4Available at http://d-kitamura.net/programs/ILRMA_release20180411.zip.  
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clustering networks. Its extension to multi-channel cases is achieved by first applying a 

well-trained two-channel deep clustering model on every microphone pair, then stacking 

the embeddings obtained from all the pairs, and finally performing K-means on the stacked 

embeddings to obtain an estimated binary mask for separation. Following the suggestions 

by an anonymous reviewer, we evaluate two extensions of MCDC as alternative ways of 

exploiting multi-channel spatial information. The first one, denoted as MC-Chimera++, 

concatenates the embeddings provided by our two-channel chimera++ network for K-

means clustering, and the second one uses the median mask produced in Eq. (4.12) for 

separation, i.e. 𝑆Ûª
(Á) = 𝜂(Á)𝑌ª. Clearly, the proposed algorithms are consistently better than 

the MCDC approach and the two extensions, likely because the proposed algorithm is more 

end-to-end and better exploits spatial information contained in more than two microphones.   

The performance of various oracle masks is presented in the last columns of Table 4-3 

and Table 4-4. The IBM is computed based on which source is dominant at each T-F unit. 

The IRM is calculated as the magnitude of each source over the sum of all the magnitudes. 

Compared with such monaural ideal masks that use mixture phase for re-synthesis, the 

multi-channel tPSM (MC-tPSM), calculated as 𝑇ó?.ó(|𝑆ª
(Á)|cos	(∠𝑆ª

(Á) − 𝜃�ª
(Á))/|𝑌ª|	) where 

𝜃�ª
(Á) here is computed from tPSM-MCWF and used as the phase for re-synthesis, is clearly 

better and becomes even better when more microphones are available. Note that MC-tPSM 

represents the upper bound performance of Enh2. The results clearly show the effectiveness 

of using 𝜃�ª
(Á) as the phase estimate.  

By exploiting spatial information, we improve the performance of monaural chimera++ 

network from 8.4 to 11.2 dB when using two microphones and to 14.2 dB when using eight 
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microphones on the spatialized wsj0-2mix corpus, and from 4.0 to 7.4 and 10.4 dB on the 

spatialized wsj0-3mix corpus. These results are comparable to the oracle performance of 

the monaural IBM, IRM and tPSM in terms of the SDR metric, confirming the 

effectiveness of multi-channel processing. 

4.7. Conclusion 

We have proposed a novel approach that combines complementary spectral and spatial 

features for deep learning based multi-channel speaker separation in reverberant 

environments. This spatial feature approach is found to be very effective for improving the 

magnitude estimate of the target speaker from an estimated direction and with particular 

spectral structures. In addition, leveraging the enhanced phase provided by masking based 

beamforming driven by a two-channel chimera++ network produces further improvements. 

Equation break 
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Chapter 5. Magnitude Based Phase Reconstruction 

 

This chapter investigates phase reconstruction for deep learning based monaural talker-

independent speaker separation in the STFT domain. The key observation is that, for a 

mixture of two sources, with their magnitudes accurately estimated and under a geometric 

constraint, the absolute phase difference between each source and the mixture can be 

uniquely determined; in addition, the source phases at each T-F unit can be narrowed down 

to only two candidates. To pick the right candidate, we propose three algorithms based on 

iterative phase reconstruction, group delay estimation, and phase-difference sign 

prediction. At the time of publication, state-of-the-art results are obtained on the publicly 

available wsj0-2mix and 3mix corpus. This work has been published in Interspeech 2018 

[181] and ICASSP 2019 [184]. 

5.1. Introduction 

Audio source separation concerns the separation of a 𝐶-source discrete time-domain 

mixture 𝑦[𝑛] = ∑ 𝑠(Á)[𝑛]Ú
Á¸?  to its individual time-domain sources 𝑠(Á) . As speech is 

short-time stationary, a common approach decomposes the time-domain mixture to 

frequency domain to reveal its frequency components using STFT, and performs separation 

therein. One major recent advance is the introduction of DNN for the estimation of the 

IBM, IRM, spectral magnitude mask (SMM) [161], or PSM, where source separation is 
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converted to a magnitude-domain T-F unit level classification or regression problem, 

typically retaining the mixture phase for re-synthesis. Notable works include masking 

based speech enhancement studies [161], [166], [165], and speaker separation studies such 

as deep clustering (DC) [57], [177], [181] and PIT [122], [206]. These studies suggest that 

magnitude estimation can be substantially improved using deep learning based T-F 

masking.  

In this context, this study investigates magnitude-based methods for phase 

reconstruction for monaural speaker separation. The key insight is that the possible 

solutions of phase can be significantly narrowed down given sufficiently accurate 

magnitude estimates, under the following geometric constraint in the STFT domain 

𝑌(𝑡, 𝑓) =� 𝑆(Á)(𝑡, 𝑓)
Ú

Á¸?
=� 𝐴(Á)(𝑡, 𝑓)𝑒�3(4)(x,y)

Ú

Á¸?
, (5.1) 

where 𝑆(Á)(𝑡, 𝑓) and 𝑌(𝑡, 𝑓) respectively denote the STFT values of source signal 𝑐 and 

the mixture signal 𝑦  at time 𝑡  and frequency 𝑓 , and 𝐴(Á)(𝑡, 𝑓) = |𝑆(Á)(𝑡, 𝑓)|  and 

𝜃(Á)(𝑡, 𝑓) = ∠𝑆(Á)(𝑡, 𝑓) are the magnitude and phase of 𝑆(Á)(𝑡, 𝑓), respectively. In the 

simplest case, suppose that there are only two sources and the two magnitude spectrums 

can be perfectly estimated (i.e. 𝐴Û(Á)(𝑡, 𝑓) = 𝐴(Á)(𝑡, 𝑓)), are there any closed-form solution 

for phase estimation? It would be reasonable to say yes as there are two equations with two 

unknowns 

|𝑌(𝑡, 𝑓)|cos	(∠𝑌(𝑡, 𝑓)) = 𝐴Û(?)(𝑡, 𝑓)cos	(𝜃�(?)(𝑡, 𝑓)) + 𝐴Û(a)(𝑡, 𝑓)cos	(𝜃�(a)(𝑡, 𝑓)) (5.2) 

|𝑌(𝑡, 𝑓)|sin	(∠𝑌(𝑡, 𝑓)) = 𝐴Û(?)(𝑡, 𝑓)sin	(𝜃�(?)(𝑡, 𝑓)) + 𝐴Û(a)(𝑡, 𝑓)sin	(𝜃�(a)(𝑡, 𝑓)) (5.3) 
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 However, the underlying phase cannot be determined, because depending on the sign 

of the phase difference, there are two candidates satisfying the above two equations 

𝜃�(?)(𝑡, 𝑓) = ∠𝑌(𝑡, 𝑓)± arccos >
|𝑌(𝑡, 𝑓)|a + 𝐴Û(?)(𝑡, 𝑓)a − 𝐴Û(a)(𝑡, 𝑓)a

2|𝑌(𝑡, 𝑓)|𝐴Û(?)(𝑡, 𝑓)
? (5.4) 

𝜃�(a)(𝑡, 𝑓) = ∠𝑌(𝑡, 𝑓)∓ arccos >
|𝑌(𝑡, 𝑓)|a + 𝐴Û(a)(𝑡, 𝑓)a − 𝐴Û(?)(𝑡, 𝑓)a

2|𝑌(𝑡, 𝑓)|𝐴Û(a)(𝑡, 𝑓)
? (5.5) 

as is also suggested in earlier studies [107], [108]. See Figure 5-1(a) for an illustration. 

Intuitively, this sign ambiguity occurs because the phase of each source could be either 

ahead of or behind the mixture phase within each T-F unit in an almost random way, posing 

fundamental difficulties for STFT- or time-domain phase estimation. One thing we can 

conclude, though, is that one of the two candidates is the true 𝜃(?)(𝑡, 𝑓) and 𝜃(a)(𝑡, 𝑓).  

To resolve this sign ambiguity, we think that inter-T-F unit phase relations such as 

group delay (GD) or instantaneous frequency [109] and phase regularizations such as phase 

Figure 5-1. Illustration of sign ambiguity when magnitudes are known in the complex 
plane. (a) Two-source case; (b) three-source case: for each possible 𝜃�(?)(𝑡, 𝑓), there 
could be two solutions for 𝜃�(a)(𝑡, 𝑓) and 𝜃�(�)(𝑡, 𝑓). 
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consistency [86] could help. We propose three algorithms for phase reconstruction, 

leveraging good magnitude estimates produced by DNNs. The first one uses estimated 

magnitudes to drive an iterative phase reconstruction algorithm, which could implicitly 

resolve the sign ambiguity. The second one finds a sign assignment per T-F unit such that 

the resulting GD is closest to an estimated one. The third one implicitly predicts a sign at 

each T-F unit within a neural network that enforces the geometric constraint in Eq. (5.1).  

For a mixture with 𝐶 ≥ 3, even if the magnitudes are known, there are still infinite 

numbers of phase candidates satisfying the geometric constraint, as is illustrated in Figure 

5-1(b). This suggests that it could be helpful to approach multi-source separation from a 

one-vs.-the-rest angle, where a model is trained to estimate the magnitude of source 𝑐 and 

the magnitude of the rest sources combined (denoted as ¬𝑐), and at run time, the model is 

applied once for each source for separation. This way, there are only two possible phase 

candidates at each T-F unit to resolve for each source. For speaker separation, our study 

hence first uses a chimera++ network [177] to perform 𝐶-speaker separation to resolve the 

permutation problem and then uses an enhancement network taking into account the initial 

separation results of source 𝑐 to further estimate the magnitudes of source 𝑐 and ¬𝑐 for 

phase reconstruction. Our best performing algorithm achieves state-of-the art performance 

on the public wsj0-2mix and 3mix dataset [57], at the time of publication. 

Why do we rely so much on magnitude estimates for phase reconstruction? This is 

because magnitude is much more structured and predictable than phase, and also more 

stable. Even if the signal is shifted slightly, the magnitude remains almost unchanged, 

while the phase will exhibit a phase change at every frequency and become very random if 
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phase wrapping is incurred [109]. In addition, good magnitude estimation is achievable as 

is indicated in recent advance on deep learning based speech separation [161].  

5.2. Chimera++ Networks Revisit 

For speaker separation, we need to first resolve the label-permutation problem. This 

section uses the chimera++ networks introduced in Chapter 4.3, which combine DC and 

PIT in a multi-task learning way, to resolve the permutation problem. The resulting masks 

obtained from the PIT branch are denoted as 𝑀�(Á) for each source. 

In Chapter 4.3, a vanilla BLSTM is used in the chimera++ network. To improve mask 

estimation, we employ a BLSTM with convolutional encoder-decoder structures and skip 

connections [147] (see Figure 5-4). 

5.3. Proposed Algorithms 

With the label-permutation problem resolved, an enhancement network, which 

includes the estimated mask 𝑀�(Á) produced by the chimera++ network as inputs, is trained 

for each of the following three proposed algorithms to further estimate the magnitude of 

Input: Estimated magnitudes 𝐴Û(ÁÝ) and starting phases 𝜗Û (ÁÝ)(0) initialized as mixture phase 
∠𝑌 or enhanced phase 𝜃�(ÁÝ) for 𝑐Þ in {𝑐,¬𝑐}, and iteration number 𝐾; 
Output: Reconstructed phase 𝜗Û (ÁÝ)(𝐾) of source 𝑐Þ, for 𝑐Þ in {𝑐,¬𝑐};  
For 𝑘 = 1: 𝐾 do 

(1) 𝑠̂(ÁÝ)(𝑘) = iSTFT(𝐴Û(ÁÝ),𝜗Û (ÁÝ)(𝑘 − 1)), for 𝑐Þ in {𝑐,¬𝑐}; 
(2) 𝜀(𝑘) = 𝑦 − ∑ 𝑠̂(ÁÝ)(𝑘)ÁÝ∈{Á,¬Á} ;	 
(3) 𝜗Û (ÁÝ)(𝑘) = ∠STFT(𝑠̂(ÁÝ)(𝑘) + 𝜀(𝑘)/2), for 𝑐Þ in {𝑐,¬𝑐}; 

End 

Algorithm 5-1. Two-source MISI. iSTFT(∙,∙) reconstructs a time-domain signal from a 
magnitude and a phase. STFT(∙) computes the magnitude and phase of a signal. 
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source 𝑐 and ¬𝑐 for phase reconstruction. See Figure 5-2 for the network architectures. A 

side product of this research is a new way of computing the PSM using magnitude estimates 

(see Chapter 5.3.4).  

5.3.1. Deep Learning Based Iterative Phase Reconstruction 

One straightforward approach for phase reconstruction is to use estimated magnitudes 

to drive an iterative phase reconstruction algorithm [52], [215], [177], [181]. Here, we 

employ the multiple input spectrogram inverse (MISI) algorithm [46] (see Algorithm 5-1). 

Our insight is that the error distribution step (see step (2) and (3) in Algorithm 5-1) can 

ensure that the estimated phases are taken from reconstructed signals that add up to the 

mixture signal. The geometric constraint is hence roughly satisfied. If the magnitudes of 

the reconstructed signals are sufficiently accurate, the signs of many T-F units could be 

automatically determined, because the reconstructed signals are real signals that guarantee 

to have consistent phase structures and only particular ways of sign assignments exhibit 

consistent phase.  

Figure 5-2. Enhancement network architectures. 𝐺𝐷(ô)(𝑡, 𝑓) = ∠𝑒�(∠ô(x,yù?)g∠ô(x,y)). 

BLSTM 𝑁 ×𝑁 

BLSTM 𝐹′ × 𝑁 

Linear 𝑁 × 2𝐹 

Softplus 

𝑅�(Á)(𝑡),𝑅�(¬Á)(𝑡) 

=log(|𝑌(𝑡)|);𝑀�(Á)(𝑡) ; 𝐺𝐷(ô)(𝑡)B 

BLSTM 𝑁 ×𝑁 

BLSTM 𝐹′ × 𝑁 

Linear 𝑁 × 2𝐹 

Softplus 

𝑅�(Á)(𝑡),𝑅�(¬Á)(𝑡) 

=log(|𝑌(𝑡)|);𝑀�(Á)(𝑡) ; 𝐺𝐷(ô)(𝑡)B 

Linear 𝑁 ×
2(𝐹 − 1) 

𝐺𝐷G (Á)(𝑡),𝐺𝐷G (¬Á)(𝑡) 

BLSTM 𝑁 ×𝑁 

BLSTM 𝐹′ × 𝑁 

Linear 𝑁 × 2𝐹 

Softplus 

𝑅�(Á)(𝑡),𝑅�(¬Á)(𝑡) 

=log(|𝑌(𝑡)|);𝑀�(Á)(𝑡) ; 𝐺𝐷(ô)(𝑡)B 

Linear 𝑁 × 𝐹 

tanh 

𝑠𝑖𝑔𝑛(𝑡) 

(a) (b) (c) 
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One issue with previous studies [177], [181] employing MISI for phase reconstruction 

is that the PSM is used as the training target in PIT and the resulting magnitude estimates 

are used for MISI. However, the sum of such magnitude estimates almost equals the 

mixture magnitude, as the sum of the PSMs of all the sources is one. Under the geometric 

constraint, the most reasonable phase estimate for each source is therefore simply the 

mixture phase. For example, in Figure 5-1(a), if 𝐴Û(?)(𝑡, 𝑓) + 𝐴Û(a)(𝑡, 𝑓) = |𝑌(𝑡, 𝑓)|, the 

three sides cannot make a triangle and the absolute phase difference estimates |𝜃�(?)(𝑡, 𝑓) −

∠𝑌(𝑡, 𝑓)| and |𝜃�(a)(𝑡, 𝑓) − ∠𝑌(𝑡, 𝑓)| are both zero. Similar issues will be incurred if the 

sum of estimated magnitudes is implicitly or explicitly constrained to equal the mixture 

magnitude, such as using the IBM or IRM as the training target, using softmax as the output 

non-linearity, and estimating noise magnitude by subtracting estimated speech magnitude 

from the mixture magnitude. 

This study hence estimates the SMM by using the magnitude spectrum approximation 

(MSA) loss function in Eq. (5.6), rather than the PSM using Eq. (5.7). See Figure 5-2(a) 

for the network structure. This minor change leads to large improvements in our 

experiments after MISI is applied for phase reconstruction. 

ℒIJK(L)M½á? = ℒIJK(L) = � Ä|𝑌|⨂𝑇óL(𝑅�(Á
Ý)) − 𝑇ó

L|ô|(|𝑆(ÁÝ)|)Ä
?ÁÝ∈{Á,¬Á}
, (5.6) 

where 𝑅�(ÁÝ) is the estimated SMM obtained by using softplus non-linearity. Based on the 

trigonometric perspective, 𝛼  should be much larger than one so that the estimated 

magnitudes can be large enough compared with the mixture magnitude when necessary to 

elicit a large enough phase difference for phase reconstruction, such as when the sources 

cancel with each other at a T-F unit. 
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To facilitate comparison, we also train the same network with minimal changes to 

estimate the PSM using the following loss 

ℒAJK(P,Q)
M½á? =� ò|𝑌|⨂𝑇P

Q(𝑄�(ÁÝ)) − 𝑇P|ô|
Q|ô|�_𝑆�ÁÝ�_⨂cos	(∠𝑆(ÁÝ) − ∠𝑌)�ò

?ÁÝ∈{Á,¬Á}
, (5.7) 

where the estimated PSM 𝑄�(ÁÝ) is obtained by using sigmoid activation when 𝛽 = 1 and 

𝛾 = 0, linear activation when 𝛽 > 1 and 𝛾 < −1, Softplus when 𝛽 > 1 and 𝛾 = 0, and 

tanh when 𝛽 = 1 and 𝛾 = −1. 

Following [181], we unfold the MISI iterations as multiple layers in the network and 

compute the loss function in the time domain 

ℒITJTgUM½á? =� ÄiSTFT(𝐴Û(ÁÝ),𝜗Û (ÁÝ)(𝐾)) − 𝑠(ÁÝ)Ä
?ÁÝ∈{Á,¬Á}
, (5.8) 

where 𝜗Û(ÁÝ)(𝐾) denotes the reconstructed phase after 𝐾 iterations of MISI (see Algorithm 

5-1 for detailed definitions), which starts from estimated magnitude 𝐴Û(ÁÝ) =

|𝑌|⨂𝑇óL(𝑅��Á
Ý�) and the mixture phase ∠𝑌. 

5.3.2. Group Delay Based Phase Reconstruction 

For a pair of T-F units at two consecutive frequencies, there are four (2a) combinations 

of possible phase solutions, while only one combination exhibits a particular group delay.  

Our study first estimates the group delay of each source and then finds a sign assignment 

at each T-F unit in a way such that the resulting phase spectrum has a group delay closest 

to the estimated one. Note that group delay (GD) [110], computed as 𝐺𝐷(Á)(𝑡, 𝑓) =

∠𝑒�(∠J(4)(x,yù?)g∠J(4)(x,y)), exhibits patterns clearly predictable from (see Figure. 5-3), and 

is mathematically related to, log magnitude [109], [42], [111], [140].  
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Figure 5-2(b) depicts the network structure. Magnitude weighted cosine distance is 

used as the loss function in the GD branch  

ℒV�? =� � � |𝑆�ÁÝ�(𝑡, 𝑓 + 1)|(1 − cos(𝐺𝐷G (ÁÝ)(𝑡, 𝑓) − 𝐺𝐷(ÁÝ)(𝑡, 𝑓)))/2
�g?

y¸?xÁÝ∈{Á,¬Á}
, (5.9) 

and the overall loss function is ℒIJK(L)ùV�?M½áa = ℒIJK(L) + ℒV�?. 

At run time, assuming that 𝐴Û(Á), 𝐴Û(¬Á) and |𝑌| form a triangle at each T-F unit, we first 

estimate the absolute phase difference 𝛿Û(ÁÝ) between source 𝑐Þ and the mixture based on 

the law of cosines 

𝛿Û(ÁÝ) = X∠𝑒�V3�
(4Ý)g∠ô\X = arccos	>𝒯 k|ô|

5ùK�(4
Ý)5gK�(¬4

Ý)5

a|ô|⨂|K�(4Ý)|
l?,	for 𝑐Þ in {𝑐,¬𝑐} (5.10) 

where 𝒯	(⋅)  truncates the values outside of the range [−1,1]  to 1. Note that when 

𝐴Û(Á)(𝑡, 𝑓) + 𝐴Û(¬Á)(𝑡, 𝑓) ≤ |𝑌(𝑡, 𝑓)| , the three sides cannot make a triangle. This can 

happen as we are using estimated magnitudes. In addition, 𝐴Û(Á) and 𝐴Û(¬Á) could have zero 

Figure. 5-3. Illustration of GD using a two-speaker mixture. (a) Log magnitude of 
mixture; (b) log magnitude of source 1; (c) clean GD of source 1; (d) estimated GD of 
source 1. 
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values in some T-F units, if obtained via ReLU. We hence clip the values outside the range 

[−1,1] to 1, meaning that the mixture phase is considered as the phase estimate for such 

T-F units since arccos(1) = 0.  

We then determine the sign assignment at each T-F unit, 	𝑔�(𝑡, 𝑓) ∈ {−1,1} , by 

maximizing the following similarity at each frame 

𝑔�(𝑡, 1), … ,𝑔�(𝑡, 𝐹) = 

argmax
,(x,?),…,,(x,�)

� � cos�𝜃�(ÁÝ)(𝑡, 𝑓 + 1)(𝑔(𝑡, 𝑓 + 1)) − 𝜃�(ÁÝ)(𝑡, 𝑓)(𝑔(𝑡, 𝑓)) − 𝐺𝐷G (ÁÝ)(𝑡, 𝑓)�
ÁÝ∈{Á,¬Á}

�g?

y¸?

, 
(5.11) 

where 	𝜃�(Á)(𝑡, 𝑓)(𝑔(𝑡, 𝑓)) and  𝜃�(¬Á)(𝑡, 𝑓)(𝑔(𝑡, 𝑓))are phases hypothesized as 

	𝜃�(Á)(𝑡, 𝑓)(𝑔(𝑡, 𝑓)) = ∠𝑌(𝑡, 𝑓) + 𝑔(𝑡, 𝑓)𝛿Û(Á)(𝑡, 𝑓) (5.12) 

𝜃�(¬Á)(𝑡, 𝑓)(𝑔(𝑡, 𝑓)) = ∠𝑌(𝑡, 𝑓) − 𝑔(𝑡, 𝑓)𝛿Û(¬Á)(𝑡, 𝑓) (5.13) 

Although Eq. (5.11) has 2� possible solutions, our insight is that it can be efficiently solved 

with time complexity 𝛰(2a𝐹) by applying dynamic programming (or Viterbi decoding) 

within each frame, as the estimated GD only characterizes the phase relations between each 

consecutive T-F unit pair along frequency. The final phase estimates are obtained as ∠𝑌 +

𝑔�⨂𝛿Û(Á) and ∠𝑌 − 𝑔�⨂𝛿Û(¬Á). 

There are previous studies [107], [108] employing GD for sign determination. 

However, they resolve the ambiguity using an empirically hypothesized minimum GD 

deviation constraint and only consider a few frequencies with detected harmonic peaks.  
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5.3.3. Sign Prediction Networks 

The GD based method is designed to be applied at run time as post processing. It is 

hard to perform end-to-end training. A possibly better approach is to let the network predict 

the sign explicitly (see Figure 5-2(c)), and compute the estimated phases as follows 

𝜃�(Á) = ∠𝑌 + 𝑠𝑖𝑔𝑛⨂𝛿Û(Á) (5.14) 

𝜃�(¬Á) = ∠𝑌 − 𝑠𝑖𝑔𝑛⨂𝛿Û(¬Á) (5.15) 

where 𝑠𝑖𝑔𝑛 is obtained via tanh non-linearity. Note that 𝛿Û(ÁÝ) is naturally bounded in the 

range [0,π] and 𝑠𝑖𝑔𝑛⨂𝛿Û(ÁÝ) in the range [−π,π]. The loss function on estimated phases is 

ℒV�a =� � � _𝑆(ÁÝ)(𝑡, 𝑓 + 1)_�1 − cos�𝜃�(ÁÝ)(𝑡, 𝑓 + 1) − 𝜃�(ÁÝ)(𝑡, 𝑓) − 𝐺𝐷(ÁÝ)(𝑡, 𝑓)��/2
�g?

y¸?xÁÝ∈{Á,¬Á}
, (5.16) 

and the overall loss function is: ℒIJK(L)ùV�aM½á� = ℒIJK(L) + ℒV�a. This way, the network 

could learn to produce a sign that can lead to GD spectrums close to the clean ones. An 

alternative is to compute the loss from the estimated phases and clean phases 

ℒªá+m^ =� Ä|𝑆(ÁÝ)|⨂(1 − cos(𝜃�(ÁÝ) − 𝜃(ÁÝ)))/2Ä
?
,

ÁÝ∈{Á,¬Á}
 (5.17) 

and the overall loss function is: ℒIJK(L)ùªá+m^M½á� = ℒIJK(L) + ℒªá+m^.  

We emphasize that Eq. (5.14) and (5.15) (as well as (5.12) and (5.13)) implicitly 

constrain that, at each T-F unit, the two reconstructed STFT vectors (𝐴Û(Á)(𝑡, 𝑓)𝑒�3�(4)(x,y) 

and 𝐴Û(¬Á)(𝑡, 𝑓)𝑒�3�(¬4)(x,y)) have to be on the different sides of the mixture STFT vector 

𝑌(𝑡, 𝑓) in the complex plane, and 𝜃�(Á)(𝑡, 𝑓) and 𝜃�(¬Á)(𝑡, 𝑓) cannot be, at the same time, 

more than 𝜋/2 away from ∠𝑌(𝑡, 𝑓), because only in this way could the two reconstructed 
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STFT vectors add up to the mixture STFT vector. This distinguishes our approach from 

studies that directly predict unbounded or unconstrained phase differences [1], [87], clean 

phases [145] and real and imaginary components of target sources [192], [193], or fully 

complex neural network approaches [130].  

Following our recent study [181], we train through iSTFT for time-domain waveform 

approximation (WA), using 𝐴Û(ÁÝ) and 𝜃�(ÁÝ) 

ℒ_K
M½á� =� ÄiSTFT(𝐴Û(ÁÝ),𝜃�(ÁÝ)) − 𝑠(ÁÝ)Ä

?ÁÝ∈{Á,¬Á}
 (5.18) 

Following [87], which uses estimated phases as the starting phases to train through 

MISI, we further train our model using 

ℒITJTgUM½á� =� ÄiSTFT(𝐴Û(ÁÝ),𝜗Û(ÁÝ)(𝐾)) − 𝑠(ÁÝ)Ä
?ÁÝ∈{Á,¬Á}
, (5.19) 

where 𝜗Û�ÁÝ�(𝐾)  is obtained after 𝐾  iterations of MISI starting from 𝐴Û(ÁÝ)  and 𝜃�(ÁÝ) 

produced by the sign prediction network. We will denote ℒ_K
M½á`  as ℒITJTgó

M½á` , since 

𝜗Û�ÁÝ�(0) = 𝜃��ÁÝ� (see Algorithm 5-1). 

Following [181], [117], [120], which computes loss using the magnitudes of 

reconstructed signals, we further train the network using 

ℒITJTgUgIJKM½á� = � ò.STFT kiSTFT V𝐴Û�ÁÝ�,𝜗Û�ÁÝ�(𝐾)\l.− _𝑆(ÁÝ)_ò
?ÁÝ∈{Á,¬Á}

 (5.20) 

Our insight is that due to phase inconsistency, the reconstructed signal, 

iSTFT(𝐴Û(ÁÝ),𝜗Û(ÁÝ)(𝐾)) , may not exhibit a magnitude as good as 𝐴Û�ÁÝ� , although the 

iterative process in MISI can reduce their difference [44]. The network trained this way 

outputs two signals that almost add up to the mixture signal and each signal is expected to 
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exhibit a good magnitude. From the trigonometric perspective, the signs could be 

automatically determined because the two signals are real signals having consistent phase 

structures, as is explained in the first paragraph of Chapter 5.3.1. 

5.3.4. Computing PSM from Estimated Magnitudes 

A side product of this research is a new way of computing the PSM (defined as 

|𝑆(Á)|⨂cos(∠𝑆(Á) − ∠𝑌) /|𝑌|) [35] in two-source cases, where the cosine term can be 

estimated as cos	(𝛿Û(Á)) 

𝑍Û(Á) = 𝐴Û(Á)⨂cos	(𝛿Û(Á))	/|𝑌| (5.21) 

In the literature, the PSM is typically clipped to the range [0,1] and directly predicted 

by a DNN in a way similar to Eq. (4.5) or using ℒAJK(ó,?)M½á?  (i.e. 𝛽=1 and 𝛾=0) in Eq. (5.7) 

[35]. In contrast, the estimated PSM obtained here is assembled based on estimated 

magnitudes. It is not limited to the range [0,1] and can even go negative.  

5.4. Experimental Setup 

We validate our algorithms on the wsj0-2mix and 3mix dataset [57], designed for a 

talker-independent speaker separation task. Each of them contains 20,000, 5,000, and 3,000 

2(or 3)-speaker mixtures in its 30, 10 and 5 h training, validation, and test (open speaker 

condition, OSC) set, respectively. The sampling rate is 8 kHz. The SNR in each mixture is 

randomly sampled from -5 to 5 dB. We use 32 ms window size and 8 ms hop size. Square-

root Hann window is applied before 256-point DFT is applied to extract 129-dimensional 

log magnitude features. 𝜆 in Eq. (4.6) is set to 0.975 and embedding dimension 𝐷 set to 20. 

𝐾 in MISI is set to 5.  
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We use a 4-layer BLSTM with convolutional encoder-decoder structures and skip 

connections [126], [71] in the chimera++ network (see Figure 5-4). Similar network was 

found useful in a speech enhancement study [147]. The encoder contains seven 

convolutional blocks, each including 2D convolution, batch normalization and exponential 

linear units (ELU). The decoder contains six deconvolutional blocks, each consisting of 

2D deconvolution, BN and ELU layers, and one 2D deconvolution layer and a sigmoidal 

layer to obtain estimated masks. The embedding layer grows out from the last BLSTM 

layer. Each BLSTM has 512 units in each direction.  

Figure 5-4. Chimera++ network architecture. The tensor shape after each block is in 
format: featureMaps× timeSteps× frequencyChannels. Each block is specified in the 
format: kernelSizeTime× kernelSizeFreq, (stridesTime, stridesFreq), (paddingsTime, 
paddingsFreq), featureMaps. 

16 × 𝑇 × 63 

64 × 𝑇 × 15 (64 + 128) × 𝑇 × 15 

(32 + 64) × 𝑇 × 31 

(16 + 32) × 𝑇 × 63 

(16 + 16) × 𝑇 × 127 

𝐶 × 𝑇 × 129 1 × 𝑇 × 129 

128 × 𝑇 × 7 (128 + 256) × 𝑇 × 7 

3 × 3, (1,1), (1,0), 	16 

3 × 3, (1,2), (1,0), 	16 

3 × 3, (1,2), (1,0), 	32 

3 × 3, (1,2), (1,0), 	64 

3 × 3, (1,2), (1,0), 	128 

3 × 3, (1,2), (1,0), 	256 

3 × 3, (1,2), (1,0), 	512 

Reshape 4-layer BLSTM Reshape 

3 × 3, (1,1), (1,0), 	𝐶 

3 × 3, (1,2), (1,0), 	16 

3 × 3, (1,2), (1,0), 	32 

3 × 3, (1,2), (1,0), 	64 

3 × 3, (1,2), (1,0), 	128 
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3 × 3, (1,2), (1,0), 	512 
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Each enhancement network (see Figure 5-2) contains three BLSTM layers, each with 

600 units in each direction.  

We use scale-invariant SDR improvement (SI-SDRi) [94] as the major evaluation 

metric. We also report SDR improvement (SDRi) and PESQ. 

5.5. Evaluation Results 

Table 5-1 reports the performance on wsj0-2mix. Including the encoder-decoder  

structure into the chimera++ network improves SI-SDRi by 0.7 dB (from 11.2 to 11.9 dB), 

compared with [177] that uses a vanilla BLSTM. The enhancement network, which can 

also be thought of as stacking [176], [81], improves estimated PSM results from 11.9 to 

Table 5-1. Average SI-SDRi (dB) and PESQ results on OSC of wsj0-2mix. 

Approaches Models Enhanced Phase? SI-SDRi PESQ 
Unprocessed - No 0.0 2.01 

Chimera++(Encoder-BLSTM-Decoder) ℒÁáàùù No 11.9 3.12 

Deep learning based iterative 
phase reconstruction 

ℒAJK(ó,?)M½á?  No 12.1 3.15 
    +MISI-5 Yes 12.5 3.17 
ℒAJK(ó,b)M½á?  No 12.4 3.17 
    +MISI-5 Yes 12.9 3.19 
ℒAJK(g?,?)M½á?  No 12.4 3.21 
    +MISI-5 Yes 12.9 3.24 
ℒAJK(gb,b)M½á?  No 12.7 3.21 
    +MISI-5 Yes 13.3 3.24 
ℒIJK(b)M½á?  No 11.1 3.27 
    +MISI-5 Yes 14.4 3.43 
    +ℒITJTgbM½á?  Yes 15.0 3.38 
    +Eq. (5.21) No 12.6 3.24 

Group delay based phase reconstruction ℒIJK(b)ùV�?M½áa  Yes 13.6 3.39 

Sign prediction network 

ℒIJK(b)ùV�aM½á�  Yes 14.2 3.39 
ℒIJK(b)ùªá+m^M½á�  Yes 14.4 3.38 
    +MISI-5 Yes 15.0 3.44 
    +ℒ_KM½á� Yes 14.6 3.36 
    +ℒITJTgbM½á�  Yes 15.3 3.36 
    +ℒITJTgbgIJKM½á�  Yes 15.2 3.45 
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12.1 dB, by using ℒAJK(ó,?)M½á? . Further applying 5 iterations of MISI (MISI-5) at run time only  

leads to slight improvement (from 12.1 to 12.5 dB). Similar trend is observed for models 

trained using ℒAJK(ó,b)M½á? , ℒAJK(g?,?)M½á? , and ℒAJK(gb,b)M½á? . In contrast, the model trained to 

estimate the SMM using ℒIJK(b)M½á?  (i.e. 𝛼 =5) exhibits substantial improvements when 

combined with MISI-5 (from 11.1 to 14.4 dB), indicating that the SMM is the preferred 

training target if MISI needs to be performed. Further training the model with ℒITJTgbM½á?  

pushes the performance to 15.0 dB. Compared with ℒIJK(b)M½á? , using estimated group delay 

from ℒIJK(b)ùV�?M½áa  for phase reconstruction improves the performance from 11.1 to 13.6 

dB, while this approach is not as good as the sign prediction networks that can be trained 

end-to-end. Compared with ℒIJK(b)M½á? , ℒIJK(b)ùªá+m^M½á�  and ℒIJK(b)ùV�aM½á�  both lead to 

substantial improvement (14.4 and 14.2 vs. 11.1 dB).  The former is slightly better, likely 

because it directly compares estimated phases with clean ones for loss computation. Further 

applying MISI-5 on the estimated magnitudes and enhanced phase improves the results to 

15.0 dB, which is 0.6 dB (15.0 vs. 14.4 dB) better than applying MISI-5 on the model 

trained with ℒIJK(b)M½á? , indicating the benefits of using an enhanced phase as the starting 

phase for MISI over using the mixture phase. Further training through MISI using ℒITJTgbM½á�  

produces slight improvement (from 15.0 to 15.3 dB). Compared with ℒITJTgbM½á� , 

ℒITJTgbgIJKM½á�  leads to worse SI-SDRi (15.2 vs. 15.3 dB), which aligns with the findings in 

[181]. Different from [181], the PESQ score is improved significantly from 3.36 to 3.45. 

This could be that PESQ is computed by reducing the phase mismatch between enhanced 

signals and reference signals via a time alignment procedure, and considerably taking into 

account the magnitudes of resynthesized signals [123], while SI-SDR solely considers 
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time-domain signals and is hence more sensitive to phase mismatches. For the side product 

in Eq. (5.21), which assembles an estimated PSM from the estimated magnitudes produced 

via ℒIJK(b)M½á? , it obtains results comparable to ℒAJK(gb,b)M½á? , and better than the other three 

models trained to directly estimate the PSM.  

Table 5-2 compares the performance of our algorithm with other competitive systems 

on the wsj0-2mix and 3mix corpus. Our algorithm obtains dramatically better performance 

than the other STFT based approaches. Its performance is also better than a recent time-

domain approach [95], particularly in terms of PESQ.  

5.6. Conclusion 

Thanks to a novel trigonometric perspective, we have proposed three phase 

reconstruction algorithms based on magnitude estimation. The obtained state-of-the-art 

speaker separation results at the time of publication suggest that deep learning based 

magnitude estimation can clearly benefit phase reconstruction. In closing, we emphasize 

Table 5-2. Average SI-SDRi (dB), SDRi (dB) and PESQ comparison between proposed 
algorithms and other methods on OSC of wsj0-2mix and wsj0-3mix. 

Approaches wsj0-2mix wsj0-3mix 
SI-SDRi SDRi PESQ SI-SDRi SDRi PESQ 

Unprocessed 0.0 0.0 2.01 0.0 0.0 1.66 
DC++  [57], [69] 10.8 - - 7.1 - - 
ADANet [94] 10.4 10.8 2.82 9.1 9.4 2.16 
uPIT-ST [206], [81] - 10.0 - - 7.7 - 
Chimera++ (BLSTM) [177] 11.2 11.5 - - - - 
    +MISI-5 [177] 11.5 11.8 - - - - 
    +WA-MISI-5 [181] 12.6 12.9 - - - - 
        + PhaseBook [87] 12.8 - - - - - 
conv-TasNet-gLN [97], [95] 14.6 15.0 3.25 11.6 12.0 2.50 
Proposed (Sign prediction net, ℒITJTgbM½á� ) 15.3 15.6 3.36 12.1 12.5 2.64 
Proposed (Sign prediction net, ℒITJTgbgIJKM½á� ) 15.2 15.4 3.45 12.0 12.3 2.77 
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that a geometric constraint affords a mechanism to narrow down the possible solutions of 

phase, and it could play a fundamental role in future research on phase estimation.  

Equation break  
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Chapter 6. Multi-Channel Speech Dereverberation 

 

This chapter investigates multi-channel speech dereverberation and its application to 

robust ASR in reverberant conditions using deep learning based complex spectral mapping. 

The work in this chapter has been published in IEEE/ACM T-ASLP in 2020 [185]. 

6.1. Introduction 

Room reverberation is pervasive in modern hands-free speech communication. In a 

reverberant enclosure, speech signals propagate in the air and are inevitably reflected by 

the walls, ceiling, floor, and any objects in the room. As a result, the signal captured by a 

distant microphone is a summation of an infinite number of delayed and decayed copies of 

original source signals. Room reverberation is known to be detrimental to ASR systems, 

and severely degrades speech quality and intelligibility. Speech dereverberation is a 

challenging task, as reverberation is a convolutive interference, and it is difficult to 

distinguish the direct-path signal from its reverberated versions, especially when room 

reverberation is strong or environmental noise is also present [161]. 

For single-channel dereverberation, one conventional approach estimates the power 

spectral density (PSD) of late reverberation to compute a Wiener-like filter [48], [10]. The 

weighted prediction error (WPE) algorithm [112], [205] is probably the most widely used 

algorithm for speech dereverberation. It uses variance-normalized delayed linear prediction 
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to predict late reverberation from past observations, and subtracts the predicted 

reverberation to estimate target speech. It iteratively estimates the time-varying PSD of 

target speech and the linear filter, and is unsupervised in nature. Many ASR studies report 

that WPE suppresses reverberation with low speech distortions, and consistently improves 

ASR performance even for multi-conditionally trained ASR backends [26].  

When multiple microphones are available, spatial information can be leveraged to filter 

out signals not arriving from the estimated target direction. Single-channel WPE can be 

extended to multi-channel WPE [112] by simply concatenating the observations across 

multiple microphones when performing linear prediction. Another popular approach for 

multi-channel speech dereverberation is the so-called suppression approach [49], [11], 

which decomposes a multi-channel Wiener filter into a product of a time-invariant or time-

varying MVDR beamformer and a monaural Wiener post-filter. This approach can utilize 

the phase produced by linear beamforming, which is expected to be better than the mixture 

phase, since MVDR beamforming is distortionless. However, the phase improvement is 

dependent on linear beamforming, which is less effective when room reverberation is 

strong or when the number of microphones is small. In addition, the Wiener post-filter is a 

real-valued mask, and would inevitably introduce phase inconsistency problems [44], 

[184], when directly applied to the beamformed signal for enhancement. 

Different from conventional algorithms, supervised learning based approaches train a 

DNN to predict the magnitudes or real-valued masks of the direct-path signal from 

reverberant observations [37], [52], [100], [104], [197]. However, the DNN operates in the 

magnitude domain, and mixture phase is typically utilized for signal re-synthesis. Phase 

estimation is hence a promising direction for further improvement. Another direction in 
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dereverberation uses DNN estimated speech magnitudes as the PSD estimate for WPE [59], 

[60], [76], [143]. This approach can leverage the spectral structure in speech for linear 

prediction, and most importantly eliminates the iterative process. In offline scenarios, 

although ASR improvement is observed on the eight-channel task of the REVERB 

challenge, it leads to slightly worse performance on the monaural task [76].  

In this context, our study extends magnitude-domain masking and mapping based 

speech dereverberation to the complex domain, where a DNN is trained to predict the RI 

components of direct sound from reverberant ones. Although previous studies perform 

single-channel complex masking or mapping for speech denoising [39], [148], [192], their 

results in reverberant conditions are mixed [193] and how to extend to multi-channel 

processing is unclear.  

Our study approaches multi-channel dereverberation from the angle of target 

cancellation, where a key assumption is that the target speaker is a directional source, and 

is typically non-moving within a short utterance. This suggests that we can point a null 

beam to cancel the target speaker, and the remaining signal would only contain a filtered 

version of reverberation. This filtered reverberation can be utilized as extra features for 

DNN to perform multi-channel complex spectral mapping based dereverberation. It should 

be noted that similar ideas of target cancellation were explored in binaural speech 

segregation [125] and multi-channel dereverberation [79], [11]. Their purposes are, 

however, different (e.g. on the PSD estimation of late reverberation), and they do not 

address phase estimation. 

Our study makes four main contributions. First, we extend deep learning based 

magnitude-domain single-channel speech dereverberation to the complex domain for phase 
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estimation. The phase estimation method follows the complex spectral mapping idea in 

[39], [148], while our study addresses direct sound vs. reverberation and noise, rather than 

speech vs. noise in anechoic conditions. Second, we introduce for complex spectral 

mapping a magnitude-domain loss function, which dramatically improves speech quality 

measures in reverberant conditions. Third, we propose a novel target cancellation strategy 

to utilize spatial information to improve the estimation of direct sound. Fourth, we 

investigate the effectiveness of DNN based phase estimation for beamforming and post-

filtering, while the DNN in previous deep learning based multi-channel enhancement 

operates in the magnitude domain.  

We emphasize that the proposed algorithms are designed in a way such that the 

resulting models, once trained, can be directly applied to arrays with an arbitrary number 

of microphones arranged in an unknown geometry.  

The rest of this paper is organized as follows. We introduce the physical model in 

Chapter 6.2. The proposed algorithms are detailed in Chapter 6.3, followed by 

experimental setup in Chapter 6.4. Evaluation and comparison results are presented in 

Chapter 6.5. Conclusions are made in Chapter 6.6.  

6.2. Physical Models and Objectives 

Given a 𝑃 -microphone time-domain signal 𝒚[𝑛] = =𝑦?[𝑛], … , 𝑦A[𝑛]B
C ∈ ℝA×? 

recorded in a reverberant and noisy enclosure, the physical model in the STFT domain is 

formulated as: 

𝒀(𝑡, 𝑓) = 𝒄(𝑓; 𝑞)𝑆Q(𝑡, 𝑓) + 𝑯(𝑡, 𝑓) + 𝑵(𝑡, 𝑓) = 	𝑺(𝑡, 𝑓) + 𝑽(𝑡, 𝑓), (6.1) 
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where 𝑆Q(𝑡, 𝑓) ∈ ℂ is the complex STFT coefficient of the direct-path signal of the target 

speaker captured by a reference microphone 𝑞 at time 𝑡 and frequency 𝑓, 𝒄(𝑓; 𝑞) ∈ ℂA×? 

is the relative transfer function with the 𝑞ST  element being one, and 𝒄(𝑓; 𝑞)𝑆Q(𝑡, 𝑓) , 

𝑯(𝑡, 𝑓), 𝑵(𝑡, 𝑓) and 𝒀(𝑡, 𝑓) ∈ ℂA×? respectively represent the STFT vectors of the direct-

path signal, reverberation, reverberant noise and received mixture at a T-F unit.  

We propose multiple deep learning algorithms to enhance the mixture 𝑌Q captured at 

the reference microphone 𝑞  to recover 𝑆Q , by exploiting single- and multi-channel 

information contained in 𝒀. In this study, 𝑵(𝑡, 𝑓) is assumed to be a quasi-stationary air-

conditioning noise, as our focus is on dereverberation; the proposed algorithms can be 

straightforwardly applied to deal with more noises. The target speaker is assumed to be 

still within an utterance. Our study also assumes offline scenarios: we normalize the time-

domain sample variance of each input multi-channel signal 𝒚 to one before any processing. 

This normalization would be important for mapping-based enhancement to deal with 

random gains in input signals. 

In the remainder of this paper, we refer to 𝑺(𝑡, 𝑓) = 𝒄(𝑓; 𝑞)𝑆Q(𝑡, 𝑓)  as the target 

component we aim to extract, and 𝑽(𝑡, 𝑓) = 𝑯(𝑡, 𝑓) + 𝑵(𝑡, 𝑓)  as the non-target 

component to remove. 

6.3. Proposed Algorithms 

There are two DNNs in our system. The first DNN performs single-channel 

dereverberation by predicting the RI components of the direct-path signal from a mixture. 

Dereverberation results are utilized to compute an MVDR beamformer. The second DNN 

utilizes the RI components of beamformed speech as additional features to further improve 
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the estimation of the RI components of the direct-path signal. Figure 6-1 illustrates the 

overall system.  

6.3.1. Monaural Complex Spectral Mapping 

Following recent studies [39], [148], we train a DNN to directly predict the RI 

components of the direct sound from reverberant and noisy ones. One key difference is that 

[39] and [148] deal with speech vs. noise, while our study addresses direct sound vs. 

reverberation and noise. We use the following loss function 

ℒdï = Ä𝑅�ª − Real(𝑆ª)Ä? + Ä𝐼
Ûª − Imag(𝑆ª)Ä?, (6.2) 

where 𝑝 ∈ {1,… , 𝑃}  indexes microphones, 𝑅�ª  and 𝐼Ûª  are the estimated RI components 

obtained by using linear activation in the output layer, and Real(∙)  and Imag(∙) 

respectively extract the RI components. The enhanced speech at microphone 𝑝 is obtained 

Figure 6-1. Illustration of overall system for single- and multi-channel speech 
dereverberation (or enhancement). There are two DNNs, one for single-channel and the 
other for multi-channel dereverberation and denoising. The superscript in 𝑆Û?

(?), … , 𝑆ÛA
(?) 

and 𝑆ÛQ
(a) denotes the DNN used for processing. 
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Room 
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Enhancement 

Network 
𝑆ÛA
(?) 

Multi-Channel 
Enhancement 

Network 

𝑆Û?
(?) 

𝑆ÛQ
(a) Target Speech 

Noise 

…
 

MVDR …
 

𝑌? 

𝑌A 

…
 

…
 

…
 𝐵𝐹GQ 

𝒀 
𝑌Q 
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as 𝑆Ûª
(°) = 𝑅�ª

(°) + 𝑗𝐼Ûª
(°) , where the superscript 𝑘 ∈ {1,2} denotes the output from the 𝑘 th 

DNN, as shown in Figure 6-1. 

Following recent studies combining ℒdï with a magnitude-domain loss [39], [194], we 

design the following loss function 

ℒdïùfgh = ℒdï + ij𝑅�ª
a + 𝐼Ûª

a − _𝑆ª_i
?
 (6.3) 

Different from [39], [194], our study does not compress the estimated magnitudes or 

complex spectra using logarithmic or power compression. This way, the DNN is always 

trained to estimate a complex spectrum that has consistent magnitude and phase structures, 

and therefore would likely produce a consistent estimated STFT spectrum at run time 

[184]. 

Our experiments show that including a loss on magnitude leads to large improvements 

in objective measures of speech quality, along with a small degradation on time-domain 

SNR based measures, compared with only using ℒdï. 

6.3.2. Multi-Channel Complex Spectral Mapping 

We propose a target cancellation approach to exploit spatial information for 

dereverberation. The motivation is that given an oracle MVDR beamformer 𝒘(𝑓; 𝑞), the 

beamformed signal is distortion-less, meaning that 𝑆Q(𝑡, 𝑓) = 𝒘(𝑓; 𝑞)`𝑺(𝑡, 𝑓). Therefore, 

the difference between the mixture and the beamformed signal at reference microphone 𝑞, 

computed as  

𝑌Q(𝑡, 𝑓) − 𝐵𝐹Q(𝑡, 𝑓) 

     = 𝑌Q(𝑡, 𝑓) − 𝒘(𝑓; 𝑞)`𝒀(𝑡, 𝑓)  
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     = 𝑆Q(𝑡, 𝑓) + 𝑉Q(𝑡, 𝑓) − �𝒘(𝑓; 𝑞)`𝑺(𝑡, 𝑓) + 𝒘(𝑓; 𝑞)`𝑽(𝑡, 𝑓)� 

     = 𝑉Q(𝑡, 𝑓) − 𝒘(𝑓; 𝑞)`𝑽(𝑡, 𝑓) (6.4) 

would only contain a filtered version of non-target signals, i.e. 𝑉Q(𝑡, 𝑓) − 𝒘(𝑓; 𝑞)`𝑽(𝑡, 𝑓). 

Intuitively, the more microphones there are and the more accurate the beamformer is, the 

weaker the beamformed non-target speech 𝒘(𝑓; 𝑞)`𝑽(𝑡, 𝑓)  would be, and the closer 

𝑉Q(𝑡, 𝑓) − 𝒘(𝑓; 𝑞)`𝑽(𝑡, 𝑓) is to the actual non-target speech 𝑉Q(𝑡, 𝑓) we aim to remove at 

microphone 𝑞. This makes 𝑌Q − 𝐵𝐹GQ a highly discriminative feature for dereverberation, 

and hence motivates us to use it as an extra input for DNN to predict 𝑆Q  via complex 

spectral mapping. Without this feature, the DNN may struggle at distinguishing direct-path 

signal from its reverberated versions, as the latter is a summation of the delayed and 

decayed copies of the former.  

We apply the single-channel complex spectral mapping model to each microphone 

signal and directly use the estimated speech 𝑺�(?)  to robustly compute an MVDR 

beamformer for cancelling target speech. Our study considers time-invariant MVDR (TI-

MVDR) beamforming, as the target speaker is assumed still within each utterance, and 

reverberation and the considered noise are largely diffuse. The covariance matrices are 

computed as 

Φ�(m)(𝑓) =
1
𝑇� 𝑺�(𝑡, 𝑓)	𝑺�(𝑡, 𝑓)`

x
 (6.5) 

Φ�(j)(𝑓) =
1
𝑇� 𝑽�(𝑡, 𝑓)𝑽�(𝑡, 𝑓)`

x
 (6.6) 

where 𝑽�(𝑡, 𝑓) = 𝒀(𝑡, 𝑓) − 𝑺�(𝑡, 𝑓). The motivation is that the estimated complex spectra 

are expected to have cleaner phase than the mixture phase. In contrast, mask-weighted 
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ways of computing covariance matrices (see Eq. (6.11) for example) [36], [58], [200], 

[203], [213] are fundamentally limited when there are insufficient T-F units dominated by 

the direct-path signal, such as when room reverberation or environmental noise is very 

strong. 

The relative transfer function is then computed in the following way 

𝒓�(𝑓) = 𝒫'Φ�(m)(𝑓)( (6.7) 

𝒄�(𝑓; 𝑞) = 𝒓�(𝑓) 𝑟̂Q(𝑓)⁄  (6.8) 

where 𝒫{∙} extracts the principal eigenvector. The motivation is that Φ�(m)(𝑓) would be 

close to a rank-one matrix if accurately estimated. Its principal eigenvector is therefore a 

reasonable estimate of the steering vector [40]. We then use Eq. (6.8) to obtain an estimated 

transfer function relative to a reference microphone 𝑞. We emphasize that, without using 

Eq. (6.8), a different complex gain would be introduced at each frequency, leading to 

distortions in the beamformed signal. 

A TI-MVDR beamformer is then computed as 

𝒘Å(𝑓; 𝑞) =
Φ� (j)(𝑓)g?𝒄�(𝑓; 𝑞)

𝒄�(𝑓; 𝑞)`Φ� (j)(𝑓)g?𝒄�(𝑓; 𝑞)
 (6.9) 

The beamformed signal is obtained using 

𝐵𝐹GQ(𝑡, 𝑓) = 𝒘Å(𝑓; 𝑞)`𝒀(𝑡, 𝑓) (6.10) 

For multi-channel dereverberation, we feed the RI components of 𝑌Q − 𝐵𝐹GQ, in addition 

to the RI components of 𝑌Q, to a DNN to estimate the RI components of the direct-path 

signal 𝑆Q (see Figure 6-1).  
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We point out that this strategy is in spirit similar to the classic generalized sidelobe 

canceller [40], which contains three components: a delay-and-sum (DAS) beamformer 

computed to enhance the target signal, a blocking matrix used to block the target signal, 

and an adaptive noise canceller designed to cancel the sidelobes produced by the DAS 

beamformer based on the blocked signal. The key difference here is that we compute an 

MVDR beamformer to block the target signal, and use deep learning to cancel the non-

target signal in 𝑌Q based on 𝑌Q − 𝐵𝐹GQ. 

From the spatial feature perspective, popular for deep learning based multi-channel 

speech enhancement [4], [73], [118], [214] and speaker separation [180], the RI 

components of 𝐵𝐹GQ  or 𝑌Q − 𝐵𝐹GQ  can be considered as complex-domain spatial features, 

which can be utilized by the DNN to extract a target speech signal with specific spectral 

structure and arriving from a particular direction. Such features are more general than those 

previously proposed for improving magnitude estimation, such as plain IPD [204], cosine 

and sine IPD [178], and target direction compensated IPD and the magnitudes of 

beamformed mixtures [180].  

6.4. Experimental Setup 

Our models for dereverberation are trained on reverberant and noisy data created by 

using simulated RIRs and recorded noises. We first measure the performance on a 

relatively matched simulated test set, and then evaluate the trained models directly on the 

test set of the REVERB challenge [77] to show their generalization ability. This section 

describes the datasets and the setup for model training, and several baseline systems for 

comparison purposes.  
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6.4.1. Datasets and Evaluation Setup 

 Following REVERB [77], our training data for dereverberation is generated using the 

WSJCAM0 corpus. Different from REVERB, which only uses 24 measured eight-channel 

RIRs to generate its training data, we use a much larger set of RIRs (in total 39,305 eight-

channel RIRs for training) generated by an RIR generator [47] to simulate room 

reverberation. See Algorithm 6-1 for the detailed simulation procedure. For each utterance, 

Input: WSJCAM0; 
Output: spatialized reverberant (and noisy) WSJCAM0; 
REP[train]=5; REP[validation]=4; REP[test]=3;  
For dataset in {train, validation, test} set of WSJCAM0 do 

For each anechoic speech signal 𝑠 in dataset do 
Repeat REP[dataset] times do 

- Sample room length 𝑟7 and width 𝑟f from [5,10] m; 
- Sample room height 𝑟8 from [3,4] m; 
- Sample mic array height 𝑎8 from [1,2] m; 
- Sample array displacement 𝑛7 and 𝑛f from [−0.5,0.5] m; 
- Place array center at 〈9:

a
+ 𝑛7 ,

9;
a
+ 𝑛f, 𝑎8〉 m; 

- Sample array radius 𝑎9 from [0.03,0.1] m; 
- Sample angle of first mic angle 𝜗 from [0, �

m
]; 

  For 𝑝 = 1:𝑃(= 8) do 
  - Place mic 𝑝 at 〈9:

a
+ 𝑛7 + 𝑎9 cos V𝜗+ (𝑝 − 1)

�
m
\ , 9;

a
+ 𝑛f + 𝑎9 sin V𝜗+ (𝑝 − 1)

�
m
\ , 𝑎8〉 m; 

  End 
  - Sample target speaker locations in the 0 − 360° plane: 

〈𝑠7 , 𝑠f, 𝑠8(= 𝑎8)〉 
     such that the distance from target speaker to array center is in between [0.75,2.5] m, and target 

speaker is at least 0.5 m from each wall; 
- Sample T60 from [0.2,1.3] s; 
- Generate multi-channel impulse responses using RIR generator and convolve them with s; 

  If dataset in {train, validation} do 
 - Sample a 𝑃-channel noise signal 𝑛 from the training noise of REVERB corpus; 

  Else 
  - Sample a 𝑃-channel noise signal 𝑛 from the testing noise of REVERB corpus; 

  End 
- Concatenate channels of reverberated s and 𝑛 respectively, scale them to an SNR randomly 

sampled from [5,25] dB, and add them to obtain reverberant and noisy mixture; 
End 

End 
End 

Algorithm 6-1. Data spatialization process (simulated RIRs). 
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we randomly generate a room with different room characteristics, speaker and microphone 

locations, microphone array characteristics, and noise levels. Our study considers eight-

channel circular arrays with radius spanning from 3 to 10 cm. The target speaker is placed 

on the same plane as the array, at a distance randomly drawn from 0.75 to 2.5 m. The 

reverberation time (T60) is randomly sampled between 0.2 and 1.3 s. We use the training 

and test noise (mostly diffuse quasi-stationary fan noise) in REVERB to simulate noisy 

reverberant mixtures in our training and test sets, respectively. The SNR between the direct 

sound and reverberant noise of each mixture is randomly drawn between 5 and 25 dB. The 

average DRR is -3.7 dB with 4.4 dB standard deviation. There are 39,305 (7,861×5, ~80 

h), 2,968 (742×4, ~6 h), and 3,264 (1,088×3, ~7 h) eight-channel utterances in the training, 

validation and test set, respectively. Note that the training and the test speakers are 

different. We denote this test set as Test Set I. At run time, we randomly choose a subset 

of microphones for each test mixture for evaluation. This setup therefore covers a wide 

range of microphone geometry. We use the direct-path signal at a reference microphone 

(i.e. the signal corresponding to 𝑆Q) as the reference for metric computation, and the first 

microphone is always considered as the reference. For 𝑃-channel processing, we randomly 

select 𝑃 − 1  microphones from the non-reference microphones and always report the 

performance on the reference microphone. This way, we can directly compare single- and 

multi-channel processing as they are both evaluated using the same reference signals. 

We apply the trained models, without re-training, to the test set of REVERB, which 

contains simulated as well as recorded reverberant and noisy mixtures. We first evaluate 

the enhancement performance of the trained models on the simulated test set (denoted as 

Test Set II), where six measured eight-channel RIRs are used to simulate 2,176 reverberant 
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and noisy mixtures. The six RIRs are measured in small-, medium- and large-size rooms, 

where the T60s are 0.25, 0.5 and 0.7 s respectively, and the speaker to microphone distance 

is around 0.5 m in the near-field case and 2.0 m in the far-field case. Recorded 

environmental noise is added at an SNR of 20 dB. In the REVERB challenge setup, only 

the sample at 𝑛¿, which is the index corresponding to the highest value in the measured 

RIR, is used to compute the direct-path signal (i.e. reference signal) for metric computation. 

However, due to measurement inaccuracy, this may not be realistic, since the samples in a 

small window around 𝑛¿ are typically considered as in the direct-path RIR [34]. A short 

segment of an example RIR from REVERB is shown in Figure 6-2(a), where T60 is around 

0.7 s. If we only use the sample at 𝑛¿ to simulate the direct-path signal, the resulting DRR 

would be unrealistically low, as the samples around the peak exhibit non-negligible energy; 

as a result, the reverberation generated by the surrounding samples would be difficult to 

remove. These surrounding samples should be considered when computing the direct-path 

Figure 6-2. RIR illustration. (a) Example RIR segment from REVERB 
(RIR_SimRoom3_far_AnglB.wav); (b) Example direct-path RIR simulated using RIR 
generator. 
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signal, as they are in a measured RIR. Also, the sound source may not be a point source 

strictly and for a 16 kHz sampling rate, one discrete sample can have around 340/16,000 

m measurement error, where 340  (𝑚/𝑠 ) is the sound speed in the air. Furthermore, 

simulated direct-path RIRs are usually computed based on low-pass filtering, and they will 

be similar to a Sinc function even for a point source [47]. In Figure 6-2(b) we show an 

example direct-path RIR simulated using the RIR generator by setting the T60 parameter 

to zero. In our study, we hence use the samples in the range [𝑛¿ − 0.0025 × 16,000, 𝑛¿ +

0.0025 × 16,000] (i.e. a 5-ms window surrounding the peak) of the measured RIRs to 

compute the direct-path signal for metric computation. This strategy aligns with the setup 

in the ACE challenge [34]. We then evaluate the dereverberation models on the ASR task 

of REVERB (denoted as REVERB ASR). The test utterances are real recordings with T60 

(reverberation time) around 0.7 s and the speaker to microphone distances approximately 

1 m in the near-field case and 2.5 m in the far-field case. Both Test Set II and REVERB 

ASR use an eight-microphone circular array with a 20 cm diameter, and the target speaker 

is non-moving within each utterance. We follow a plug-and-play approach for ASR, where 

enhanced signals are directly fed into a multi-conditionally trained ASR backend for 

decoding. The backend is built based on the official REVERB corpus using the Kaldi 

script5. It is composed of a GMM-HMM system, a time-delay DNN (TDNN) trained with 

lattice-free maximum mutual information based on online-extracted i-vectors and MFCCs, 

and a tri-gram language model. Note that the window length and hop size for ASR are 

 
5 https://github.com/kaldi-asr/kaldi/tree/master/egs/reverb/s5 (commit 61637e6c8ab01d3b4c54a50d9b20781a0aa12a59). Different 
from the Kaldi script, our study (1) performs sentence-level cepstral mean normalization on the input features of TDNN; (2) reduces the 
initial batch size of TDNN training by changing the trainer.num-chunk-per-minibatch flag from 256,128,64 to 128,64; (3) increases the 
number of TDNN training epochs from 10 to 20; (4) uses wsj/s5/local/wer_output_filter and wsj/s5/local/wer_hyp_filter to filter out 
tokens such as NOISE and SPOKEN_NOISE when utilizing local/score.sh to compute WER; and (5) enforces the same word insertion 
penalty (WIP) for near- and far-field conditions, and uses the averaged WER on the near- and far-field conditions of the validation set 
to select the best WIP. 
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respectively 25 and 10 ms, following the default setup in Kaldi. During testing, we first 

obtain enhanced time-domain signals using our frontend and then feed them to the ASR 

backend for decoding, meaning that our frontend does not leverage any knowledge of the 

backend. We emphasize that the purpose of Test Set II and REVERB ASR is to show the 

generalization ability of our dereverberation models, which are trained based on simulated 

training data, as well as to compare the proposed algorithms with unsupervised methods 

such as WPE, not to obtain state-of-the-art performance using dereverberation frontends 

trained on the REVERB training data.  

The two DNNs in Figure 6-1 are trained sequentially. We first train the single-channel 

model using the first channel of all the multi-channel signals (in total 7,861×5 utterances). 

Designating the first microphone as the reference, we use the trained model to obtain a 

beamformed signal based on a random subset of microphones. The beamforming result is 

then combined with the mixture signal to train the second network. This way, the second 

DNN can deal with beamforming results produced by using up to eight microphones. 

Figure 6-3 illustrates the DNN architecture. We use two-layer recurrent neural networks 

with BLSTM having an encoder-decoder structure similar to U-Net, skip connections, and 

dense blocks as the learning machines for masking and mapping. The motivation for this 

DNN design is that BLSTM can model long-term temporal information, U-Net can 

maintain fine-grained local information as is suggested in image semantic segmentation 

[126], and DenseNet encourages feature reuse and improves the discriminative capability 

of the network [67], [92], [144]. In our experiments, this network architecture shows 

consistent improvements over the standard BLSTM and a recently proposed convolutional 

recurrent neural network [148]. The encoder contains one 2D convolution, and six 
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convolutional blocks, each with 2D convolution, ELUs and instance normalization (IN) 

[198], for down-sampling.  The decoder includes six convolutional blocks, each with 2D 

deconvolution, ELUs and IN, and one 2D deconvolution, for up-sampling. Each BLSTM 

2 × 𝑇 × 257 

3 × 3, (1,2), (1,0), 	32 

3 × 3, (1,2), (1,0), 	128 

3 × 3, (1,2), (1,0), 	256 

3 × 3, (1,1), (1,0), 	512 
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3 × 3, (1,2), (1,0), 	128 
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[Real(𝑌Q); Imag(𝑌Q); 
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Figure 6-3. Network architecture for predicting the RI components of 𝑆Q  from the RI 
components of 𝑌Q  and 𝑌Q − 𝐵𝐹GQ . Note that for single-channel processing, the network 
only takes in single-channel information as its inputs. The tensor shape after each block 
is in format: featureMaps×timeSteps×frequencyChannels. Each Conv2D, Deconv2D, 
Conv2D+ELU+IN, and Deconv2D+ELU+IN block is specified in format: 
kernelSizeTime × kernelSizeFreq, (stridesTime, stridesFreq), (paddingsTime, 
paddingsFreq), featureMaps. Each DenseBlock(𝑔) contains five Conv2+ELU+IN blocks 
with growth rate 𝑔. 
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layer has 512 units in each direction. The frontend processing uses 32 ms window length 

and 8 ms frame shift for STFT. The sampling rate is 16 kHz. A square-root Hann window 

is used as the analysis window.   

Our main evaluation metrics are SI-SDR [88] and PESQ, where the former is a time-

domain metric that closely reflects the quality of estimated phase, and the latter strongly 

correlates with the accuracy of estimated magnitudes. We also consider scale-dependent 

SDR (SD-SDR) [88] for evaluating the single-channel models. Following REVERB, we 

also use cepstral distance (CD), log likelihood ratio (LLR), frequency-weighted segmental 

SNR (fwSegSNR), and speech-to-reverberation modulation energy ratio (SRMR) as the 

evaluation metrics. Note that the computation of SRMR does not require clean references. 

WER is used to evaluate ASR performance.  

6.4.2. Baseline Systems for Comparison 

This section describes the single- and multi-channel baselines considered in our study. 

6.4.2.1. Single-Channel Baselines 

 The first four baselines for dereverberation perform single-channel magnitude-domain 

masking and mapping based MSA and PSA [161], which are popular approaches in single-

channel speech enhancement. We summarize the baselines in Table 6-1. All of them use 

the same network architecture in Figure 6-3, and the key difference is in the number of 

input and output feature maps depending on the input features and training targets, output 

non-linearities and loss functions. 𝑇+n(∙) = max	(min(∙, 𝑏) , 𝑎)  in ℒfopgfghqø0h  and 

ℒîopgfghqø0h truncates the estimated mask to the range [𝑎, 𝑏]. 𝛼 in ℒfopgfghqø0h is set to 

10.0, and 𝛽 and 𝛾 in ℒîopgfghqø0h respectively set to 1.0 and 0.0 in our study.  
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6.4.2.2. TI-MVDR 

To show the effectiveness of using estimated complex spectra for covariance matrix 

computation, we apply the single-channel models to enhance each microphone signal 

following the last column of Table 6-1, and then compute the covariance matrices based 

on Eq. (6.5) for TI-MVDR. This method is denoted as 𝐵𝐹GQ. Additionally, we use mask-

weighted ways [58], [203] of computing covariance matrices for TI-MVDR, based on the 

estimated masks produced by the models trained with ℒfopgfghqø0h and ℒîopgfghqø0h 

Φ�(¿)(𝑓) =
1
𝑇� 𝜂(¿)(𝑡, 𝑓)𝒀(𝑡, 𝑓)	𝒀(𝑡, 𝑓)`

x
, (6.11) 

where 𝑑 ∈ {𝑠, 𝑣}. 

When using ℒfopgfghqø0h, 𝜂(¿) is computed as 

𝜂(¿) = medians
𝑇óLV𝑀�?

(¿)\

𝑇óLV𝑀�?
(m)\ + 𝑇óLV𝑀�?

(j)\
, … ,

𝑇óL(𝑀�A
(¿))

𝑇óL(𝑀�A
(m)) + 𝑇óL(𝑀�A

(j))
t, (6.12) 

Table 6-1. Summary of various single-channel models for speech dereverberation. 

Method Input 
features Loss function Network 

Output 
Output 

activation 
Enhancement 

results 
Complex spectral 

mapping 
Real�𝑌Q�, 
Imag(𝑌Q) 

ℒdï or ℒdïùfgh 𝑅�Q, 𝐼ÛQ Linear 
𝑆ÛQ = 𝑅�Q + 𝑗𝐼ÛQ 
𝑉�Q = 𝑌Q − 𝑆ÛQ 

MSA-Masking 

_𝑌Q_ 

ℒfopgfghqø0h = ò_𝑌Q_𝑇óL�𝑀�Q
(m)� − 𝑇ó

L_ô̄ _�_𝑆Q_�ò
?
 

+ò_𝑌Q_𝑇óL(𝑀�Q
(j)) − 𝑇ó

L_ô̄ _(_𝑉Q_)ò
?
 

𝑀�Q
(m), 𝑀�Q

(j) Clipped 
Softplus 

𝑆ÛQ = 𝑌Q𝑇óL(𝑀�Q
(m)) 

𝑉�Q = 𝑌Q𝑇óL(𝑀�Q
(j)) 

MSA-Mapping ℒfopgfguuø0h = Ä𝑈�Q
(m) − |𝑆Q|Ä? + Ä𝑈

�Q
(j) − |𝑉Q|Ä? 𝑈�Q

(m), 𝑈�Q
(j) Softplus 

𝑆ÛQ = 𝑈�Q
(m)𝑒�∠ô̄  

𝑉�Q = 𝑈�Q
(j)𝑒�∠ô̄  

PSA-Masking 
ℒîopgfghqø0h = ò_𝑌Q_𝑇𝛾

𝛽(𝑄�Q
(m)) − 𝑇𝛾_ô̄ _

𝛽_ô̄ _(_𝑆Q_cos	(∠𝑆Q − ∠𝑌Q))ò
?
 

+è_𝑌Q_𝑇𝛾
𝛽(𝑄�Q

(j)) − 𝑇𝛾_ô̄ _
𝛽_ô̄ _(_𝑉Q_cos	(∠𝑉Q − ∠𝑌Q))è

?
 

𝑄�Q
(m), 𝑄�Q

(j) Sigmoid 
𝑆ÛQ = 𝑌Q𝑇P

𝛽(𝑄�Q
(m)) 

𝑉�Q = 𝑌Q𝑇P
𝛽(𝑄�Q

(j)) 

PSA-Mapping 
ℒîopgfguuø0h = Ä𝑍ÛQ

(m) − _𝑆Q_cos	(∠𝑆Q − ∠𝑌Q)Ä? 

+Ä𝑍ÛQ
(j) − _𝑉Q_cos	(∠𝑉Q − ∠𝑌Q)Ä? 

𝑍ÛQ
(m),𝑍ÛQ
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𝑆ÛQ = 𝑍ÛQ

(m)𝑒�∠ô̄  
𝑉�Q = 𝑍ÛQ

(j)𝑒�∠ô̄  
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where 𝑀�ª
(¿) denotes the estimated magnitude mask at microphone 𝑝. 

When using ℒîopgfghqø0h, 𝜂(¿) is computed as 

𝜂(¿) = median k𝑇P
QV𝑄�?

(¿)\, … , 𝑇P
QV𝑄�A

(¿)\l, (6.13) 

where 𝑄�ª
(¿) denotes the estimated phase-sensitive mask at microphone 𝑝.  

We also square the mask before median pooling, as the outer product is in the energy 

domain, while in Eq. (6.13) and (6.12) the mask is in the magnitude domain. 𝜂(¿)  is 

computed as  

𝜂(¿) = medians
𝑇óLV𝑀�?

(¿)\
a

𝑇óLV𝑀�?
(m)\

a
+ 𝑇óLV𝑀�?

(j)\
a , … ,

𝑇óL(𝑀�A
(¿))a

𝑇óL(𝑀�A
(m))a + 𝑇óL(𝑀�A

(j))a
t (6.14) 

for ℒîopgfghqø0h and as 

𝜂(¿) = median k𝑇P
QV𝑄�?

(¿)\
a
, … , 𝑇P

QV𝑄�A
(¿)\

a
l (6.15) 

for ℒîopgfghqø0h . Note that 𝛼 , 𝛽  and 𝛾  are respectively set to 10.0, 1.0 and 0.0 in our 

study.  

6.4.2.3. Post-filtering (no re-training) 

After obtaining 𝐵𝐹GQ, we then apply the single-channel models to 𝐵𝐹GQ for post-filtering. 

Note that the phase in 𝐵𝐹GQ is used as the estimated phase for magnitude-domain masking 

and mapping based models. We emphasize that 𝐵𝐹GQ is still very reverberant and is expected 

to contain low speech distortion. It is therefore reasonable to feed 𝐵𝐹GQ into a single-channel 

model trained on unprocessed mixtures for further enhancement. Note that in this method, 
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only one DNN is trained (i.e. the single-channel model), but it is run twice at run time. This 

method is denoted as 𝐵𝐹GQ + Post-filtering (no re-training).  

6.4.2.4. Post-filtering (re-training) 

As 𝐵𝐹GQ may contain distortion unseen by the single-channel models, which are trained 

on unprocessed mixtures. We train a complex spectral mapping based post-filter, which 

predicts the RI components of 𝑆Q based on 𝐵𝐹GQ. Similar to the proposed system shown in 

Figure 6-1, this method uses two DNNs, while the input to the second DNN is 𝐵𝐹GQ rather 

than 𝑌Q and 𝑌Q − 𝐵𝐹GQ. We denote this method as 𝐵𝐹GQ + Post-filtering (re-training).  

6.4.2.5. Single- and Multi-Channel WPE 

We follow the script for REVERB in Kaldi, which is based on the open-source nara-

wpe toolkit [30], to build our offline WPE baselines, where the window size is 32 ms and 

hop size is 8 ms, the prediction delay is set to 3, the iteration number set to 5, and the order 

of the regressive model set to 40 for single-channel processing and 10 for multi-channel 

processing. Note that these hyperparameters are the recommended ones in [76] and [26].  

6.5. Evaluation Results 

 We first report the dereverberation performance of the trained models on Test Set I, 

and then report their generalization ability on Test Set II and REVERB ASR.  

6.5.1. Dereverberation Performance on Test Set I 

In Table 6-2, we compare the performance of single-channel magnitude-domain 

masking and mapping based MSA and PSA, and complex spectral mapping over 

unprocessed speech and oracle magnitude-domain masks such as the spectral magnitude 
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mask [166] and phase-sensitive mask [35]. Note that the unprocessed SI-SDR is closely 

related to DRR, an important factor characterizing the difficulty of dereverberation along  

with T60. Comparing ℒfopgfghqø0h, ℒfopgfguuø0h, ℒîopgfghqø0h and ℒîopgfguuø0h and 

ℒdï, we observe that ℒdï leads to much better SI-SDR than MSA and PSA (6.2 vs. 0.8, 0.7, 

2.3 and 1.6 dB), while MSA obtains the best PESQ (2.91 and 2.92 vs. 2.55, 2.56 and 2.80). 

This is likely because PESQ is closely related to the quality of estimated magnitudes, while 

time-domain measures such as SI-SDR needs the estimated magnitudes to compensate for 

the error of phase estimation. Compared with ℒdï, ℒdïùfgh substantially improves PESQ 

from 2.80 to 3.07, slightly degrading SI-SDR from 6.2 to 5.9 dB. In addition, ℒdïùfgh 

obtains better PESQ than MSA (3.07 vs. 2.91 and 2.92), indicating the effectiveness of 

phase processing. We observe that SD-SDR results are consistent with SI-SDR. In the 

following experiments, we use ℒdïùfgh  as the loss function to train the two DNNs in 

Figure 6-1, as it yields a very strong SI-SDR and the highest PESQ.  

 In Table 6-3, we compare the performance of TI-MVDR and post-filtering based on 

the statistics computed using the single-channel models in Table 6-2. Among all the 

Table 6-2. Average SI-SDR (dB), PESQ and SD-SDR (dB) of different methods on 
single-channel dereverberation (Test Set I). Oracle masking results are marked in gray. 

Method SI-SDR PESQ SD-SDR 
Unprocessed -3.7 1.93 -3.7 
ℒfopgfghqø0h 0.8 2.91 3.5 
ℒfopgfguuø0h 0.7 2.92 3.5 
ℒîopgfghqø0h 2.3 2.55 4.5 
ℒîopgfguuø0h 1.6 2.56 4.2 

ℒdï 6.2 2.80 7.2 
ℒdïùfgh 5.9 3.07 7.0 

SMM (𝑇ó?ó(|𝑆Q|/|𝑌Q|)) 1.6 3.40 3.9 
PSM (𝑇ó?(|𝑆Q|cos	(∠𝑆Q − ∠𝑌Q)/|𝑌Q|)) 4.5 3.09 5.8 
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alternative ways of computing the statistics for TI-MVDR, using the ℒdï  and ℒdïùfgh  

models with Eq. (6.5) obtains the highest SI-SDR (5.8 and 5.6 dB), and the PESQ scores 

(2.34 and 2.34) are better than using MSA and PSA models with Eq. (6.5) (2.27, 2.26, 2.31 

and 2.31) while worse than using MSA and PSA models with Eq. (6.11) (2.44, 2.45, 2.44 

and 2.44). Applying post-filtering to 𝐵𝐹GQ computed using the ℒdï and ℒdïùfgh models and 

Eq. (6.5) shows the highest SI-SDR scores (9.6 and 9.4 dB), and ℒdïùfgh  leads to 

significantly better PESQ over ℒdï (3.23 vs. 3.10). These results suggest the effectiveness 

of complex spectral mapping based beamforming and post-filtering. In the following 

Table 6-3. Average SI-SDR (dB) and PESQ of different methods for TI-MVDR and post-
filtering using eight microphones (Test Set I).  

Method Model Covariance 
Matrices #mics SI-SDR PESQ 

𝐵𝐹GQ 

ℒfopgfghqø0h 

Eq. (6.5) 

8 

2.3 2.27 
ℒfopgfguuø0h 2.3 2.26 
ℒîopgfghqø0h 3.3 2.31 
ℒîopgfguuø0h 2.8 2.31 

ℒdï 5.8 2.34 
ℒdïùfgh 5.6 2.34 

ℒfopgfghqø0h Eq. (6.11), (6.12) 1.7 2.44 
ℒîopgfghqø0h Eq. (6.11), (6.13) 3.3 2.45 
ℒfopgfghqø0h Eq. (6.11), (6.14) 3.0 2.44 
ℒîopgfghqø0h Eq. (6.11), (6.15) 4.2 2.44 

𝐵𝐹GQ+Post-filtering (no re-training) 

ℒfopgfghqø0h 

Eq. (6.5) 

4.4 3.01 
ℒfopgfguuø0h 4.3 3.03 
ℒîopgfghqø0h 5.2 2.85 
ℒîopgfguuø0h 4.7 2.87 

ℒdï 9.6 3.10 
ℒdïùfgh 9.4 3.23 

ℒfopgfghqø0h Eq. (6.11), (6.12) 3.5 3.10 
ℒîopgfghqø0h Eq. (6.11), (6.13) 5.3 2.96 
ℒfopgfghqø0h Eq. (6.11), (6.14) 4.7 3.10 
ℒîopgfghqø0h Eq. (6.11), (6.15) 6.1 2.95 
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experiments, we compute 𝐵𝐹GQ  using Eq. (6.5) and ℒdïùfgh  if not specified, as this 

combination obtains the highest PESQ and a very competitive SI-SDR.   

In Table 6-4, we show the results of 𝑆ÛQ
(a), obtained by combining 𝑌Q and 𝑌Q − 𝐵𝐹GQ for 

dereverberation (see Figure 6-1). Consistently better performance is obtained over 𝑆ÛQ
(?), 

confirming the effectiveness of multi-channel processing (e.g. 11.2 vs. 5.9 dB in SI-SDR 

and 3.44 vs. 3.07 in PESQ in the eight-microphone case). 𝑆ÛQ
(a)  also obtains better 

performance than 𝐵𝐹GQ+Post-filtering (no re-training), especially when the number of  

microphones is greater than two, for instance 11.2 vs. 9.4 dB in SI-SDR and 3.44 vs. 3.23 

in PESQ in the eight-channel case. It is also slightly better than 𝐵𝐹GQ+Post-filtering (re-

training). These results demonstrate the gains of combining 𝑌Q − 𝐵𝐹GQ  with 𝑌Q  for 

dereverberation. In the two-channel case, it obtains results slightly better than 𝐵𝐹GQ+Post-

filtering (no re-training), likely because 𝐵𝐹GQ is not accurate enough in such a case. As a 

Table 6-4. Average SI-SDR (dB) and PESQ of different methods on multi-channel 
dereverberation (Test Set I).   

Metrics #mics Mixture Model 𝐵𝐹GQ+Postfiltering  
(no re-training) 

𝐵𝐹GQ+Postfiltering 
(re-training) 𝑆ÛQ

(?) 𝑆ÛQ
(a) 

SI-SDR 

1 

-3.7 

ℒdïùfgh 
and 

Eq. (6.5) 

- - 5.9 - 
2 7.3 7.4 - 7.5 
3 8.2 8.9 - 9.1 
4 8.6 9.7 - 9.9 
6 9.2 10.6 - 10.8 
8 9.4 11.0 - 11.2 

PESQ 

1 

1.93 

- - 3.07 - 
2 3.14 3.17 - 3.18 
3 3.20 3.29 - 3.29 
4 3.22 3.34 - 3.34 
6 3.23 3.40 - 3.41 
8 3.23 3.44 - 3.44 
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result, the quality of 𝑌Q − 𝐵𝐹GQ is not as good as when more microphones are available, and 

the trained DNN would focus on dealing with features computed from more than two 

microphones.  

6.5.2. Generalization on Test Set II and REVERB ASR 

In Table 6-5, we directly evaluate the performance of the trained dereverberation 

models on Test Set II. Our models obtain dramatically better performance than WPE, and 

WPE+BeamformIt which applies weighted delay-and-sum beamforming on the output of 

WPE, and WPE+DNN-Based MVDR. Note that the first two baselines are available in 

Kaldi, and the third baseline applies DNN based TI-MVDR beamforming after WPE, 

where we use the single-channel model trained with ℒdïùfgh and Eq. (6.5) to compute the 

statistics for MVDR, based on the signals processed after WPE. These comparisons show 

Table 6-5. Average LLR, CD, fwSegSNR, PESQ, and SRMR of different approaches on 
Test Set II. 

Data Metrics Unprocessed #mics 𝑆ÛQ
(?) 𝑆ÛQ

(a) WPE WPE+ 
BeamformIt 

WPE+DNN-Based 
MVDR  

(ℒdïùfgh and Eq. (6.5)) 

SimData 

CD 5.08 
1 3.16 - 4.95 - - 
2 - 3.01 4.98 4.66 4.77 
8 - 2.78 4.81 3.94 4.45 

LLR 0.67 
1 0.53 - 0.63 - - 
2 - 0.45 0.61 0.60 0.55 
8 - 0.39 0.53 0.49 0.40 

fwSegSNR 8.32 
1 15.61 - 9.38 - - 
2 - 16.94 9.71 10.20 11.24 
8 - 18.75 11.38 12.48 14.20 

PESQ 2.37 
1 3.29 - 2.51 - - 
2 - 3.51 2.58 2.65 2.77 
8 - 3.71 2.82 3.10 3.21 

RealData SRMR 3.18 
1 6.69 - 3.83 - - 
2 - 6.38 3.99 4.08 4.00 
8 - 6.30 5.04 5.53 5.29 
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that the trained DNN models exhibit good generalization to novel reverberant and noisy 

conditions, and array configurations.  

In Table 6-6, we report the ASR performance of the trained dereverberation models on 

the REVERB real data. The proposed approach obtains clear WER improvements over 

WPE, WPE+BeamformIt and WPE+DNN-Based MVDR (9.27% vs. 13.82% in the single-

channel case, 8.12% vs. 13.23%, 13.37% and 15.59% in the two-channel case, and 6.14% 

vs. 11.48%, 8.43% and 8.93% in the eight-channel case). We observe large improvement 

by using 𝑆ÛQ
(a), which can also be thought of as a variant of post-filtering, over 𝐵𝐹GQ. These 

results suggest that the trained dereverberation models can suppress reverberation with low 

speech distortion. We observe that the WPE+DNN-Based MVDR obtains better WER than 

𝐵𝐹GQ, suggesting that WPE works as a frontend for DNN based beamforming, but worse 

WER than WPE+BeamformIt possibly because of the effects of reverberation. 

Table 6-6. Average WER (%) of different methods on real data of REVERB ASR.  

#mics Method Validation Set Test Set 
Near Far Avg Near Far Avg 

1 
Mixture 16.53  17.22  16.88 17.31  17.05  17.18 
𝑆ÛQ
(?) 10.61 11.35 10.98 9.26 9.28 9.27 

WPE 13.54 15.79 14.66 13.38 14.25 13.82 

2 

𝐵𝐹GQ (ℒdïùfgh and Eq. (6.5)) 21.21 22.83 22.02 21.02 18.26 19.64 
𝑆ÛQ
(a) 9.23 9.43 9.33 7.98 8.27 8.12 

WPE 12.98 16.75 14.87 12.46 14.01 13.23 
WPE+BeamformIt 12.41 14.76 13.59 12.49 14.25 13.37 

WPE+DNN-Based MVDR 
(ℒdïùfgh and Eq. (6.5)) 16.91 20.98 18.95 17.18 14.01 15.59 

8 

𝐵𝐹GQ (ℒdïùfgh and Eq. (6.5)) 13.41 12.10 12.75 13.13 10.97 12.05 
𝑆ÛQ
(a) 7.92 7.72 7.82 5.88 6.41 6.14 

WPE 12.48 15.31 13.89 11.21 11.75 11.48 
WPE+BeamformIt 9.54 10.59 10.06 8.24 8.61 8.43 

WPE+DNN-Based MVDR 
(ℒdïùfgh and Eq. (6.5)) 9.92 11.00 10.46 9.52 8.34 8.93 
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6.6. Conclusion 

We have proposed a complex spectral mapping approach for speech dereverberation, 

where we predict the RI components of direct sound from the mixture. We have extended 

this approach to multi-channel dereverberation, by incorporating the RI components of 

cancelled speech for model training. Our single- and multi-channel models show clear 

improvements over magnitude spectrum and phase-sensitive spectrum based models, and 

single- and multi-channel WPE. The trained models generalize reasonably well to novel 

and representative reverberant environments and array configurations. 

Equation break 
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Chapter 7. Multi-Channel Speech Enhancement and 
Robust ASR 

 

This chapter investigates multi-channel speech enhancement and its application to 

robust ASR using deep learning based complex spectral mapping. This work has been 

published in ICASSP 2017 and 2018 [127], [134], [193], and is under consideration by 

IEEE/ACM T-ASLP [187] at the time of dissertation writing. 

7.1. Introduction 

Environmental noise and room reverberation are very detrimental to modern ASR 

systems and dramatically degrade speech intelligibility and quality [161], [51]. Practical 

systems typically use multiple microphones to leverage spatial (in addition to spectral) 

information for speech enhancement and audio source separation. One common approach 

for multi-channel speech enhancement is beamforming followed by post-filtering [40], 

[49], where a popular method is to decompose a time-invariant or time-varying multi-

channel Wiener filter into a product of an MVDR beamformer and a real-valued post-filter. 

Conventionally, this approach requires an accurate estimate of target direction, and speech 

and noise PSD and covariance matrices. Recently, DNN based T-F masking or mapping 

have been established as a mainstream approach for speech enhancement and source 

separation [161]. Mask (or magnitude) estimation is dramatically improved using deep 
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learning. Such real-valued mask estimates have been used to identify T-F units dominated 

by a single source, where the phase is less corrupted, for accurate source localization [175] 

and covariance matrix estimation [58], [160]. All the top teams in the recent CHiME-4 

challenge adopted T-F masking and deep learning based beamforming in their ASR 

systems [160]. 

We investigate single- and multi-channel DNN-based speech enhancement and robust 

ASR. In addition to mask (or magnitude) estimation, our study explores the effects of phase 

estimation for multi-channel speech enhancement. We emphasize that current T-F masking 

based approaches for beamforming typically compute spatial covariance matrices as a 

summation of mixture outer products weighted by a mask [36], [58], [64], [200], [203], 

[213]. In environments with strong noise and room reverberation, there may be insufficient 

T-F units dominated by target speech, and the mixture outer product at each T-F unit 

inevitably contains noise and reverberation. We believe, in such cases, that it is beneficial 

to perform phase estimation in addition to magnitude estimation and directly use the 

estimated complex spectra for covariance matrix computation. In addition, real-valued 

post-filtering only performs magnitude estimation and would inevitably produce phase 

inconsistency issues [42], [44], [184]. Although beamforming typically improves phase, 

its performance heavily depends on the number of microphones and is susceptible to strong 

room reverberation [40]. Phase estimation would hence be needed for post-filtering in order 

to further improve the phase produced by beamforming. Although modern ASR systems 

only consider magnitude-based features, accurate phase estimation can indirectly benefit 

ASR as better estimated phase leads to better spatial processing such as beamforming and 

target localization.  
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Our study performs DNN based phase estimation and investigates its effects on single-

channel enhancement, time-invariant and time-varying beamforming, and post-filtering. 

We perform speech enhancement in the complex domain [192], more specifically via 

complex spectral mapping [39], [146], which was originally proposed to deal with single-

channel speech enhancement in anechoic conditions. This paper goes beyond previous 

work on complex spectral mapping by using a new loss function and addressing multi-

channel speech enhancement and robust ASR. The proposed system advances state-of-the-

art enhancement and recognition results on the single-, two- and six-microphone tasks of 

CHiME-4, without using any model ensemble as employed in the previous best results 

reported in [32] and [153] that combines multiple frontends and backends. 

The rest of this paper is organized as follows. We describe our physical model and 

objectives in Chapter 7.2, and present the proposed algorithms in 7.3. Experimental setup 

and evaluation results are presented in Chapter 7.4 and 7.5. Conclusions are made in 

Chapter 7.6. 

7.2. Physical Model and Objectives 

The hypothesized physical model is the same as in Eq. (6.1). The 𝑵(𝑡, 𝑓) we deal with 

in this chapter are more challenging and realistic recorded noises. Again, we refer to 

𝑺(𝑡, 𝑓) = 𝒄(𝑓; 𝑝)𝑆Q(𝑡, 𝑓) as the target speech to extract, and 𝑽(𝑡, 𝑓) = 𝑯(𝑡, 𝑓) + 𝑵(𝑡, 𝑓) 

as the non-target signal to remove. See Eq. (6.1) for detailed notation definitions. 
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7.3. Proposed Algorithms 

Figure 7-1 shows two DNNs in the proposed system. The first one performs single-

channel complex spectral mapping based enhancement, and the enhancement results are 

utilized to compute an MVDR beamformer. The beamforming results are combined with 

the mixture for the second DNN to perform multi-channel complex spectral mapping based 

speech enhancement so that spectral and spatial information can be integrated during DNN 

training. A second beamformer is then computed for speech recognition, as the second 

DNN can produce better signal statistics for beamforming after leveraging spatial 

information. The single- and multi-channel complex spectral mapping respectively follow 

Chapter 6.3.1 and 6.3.2. This section describes a novel technique for time-variant MVDR 

beamforming.   

Figure 7-1. System diagram of overall system for single- and multi-channel speech 
enhancement. There are two DNNs, one taking in single-channel and the other multi-
channel information for speech enhancement. The superscripts in 𝑆Ûª

(?) and 𝐵𝐹Gª
(?), and 𝑆Ûª

(a) 
and 𝐵𝐹Gª

(a) for 𝑝 ∈ {1,… , 𝑃} respectively denote whether they are produced by the first and 
the second DNN. The MVDR beamformer can be time-invariant or time-varying. Detailed 
DNN architecture is shown in Figure 7-2. 
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7.3.1. Adaptive Covariance Matrix Computation 

Since the target speaker is typically still within each utterance, it is reasonable to 

estimate RTF from Φ�(m)(𝑓) using all the frames within an utterance. Clearly, more frames 

in this case lead to more accurate RTF estimation for a still directional source. However, 

even if the target speaker is still, the spatial coherence of environmental noise and room 

reverberation can be highly time-varying in real-world environments such as the BUS and 

CAF conditions in the CHiME-4 corpus. It is hence necessary to estimate noise covariance 

matrix per T-F unit or per block of units rather than per frequency for more accurate noise 

suppression. 

We follow a recently proposed algorithm [85] to estimate time-varying noise 

covariance matrices. In [85], per-frequency T-F mask based covariance matrix is 

considered as a prior, and under a maximum a posterior framework, the time-varying 

spatial covariance matrix at each T-F unit is computed as a weighted combination of the 

prior and the summation of the mask-weighted mixture outer products in each non-

overlapping block of T-F units. Specifically, we compute the time-varying noise 

covariance matrix in the following way 

Φ�(j)(𝑡, 𝑓) = (1 − 𝛼)
∑ 𝑽�(𝑡, 𝑓)𝑽�(𝑡, 𝑓)`xù∆
xg∆

𝑡𝑟𝑎𝑐𝑒�∑ 𝑽�(𝑡, 𝑓)𝑽�(𝑡, 𝑓)`xù∆
xg∆ �/𝑃

+ 𝛼
Φ�(j)(𝑓)

𝑡𝑟𝑎𝑐𝑒 VΦ�(j)(𝑓)\ /𝑃
, (7.1) 

where 𝛼 is empirically set to 0.5, ∆ is half the window size in frames. See Chapter 6.3.1 

and 6.3.2 for how 𝑽� and Φ�(j)(𝑓) are computed. Different from [85], we use estimated 

complex spectra produced by complex spectral mapping, rather than estimated masks in a 

mask-weighted fashion, for covariance matrix computation. This could result in more 
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accurate covariance estimation. In addition, we normalize the energy levels before the 

weighted sum to eliminate the effects of time-varying PSD and focus on the weighted 

summation of spatial coherences, as noise PSD cancels out in MVDR beamforming. 

Without the energy normalization, the summation can be easily dominated by one of the 

two terms, since noise PSD can be highly non-stationary. We emphasize that the first term 

is computed based on a small context window of 2∆+ 1 frames, while the second term 

based on all the frames. This way, the computation of the noise covariance matrix can 

leverage long-term stationary information and, at the same time, adapt to sudden changes 

of noise characteristics. Note that the short-term noise covariance matrix needs an accurate 

complex spectrum estimate, which is obtained using complex spectral mapping. After cross 

validation, ∆ is set to 0 for the two-microphone task and 3 for the six-microphone task of 

the CHiME-4 corpus. 

A time-varying MVDR (TV-MVDR) beamformer is then computed as 

𝒘Å(𝑡, 𝑓; 𝑞) =
Φ� (j)(𝑡, 𝑓)g?𝒄�(𝑓; 𝑞)

𝒄�(𝑓; 𝑞)`Φ� (j)(𝑡, 𝑓)g?𝒄�(𝑓; 𝑞)
, (7.2) 

where 𝒄�(𝑓; 𝑞) is computed as in Chapter 6.3.2. The beamforming result is computed using 

𝐵𝐹GQ(𝑡, 𝑓) = 𝒘Å(𝑡, 𝑓; 𝑞)`𝒀(𝑡, 𝑓). 

7.4. Experimental Setup 

We evaluate our algorithms on the enhancement and recognition tasks of the publicly-

available CHiME-4 corpus [160], a popular dataset featuring one-, two- and six-

microphone tasks designed for robust ASR. Our study always considers the direct outputs 

from DNN (i.e. 𝑆ÛQ
(?)  and 𝑆ÛQ

(a) ) for speech enhancement, and beamforming results (i.e. 
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𝐵𝐹GQ
(?) and 𝐵𝐹GQ

(a)) for speech recognition, as it is well-known that beamforming produces 

less speech distortion, which is important for modern ASR systems, but also less noise 

reduction, compared to deep learning based masking and mapping. This section details the 

CHiME-4 dataset, our proposed frontend and several baseline frontends, and our ASR 

backend. 

7.4.1. CHiME-4 Corpus 

The CHiME-4 corpus [160] contains six-microphone simulated and real recordings. 

The microphones are mounted on a tablet, with five of them facing the front and the other 

one facing the rear. This corpus contains recordings from four real-world environments 

(including street, pedestrian areas, cafeteria and bus), exhibiting large training and testing 

mismatches in terms of speaker, noise and spatial characteristics, and around 12% of its 

real recordings suffer from microphone failures. The training data includes 7,138 simulated 

and 1,600 recorded utterances, the validation data contains 1,640 simulated and 1,640 

recorded utterances, and the test data consists of 1,320 simulated and 1,320 recorded 

utterances. Each of the three recorded datasets is constructed using four different speakers. 

It should be noted that reverberation is weak in the CHiME-4 corpus, partly because the 

considered environments are not very reverberant and the speaker-microphone distance is 

not large for a hand-held position. The single-channel task uses one of the six microphones 

for testing. For the two-microphone task, two of the front five channels that do not suffer 

from microphone failure are selected for each utterance for testing. To address microphone 

failures in the real recordings of the six-microphone task, we first select a microphone 

signal that is most correlated with the other five, and then throw away the signals with less 

than 0.3 correlation coefficients with the selected signal.  
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7.4.2. Frontend Enhancement System 

We use all the simulated signals in the training set to train our frontends, and report the 

enhancement results on the simulated test set. We consider the clean signal captured by the 

fifth microphone as the reference for metric computation, since it exhibits the highest 

signal-to-noise ratio among all the microphones.  

The two DNNs in Figure 7-1 are trained sequentially. After training the first DNN, we 

use it to generate for each microphone a beamformed signal based on TI-MVDR and a 

random number of microphones, leading to 7,138×6 beamformed signals in total. Each 

beamformed signal is combined with the mixture signal to train the second DNN. This way, 

the second DNN can deal with the TI-MVDR results produced by using up to six 

microphones. In our experiments, we also tried using TV-MVDR to produce beamformed 

signals for training the second DNN. The performance is however not clearly better. 

The network architecture for enhancement is shown in Figure 7-2. The network is a 

temporal convolutional network (TCN) [7] with encoder-decoder structure similar to U-

Net [126], skip connections, and dense blocks [67], [144]. The motivation for this network 

design is that TCN can model long-term temporal dependencies through large receptive 

fields achieved via dilated convolution, U-Net can maintain fine-grained local spectral 

structure as suggested in image semantic segmentation [126], and dense blocks can  

increase feature reuse and improve the discriminative power of the network [67]. A similar 

architecture was recently used in a speaker separation algorithm [92]. The encoder contains 

one 2D convolution, and six convolutional blocks, each with 2D convolution, Swish non-

linearity and IN, for down-sampling. The decoder includes six blocks of 2D deconvolution, 

Swish and IN, and one 2D deconvolution, for up-sampling. The TCN contains two layers,  
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Figure 7-2. Network architecture for predicting the RI components of 𝑆Q  from the RI 
components of 𝑌Q and 𝐵𝐹GQ. For single-channel processing, the network only takes single-
channel information as its inputs. The tensor shape after each encoder-decoder block is in 
the format: featureMaps×timeSteps×frequencyChannels. Each of Conv2D, Deconv2D, 
Conv2D+IN+Swish, and Deconv2D+IN+Swish blocks is specified in the format: 
kernelSizeTime × kernelSizeFreq, (stridesTime, stridesFreq), (paddingsTime, 
paddingsFreq), featureMaps. Each DenseBlock(𝑔 ) contains five Conv2D+IN+Swish 
blocks with growth rate 𝑔 . The tensor shape after each TCN block is in the format: 
featureMaps× timeSteps. Each IN+Swish+Conv1D block is specified in the format: 
kernelSizeTime, stridesTime, paddingsTime, dilationTime, featureMaps. 
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each of which has six dilated convolutional blocks. We use two one-dimensional (1D) 

depth-wise separable convolution in each dilated convolutional block to reduce the number 

of parameters.  

The frame length is 32 ms and frame shift 8 ms. Square-root Hann window is used as 

the analysis window. The sampling rate is 16 kHz. A 512-point discrete Fourier transform 

is used to extract complex STFT spectrograms. No global mean-variance normalization is 

performed on the input features. For complex spectral mapping, linear activation is used in 

the output layer to produce estimated RI components. As the CHiME-4 dataset exhibits 

diverse gains at different microphones, we separately normalize each of the six microphone 

signals to have unit sample variance before any frontend processing. 

We use PESQ, STOI, SI-SDR [88], and bss-eval SDR as the evaluation metrics. PESQ 

and STOI strongly correlate with the accuracy of estimated magnitude. On the other hand, 

SI-SDR is a time-domain metric closely reflecting the quality of estimated magnitude and 

phase, meaning that magnitude estimates need to compensate for the inaccuracy of phase 

estimates in order to produce a high SI-SDR. 

7.4.3. Baseline Frontend Systems 

We consider four single-channel benchmarks listed in Table 7-1 to demonstrate the 

effectiveness of single-channel complex spectral mapping based speech enhancement. The 

four benchmarks are based on masking and mapping based MSA [161] and PSA [35]. All 

of them use the same network architecture as shown in Figure 7-2. The main differences 

lie in the number of input and output feature maps, and the activation function in the output 

layer. In ℒfopgfghqø0h  and ℒîopgfghqø0h , 𝑇+n(∙) = max	(min(∙, 𝑏) , 𝑎)  truncates the 
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estimated masks to the range [𝑎, 𝑏]. 𝛽  is set to 5.0 in ℒfopgfghqø0h  and 𝛾 set to 1.0 in 

ℒîopgfghqø0h.  

In addition, we investigate the effectiveness of the single-channel models for TI-

MVDR beamforming. One way is to apply each single-channel model to each microphone 

signal to obtain 𝑺�  and 𝑽� , perform TI-MVDR beamforming using Eq. (6.5)-(6.9), and 

compare their ASR performance. This comparison can show the effectiveness of single-

channel phase estimation when its result is used for beamforming.  

We also evaluate the mask weighting technique for collecting statistics for TI-MVDR 

beamforming, based on the MSA-Masking and PSA-Masking models. Following [203], 

[58], [36], [213], we compute the covariance matrices in the following way 

Φ�(¿)(𝑓) =
1
𝑇� 𝜂(¿)(𝑡, 𝑓)𝒀(𝑡, 𝑓)	𝒀(𝑡, 𝑓)`

£

x¸?
, (7.3) 

where 𝑑 ∈ {𝑠, 𝑣}, and 𝜂(¿) is computed as  

Table 7-1. Summary of single-channel frontends. 
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𝜂(¿) = medians
𝑇ó
QV𝑀�?

(¿)\

𝑇ó
QV𝑀�?

(m)\ + 𝑇ó
QV𝑀�?

(j)\
, … ,

𝑇ó
QV𝑀�?

(¿)\

𝑇ó
QV𝑀�?

(m)\ + 𝑇ó
QV𝑀�?

(j)\
t (7.4) 

for MSA-Masking and as 

𝜂(¿) = median k𝑇ó
PV𝑄�?

(¿)\, … , 𝑇ó
PV𝑄�A

(¿)\l (7.5) 

for PSA-Masking. Here 𝛽 is set to 5.0 and 𝛾 set to 1.0 in our study. 

7.4.4. Backend Recognition System 

Our ASR backend is a DNN-HMM hybrid system built from the Kaldi toolkit. The 

acoustic model is trained using both simulated and recorded noisy utterances in the training 

set. The input features to the acoustic model are 80-dimensional logarithmically 

compressed Mel filterbank feature together with its delta and double delta. The acoustic 

model is a wide-residual BLSTM network (WRBN) [61] trained with utterance-wise 

recurrent dropout [164]. At test time, we perform lattice re-scoring using the task-standard 

trigram, five-gram and RNN language models, and an LSTM language model (LSTMLM) 

recently proposed in [18]. The LSTMLM re-scored lattice is used for unsupervised speaker 

adaptation. We apply iterative speaker adaptation proposed in [164] for three iterations, 

each of which follows the linear input network algorithm [209]. 

Since the ASR system uses different frame and shift sizes from speech enhancement 

frontends, we perform signal re-synthesis before extracting features for recognition. 
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7.5. Evaluation Results 

We first report speech enhancement performance and then recognition results on the 

CHiME-4 dataset. 

7.5.1. Enhancement Performance 

Table 7-2 compares the enhancement performance of single-channel complex-domain 

mapping with single-channel magnitude-domain masking and mapping, along with oracle 

magnitude-domain masking using the SMM [161] and PSM [35]. We observe better SI-

SDR, PESQ and STOI results using the model trained with ℒdï and ℒdïùfgh than with 

ℒfopgfghqø0h , 	ℒfopgfguuø0h , ℒîopgfghqø0h  and ℒîopgfguuø0h , indicating the 

effectiveness of complex-domain estimation. Compared with ℒdï, ℒdïùfgh yields much 

better PESQ (3.16 vs. 2.96), slightly better SI-SDR (15.8 vs. 15.5 dB), and marginally 

better STOI (95.4% vs. 95.2%). This suggests the importance of magnitude estimation for 

PESQ. The following experiments use ℒdïùfgh as the default loss function.  

Table 7-2. Average SI-SDR (dB), PESQ, and STOI (%) performance of different 
methods on channel 5 of CHiME-4 (single-channel).  

Methods SI-SDR PESQ STOI 
Unprocessed 7.5 2.18 87.0 
ℒfopgfghqø0h 13.9 2.94 93.9 
ℒfopgfguuø0h 14.6 3.00 94.5 
ℒîopgfghqø0h 14.9 2.84 94.3 
ℒîopgfguuø0h 15.0 2.90 94.3 

ℒdï 15.5 2.96 95.2 
ℒdïùfgh 15.8 3.16 95.4 

SMM (𝑇ób(|𝑆Q|/|𝑌Q|)) 17.2 3.64 98.5 
PSM (𝑇ó?(|𝑆Q|cos	(∠𝑆Q − ∠𝑌Q)/|𝑌Q|)) 17.6 3.72 98.1 
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Table 7-3 reports the performance of multi-channel enhancement. One straightforward 

approach, denoted as 𝐵𝐹GQ
(?)+post-filtering, is to first utilize a single-channel model listed 

in Table 4-1 to obtain 𝐵𝐹GQ
(?) via Eq. (6.5)-(6.9) (see also Figure 7-1), and then apply the 

single-channel model again on 𝐵𝐹GQ
(?)  for post-filtering. Since 𝐵𝐹GQ

(?) is expected to contain 

low speech distortion, it can be used as the input to the single-channel model for post-

filtering, although the model is trained on noisy mixtures. Clearly, using 𝐵𝐹GQ
(?)+post-

filtering obtained via the model trained with ℒdïùfgh leads to the best performance. This 

is consistent with the single-channel results in Table 7-1. Another approach, denoted as 

𝑆ÛQ
(a)  (see Figure 7-1), combines 𝐵𝐹GQ

(?)  and 𝑌Q  to train another DNN for multi-channel 

Table 7-3. Average SI-SDR (dB), PESQ, and STOI (%) of different methods on channel 
5 of CHiME-4 (six-channel).  
Methods SI-SDR PESQ STOI 

Unprocessed 7.5 2.18 87.0 
𝐵𝐹GQ

(?)+post-filtering (ℒfopgfghqø0h) 18.6 3.32 97.3 
𝐵𝐹GQ

(?)+post-filtering (ℒfopgfguuø0h) 19.8 3.38 97.9 
𝐵𝐹GQ

(?)+post-filtering (ℒîopgfghqø0h) 19.8 3.32 97.8 
𝐵𝐹GQ

(?)+post-filtering (ℒîopgfguuø0h) 19.4 3.30 97.5 
𝐵𝐹GQ

(?)+post-filtering (ℒdï) 19.3 3.46 98.0 
𝐵𝐹GQ

(?)+post-filtering (ℒdïùfgh) 20.0 3.54 98.1 

𝑆ÛQ
(a) (ℒdïùfgh) 22.0 3.68 98.6 

Table 7-4. Comparison of average SI-SDR (dB), SDR (dB), PESQ, and STOI (%) of 
different approaches on channel 5 of CHiME-4 (six-channel). 

Methods SI-SDR SDR PESQ STOI 
Unprocessed 7.5 7.6 2.18 87.0 
𝑆ÛQ
(a) (ℒdïùfgh) 22.0 22.4 3.68 98.6 

Bu et al. [13] - - 2.69 93.9 
Tu et al. [154] - - 2.71 94.0 

Shimada et al. [139] - 16.2 2.70 94.0 
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complex spectral mapping. Clearly better results are observed over 𝐵𝐹GQ
(?)+post-filtering, 

but at the expense of using one more DNN. Note that both of them show clear 

improvements over single-channel enhancement.  

Table 7-4 compares the proposed approach with other competitive approaches in the 

literature. Bu et al. [13] utilize estimated masks produced by BLSTM based single-channel 

masking to compute the signal statistics for MVDR beamforming and magnitude-domain 

post-filtering. Tu et al. [154] combine the estimated mask produced by complex Gaussian 

mixture models (CGMM) with the estimated ideal ratio mask (IRM) provided by an LSTM 

for masking-based block-wise MVDR, and use another LSTM for monaural magnitude 

mapping based post-filtering for further noise reduction. In [139], Shimada et al. combine 

CGMM based spatial clustering and multi-channel non-negative matrix factorization based 

spectral modeling to estimate time-varying speech and noise covariance matrices for time-

varying beamforming. As can be observed from Table 7-4, substantially better 

enhancement results are obtained by our approach over the comparison approaches.  

Table 7-5. Comparison of ASR performance (%WER) with other approaches (single-
channel). 

Approaches Dev. Set Test Set 
Simu. Real Simu. Real 

Mixtures + Trigram 8.24 6.67 12.98 10.70 
  + Five-gram and RNNLM 6.58 4.84 11.17 8.38 
    + LSTMLM 5.65 4.06 10.58 8.12 
        + Iterative Speaker Adaptation 4.99 3.54 9.41 6.82 
Kaldi baseline [18] 6.81 5.58 12.15 11.42 
Du et al. [32] 6.61 4.55 11.81 9.15 
Wang and Wang [164] (No LSTMLM) 6.77 4.99 11.14 8.28 
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7.5.2. Recognition Performance 

Table 7-5 reports ASR performance on the single-channel task of CHiME-4. Our 

single-channel system directly uses unprocessed noisy signals for recognition and obtains 

6.82% WER after lattice-rescoring and iterative speaker adaptation. This result is 

significantly better than the previous best WERs reported by Du et al. [32], and Wang and 

Wang [164]. This result suggests that our backend is a strong one and can be very indicative 

at measuring the effectiveness of frontend enhancement for recognition. It should be noted 

that we tried to use the enhancement results of our single-channel frontends for recognition. 

The ASR performance is however worse than using unprocessed mixtures. This is likely 

due to the speech distortion introduced by DNN based enhancement and the large mismatch 

between the training and test conditions of CHiME-4.  

Table 7-6 presents the ASR results of TI- and TV-MVDR using single- and multi-

channel models, based on the trigram language model for decoding. We explain the results 

by using the two-channel task as an example. Entries 1-8 are obtained by using various 

single-channel models to compute the statistics for TI-MVDR, either by using Eq. (6.5) 

and Eq. (6.6) or Eq. (6.11) for covariance matrix computation. Among these entries, we 

found that entry 8 obtains the highest score, which indicates the effectiveness of DNN  

based phase estimation for beamforming. Entry 9 is obtained by using multi-channel 

complex spectral mapping to compute 𝑆Ûª
(a), and then deriving a TI-MVDR (see Figure 7-1 

for more details). Slightly better WER is observed over entry 8, suggesting that the second 

DNN leads to better signal statistics for beamforming than the first one. Entry 10 uses 𝑆Ûª
(a) 
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to compute a TV-MVDR. Clearly better WER is observed over entry 9, indicating the  

effectiveness of using estimated complex spectra to compute time-varying noise 

covariance matrices for beamforming. Similar trend is observed on the six-channel task.  

Table 7-7 and Table 7-8 further apply five-gram, RNN and LSTM language models for 

lattice re-scoring and perform iterative speaker adaptation for the two- and six-channel 

tasks, based respectively on the TV-MVDR frontends produced in the entry 10 and entry 

20 of Table 7-6.  

Table 7-6. ASR Performance (%WER) of using various single- and multi-channel 
models for TI- and TV-MVDR, and trigram language model for decoding. 

#mics Entry Methods Φ�(m), Φ�(j) Dev. Set Test Set 
Simu. Real Simu. Real 

2 

1 𝐵𝐹GQ
(?) (ℒfopgfghqø0h) Eq. (6.11), (7.4) 6.23 5.58 8.45 8.44 

2 𝐵𝐹GQ
(?) (ℒîopgfghqø0h) Eq. (6.11), (6.13) 6.23 5.48 8.43 8.58 

3 𝐵𝐹GQ
(?) (ℒfopgfghqø0h) 

Eq. (6.5), (6.6) 

6.06 5.54 7.83 8.63 
4 𝐵𝐹GQ

(?) (ℒfopgfguuø0h) 6.06 5.48 7.86 8.46 
5 𝐵𝐹GQ

(?) (ℒîopgfghqø0h) 6.05 5.50 7.85 8.37 
6 𝐵𝐹GQ

(?) (ℒîopgfguuø0h) 6.15 5.50 8.18 8.36 
7 𝐵𝐹GQ

(?) (ℒdï) 5.98 5.52 7.82 8.23 
8 𝐵𝐹GQ

(?) (ℒdïùfgh) 5.93 5.48 7.68 8.29 
9 𝐵𝐹GQ

(a) (ℒdïùfgh) 5.91 5.42 7.74 8.11 
10 𝐵𝐹GQ

(a) (ℒdïùfgh) Eq. (6.5), (7.1) 5.32 5.03 6.85 7.72 

6 

11 𝐵𝐹GQ
(?) (ℒfopgfghqø0h) Eq. (6.11), (7.4) 4.16 4.24 5.16 5.75 

12 𝐵𝐹GQ
(?) (ℒîopgfghqø0h) Eq. (6.11), (6.13) 4.04 4.15 4.87 5.55 

13 𝐵𝐹GQ
(?) (ℒfopgfghqø0h) 

Eq. (6.5), (6.6) 

3.98 4.24 4.75 6.08 
14 𝐵𝐹GQ

(?) (ℒfopgfguuø0h) 3.97 4.20 4.64 5.95 
15 𝐵𝐹GQ

(?) (ℒîopgfghqø0h) 3.97 4.19 4.66 5.78 
16 𝐵𝐹GQ

(?) (ℒîopgfguuø0h) 4.05 4.28 5.02 6.10 
17 𝐵𝐹GQ

(?) (ℒdï) 3.79 4.16 4.47 5.59 
18 𝐵𝐹GQ

(?) (ℒdïùfgh) 3.91 4.15 4.55 5.69 
19 𝐵𝐹GQ

(a) (ℒdïùfgh) 3.86 4.12 4.42 5.34 
20 𝐵𝐹GQ

(a) (ℒdïùfgh) Eq. (6.5), (7.1) 3.58 3.99 4.22 5.18 
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Table 7-5, Table 7-7 and Table 7-8  also compare the proposed system with other state-

of-the-art systems. Our system advances state-of-the-art ASR results on all the tasks. The  

system in Du et al. [32] (and their journal version [153]) was the winning solution in the 

CHiME-4 challenge, and produces the best WER results reported to date. It ensembles one 

DNN and four CNN based acoustic models as the backend, using a combination of log Mel 

filterbank, fMLLR and i-vectors as the input features. Their frontend uses T-F masking 

based MVDR beamforming, where the estimated masks are combined on the basis of an 

unsupervised CGMM model, a supervised LSTM based IRM estimator, and frame-level 

voice activity detection results produced by a speech recognizer. An LSTM language 

model is used for lattice re-scoring. As can be seen, their frontend and backend are both 

ensembles of multiple models. In contrast, our system does not use any model ensemble, 

Table 7-7. Comparison of ASR performance (%WER) with other approaches (two-
channel). 

Approaches Dev. Set Test Set 
Simu. Real Simu. Real 

𝐵𝐹GQ
(a) (ℒdïùfgh, Eq. (6.5) and (7.1)) + Trigram 5.32 5.03 6.85 7.72 

  + Five-gram and RNNLM 3.74 3.32 4.84 5.54 
    + LSTMLM 2.52 2.15 3.28 3.80 
        + Iterative Speaker Adaptation 2.17 1.99 2.53 3.19 
Kaldi baseline [18] 3.94 2.85 5.03 5.40 
Du et al. [32] 3.46 2.33 5.74 3.91 

Table 7-8. Comparison of ASR performance (%WER) with other approaches (six-
channel). 

Approaches Dev. Set Test Set 
Simu. Real Simu. Real 

𝐵𝐹GQ
(a) (ℒdïùfgh, Eq. (6.5) and (7.1)) + Trigram 3.58 3.99 4.22 5.18 

  + Five-gram and RNNLM 2.44 2.58 2.97 3.73 
    + LSTMLM 1.43 1.69 1.80 2.34 
        + Iterative Speaker Adaptation 1.26 1.51 1.46 2.04 
Kaldi baseline [18]  2.10 1.90 2.66 2.74 
Du et al. [32] 1.78 1.69 2.12 2.24 

 



157 

and obtains better ASR results on all the three tasks (6.82% vs. 9.15%, 3.19% vs. 3.91%, 

and 2.04% vs. 2.24% WER). These amount to 25.5%, 18.4%, and 8.9% relative WER 

reductions for the single-, two-, and six-microphone tasks, respectively. The improvement 

is especially large on the simulated test data of the two- and six-microphone tasks (2.53% 

vs. 5.74%, and 1.46% vs. 2.12% WER), indicating that the proposed system is particularly 

effective when training and testing conditions are not very different. Another system worth 

mentioning is a recently-proposed CHiME-4 baseline [18] available in Kaldi. The frontend 

is a masking based generalized eigenvector beamformer based on a BLSTM, the acoustic 

model is a time-delay DNN trained with a lattice-free version of the maximum mutual 

information criterion, and an LSTM language model, which is the one we use in our study, 

is trained for lattice re-scoring. Our system obtains much better ASR results, demonstrating 

the effectiveness of the proposed frontend and backend.  

7.6. Conclusion 

We have proposed a complex spectral mapping approach for single- and multi-channel 

speech enhancement. Experiments on the CHiME-4 corpus show that complex spectral 

mapping leads to better single-channel enhancement, beamforming and post-filtering, over 

magnitude-domain masking and mapping. Our adaptive noise covariance matrix estimation 

yields further ASR improvements over TI-MVDR, especially on the two-channel task. 

State-of-the-art results have been obtained on the enhancement and recognition tasks of the 

CHiME-4 corpus.Equation break 
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Chapter 8. Multi-Microphone Complex Spectral 
Mapping for Speech Dereverberation 

 

This chapter investigates multi-channel speech dereverberation on fixed-geometry 

arrays, where we train DNNs using multi-microphone inputs based on complex spectral 

mapping. This work has been published in ICASSP 2020 [188]. 

8.1. Introduction 

The multi-channel systems in Chapter 6 and Chapter 7 assume a relatively blind setup, 

where the trained models are designed to be directly applicable to arrays with any number 

of microphones arranged in an unknown geometry. Although this flexibility is desirable, 

in applications such as Amazon Echo and Google Home, the device only has a fixed 

microphone array with a known number of microphones and geometry. How to leverage 

this fixed geometry for robust speech processing is therefore an interesting research 

problem to investigate.  

This chapter proposes a multi-microphone complex spectral mapping approach for 

speech dereverberation based on a fixed array geometry, where the real and imaginary (RI) 

components of multiple microphones are concatenated as input features for a DNN to 

predict the RI components of the direct-path signal(s) captured at a reference microphone 

or at all the microphones. The initially estimated target speech can be utilized to compute 
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a beamformer, and the RI components of the beamforming results can be further combined 

with the RI components of all the microphone signals for post-filtering. 

Why should this approach work? We believe that, for a fixed-geometry array, the neural 

network could learn to enhance the speech arriving from a specific direction by exploiting 

the spatial information contained in multiple microphones. This approach is in a way 

similar to recent studies of classification-based sound source localization for arrays with 

fixed geometry, where a DNN is trained to learn a one-to-one mapping from the inter-

channel phase patterns of multiple microphones to the target direction [16], [38], [99], 

[199]. Based on deep learning, the proposed approach has the potential to model the non-

linear spatial information contained in multi-microphone inputs, while conventional 

beamforming is only linear and typically utilizes second-order statistics [40] within each 

frequency. 

Although there are time-domain approaches that use multi-microphone modeling for 

speech enhancement and source separation [90], [141], [150], their effectiveness in 

environments with moderate to strong reverberation is not yet established [96]. In addition, 

our study tightly integrates multi-microphone complex spectral mapping with 

beamforming and post-filtering.  

The rest of this paper presents the physical model and proposed algorithms in Chapter 

8.2 and 8.3, experimental setup and evaluation results in Chapter 8.4 and 8.5, and 

conclusions in Chapter 8.6. 
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 Figure 8-1. System overview. 

(a) SISO1-BF-SISO2 system. 

(d) MIMO-BF-MISO3 system. 

(b) MISO1 system. 

(c) MISO1-BF-MISO2 system. 
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8.2. Physical Model and Objectives 

The hypothesized physical model and objectives are the same as in Chapter 6.2. 

Different from Chapter 6, we assume that the same microphone array is used for both 

training and testing. 

8.3. Proposed Algorithms 

We propose four approaches (denoted as SISO1-BF-SISO2, MISO1, MISO1-BF-

MISO2, and MIMO-BF-MISO3, see Figure 8-1) for multi-channel speech dereverberation. 

This section discusses each one of them and their combination with beamforming and post-

filtering. All the TI-MVDR beamforming results are computed based on Eq. (6.5)-(6.10). 

8.3.1. SISO1-BF-SISO2 System 

The SISO1-BF-SISO2 system contains two single-input and single-output (SISO) 

networks. The first one (SISO1) performs single-channel complex spectral mapping at each 

microphone. The enhanced speech is used to compute a TI-MVDR beamformer. The 

beamforming result 𝐵𝐹GQ is then combined with the mixture at the reference microphone 𝑌Q 

as the input to the second SISO network (SISO2) for complex spectral mapping based post-

filtering.  

This system is essentially similar to the one described in Chapter 6. 

8.3.2. MISO1 System 

The multiple-input and single-output system (denoted as MISO1) stacks the RI 

components of the mixtures at all the microphones and predicts the RI components of the 

direct-path signal at a reference microphone. This algorithm essentially trains a DNN for 
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non-linear time-varying beamforming. It is simple, fast, and can be easily modified for 

real-time processing. The model is trained using ℒQ,dïùfgh. 

We emphasize that conventional multi-channel Wiener filtering computes a linear filter 

per frequency or per T-F unit to project the mixture 𝒀(𝑡, 𝑓) onto 𝑆Q(𝑡, 𝑓), typically based 

on second-order statistics [40]. In contrast, we utilize a DNN to learn a highly non-linear 

function to map 𝒀  to 𝑆Q . Although this seems challenging for arrays with arbitrary 

geometry, for a fixed geometry, this could work as the inter-channel phase patterns are 

almost fixed for the signal arriving from a specific direction.  

8.3.3. MISO1-BF-MISO2 System 

The MISO1-BF-MISO2 system includes a MISO network, an MVDR beamformer, and 

another MISO network. This system is similar to SISO1-BF-SISO2, but we use two MISO 

networks rather than two SISO networks, since MISO is expected to be better than SISO 

by doing multi-microphone modeling. 

We circularly shift the microphones to estimate the direct-path signal at each 

microphone. For example, we stack an ordered microphone sequence < 𝑌?,… , 𝑌A > as the 

inputs to MISO1 to obtain 𝑆Û?
(?), and feed in < 𝑌ª,… , 𝑌A, 𝑌?, … , 𝑌ªg? > to obtain 𝑆Ûª

(?). This 

strategy would work as we use a circular array with uniformly spaced microphones. 

An MVDR beamformer is then computed using 𝑺�. The beamforming result 𝐵𝐹GQ  is 

combined with 𝒀 to predict 𝑆Q using a MISO network (denoted as MISO2) via complex 

spectral mapping. This way, post-filtering can also leverage multi-microphone modeling. 
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8.3.4. MIMO-BF-MISO3 System 

The MIMO-BF-MISO3 system consists of a multiple-input and multiple-output 

(MIMO) network, an MVDR beamformer, and a MISO network. The MIMO network takes 

in the mixture RI components of all the microphones to predict the RI components of the 

direct-path signals at all the microphones. This way, we can get an estimate of 𝑺 for 

beamforming by performing feed-forwarding only once, rather than 𝑃 times as in SISO1-

BF-SISO2 and MISO1-BF-MISO2. The amount of computation is therefore dramatically 

reduced. The loss function for the MIMO network is 

ℒ?,…,A,dïùfghùîTghzäø[[ =
1
𝑃� ℒª,dïùfgh

A

ª¸?
+ 

1
𝑃a − 𝑃� _𝑆ªÞ_� k1 − cos V∠𝑆ÛªÞ − ∠𝑆ÛªÝÝ − �∠𝑆ªÞ − ∠𝑆ªÞÞ�\l 2{

A

ªÝÝ¸?

A

ªÞ¸?
 

(8.1) 

where the first term is defined as in Eq. (6.3), and the second term is a magnitude-weighted 

cosine distance between the predicted phase differences and the actual phase differences 

of all the microphone pairs. In our experiments, the second term leads to faster convergence 

and better performance over using the first term alone.  

After obtaining 𝑺�, we compute an MVDR beamformer. The beamforming result 𝐵𝐹GQ is 

combined with 𝒀 to predict 𝑆Q using a MISO network (denoted as MISO3) via complex 

spectral mapping. 
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8.4. Experimental Setup 

We use the WSJ0CAM corpus and a large set of simulated RIRs (in total 39,305 eight-

channel RIRs) to simulate room reverberation. See Algorithm 8-1 for the detailed  

simulation procedure. For each utterance, we randomly generate a room with different 

room characteristics, microphone and speaker locations, array configurations, and noise 

levels. Our study considers an eight-microphone circular array with the radius fixed at 10 

cm. The target speaker is in the same plane as the array, at a distance sampled from 

[0.75,2.5] m. The training and testing noise (mostly air-conditioning noise) used in 

Algorithm 8-1. Data spatialization process. 

Input: WSJCAM0; 
Output: spatialized reverberant (and noisy) WSJCAM0; 
For dataset, REP in {train:5, validation:4, test:3} set of WSJCAM0 do 

For each anechoic speech signal 𝑠 in dataset do 
  Repeat REP times do 

- Draw room length 𝑟7 and width 𝑟f from [5,10] m, and height 𝑟8 from [3,4] m; 
- Sample mic array height 𝑎8 from [1,2] m; 
- Sample array displacement 𝑛7 and 𝑛f from [−0.5,0.5] m; 
- Place array center at 〈9:

a
+ 𝑛7 ,

9;
a
+ 𝑛f, 𝑎8〉 m; 

- Set array radius 𝑎9 to 0.1 m; 
- Sample angle of first mic 𝜗 from [0, �

m
]; 

- Place 𝑃(= 8) mics uniformly on the circle, starting from angle 𝜗; 
- Sample target speaker locations: 〈𝑠7 , 𝑠f, 𝑠8(= 𝑎8)〉 such that distance 

from target speaker to array center is in between [0.75,2.5] m, and target 
speaker is at least 0.5 m from each wall; 

- Sample T60 from [0.2,1.3] s; 
- Generate multi-channel impulse responses and convolve them with s; 
If dataset in {train, validation} do 
-Sample a 𝑃-channel noise signal 𝑛 from REVERB training noise; 

Else 
- Sample a 𝑃-channel noise signal 𝑛 from REVERB testing noise; 
End 
- Concatenate channels of reverberated s and 𝑛 respectively, scale them to an SNR randomly 
sampled from [5,25] dB, and mix them; 

End 
End 

End 
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REVERB [77] is utilized to simulate noisy-reverberant mixtures for training and testing, 

respectively. The reverberation time (T60) is randomly drawn from the range [0.2,1.3] s. 

The average direct-to-reverberation energy ratio is -3.7 dB with 4.4 dB standard deviation. 

There are 39,305 (7,861×5, ~80 h), 2,968 (742×4, ~6 h) and 3,264 (1,088×3, ~7 h) eight-

channel utterances in the training, validation and test set, respectively.  

We validate our algorithms on speech dereverberation using one, two and four 

microphones. We use the first microphone for the single-microphone task, the first and 

fifth for the two-microphone task, and the first, third, fifth and seventh for the four-

microphone task. Note that the two- and four-microphone setups both have an aperture size 

of 20 cm. The first microphone is considered as the reference microphone for metric 

computation.  

To evaluate the generalization ability of the trained models, we directly apply them to 

the recorded data of REVERB [77] for ASR. The recording device is an eight-microphone 

circular array with 10 cm radius. Note that the array geometry is subject to manufacturing 

error, which introduces a geometry mismatch between training and testing. The T60 is 

around 0.7 s and the speaker-to-array distance is 1 m in the near-field case and 2.5 m in the 

far-field case. We always consider the first microphone as the reference microphone. The 

ASR backend is built using the most recent Kaldi toolkit. 

The network architectures follow the one depicted in Figure 6-3. The RI components 

of multiple microphones are stacked as feature maps for the network input and output. The 

window size is 32 ms and hop size 8 ms. The sampling rate is 16 kHz. A 512-point DFT is 

performed to extract 257-dimensional STFT features at each microphone. 
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8.5. Evaluation Results 

Table 8-1 compares the performance of complex spectral mapping with real-valued 

masking on monaural dereverberation. Much better SI-SDR is obtained using complex 

spectral mapping based models over using estimated SMM and PSM. In addition, ℒdïùfgh 

leads to much better PESQ than ℒdï , and slightly better SI-SDR. This indicates the 

importance of magnitude estimation when PESQ is used as the evaluation metric. The 

magnitude loss is always included for complex spectral mapping in the following 

experiments.  

Table 8-1. Average SI-SDR and PESQ of different methods on monaural 
dereverberation. 

Methods SI-SDR (dB) PESQ 
Unprocessed -3.8 1.93 

Estimated SMM 0.6 2.92 
Estimated PSM 2.2 2.54 

ℒdï 6.1 2.79 
ℒdïùfgh 6.5 3.10 

Oracle SMM (𝑇ó?ó(|𝑆Q|/|𝑌Q|)) 1.5 3.39 
Oracle PSM (𝑇ó?(|𝑆Q|cos	(∠𝑆Q − ∠𝑌Q)/|𝑌Q|)) 4.4 3.09 

 

Table 8-2. Average SI-SDR and PESQ of various methods on two- and four-channel de-
reverberation using simulated test data, and average WER (%) on REVERB real test data. 

Metrics SI-SDR (dB) PESQ WER on REVERB 
#mics 1 2 4 1 2 4 1 2 4 
SISO1 6.5 - - 3.10 - - 9.62 - - 
SISO1-BF-SISO1 - 8.0 9.4 - 3.20 3.29 - 8.37 7.63 
SISO1-BF-SISO2  - 8.2 10.6 - 3.22 3.38 - 7.96 7.25 
MISO1 - 7.6 9.0 - 3.22 3.33 - 7.38 6.88 
MISO1-BF-MISO2 - 8.6 10.9 - 3.24 3.43 - 7.38 6.30 
MIMO - 7.2 7.8 - 3.23 3.33 - 7.46 6.74 
MIMO-BF-MISO3 - 8.7 10.6 - 3.28 3.41 - 7.92 6.62 
WPE - - - - - - 14.01 13.14 11.45 
WPE+BeamformIt - - - - - - - 12.64 9.30 
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Table 8-2 first reports the enhancement performance of various multi-channel 

approaches. SISO1 represents a baseline of monaural complex spectral mapping. In SISO1-

BF-SISO1, we apply monaural complex spectral mapping on 𝐵𝐹GQ to estimate target speech 

𝑆Q, while in SISO1-BF-SISO2, complex spectral mapping is applied on the combination of 

𝐵𝐹GQ  and 𝑌Q  to estimate 𝑆Q  as in Figure 8-1(a). SISO1-BF-SISO2 produces better 

performance than SISO1-BF-SISO1 and SISO1. We emphasize that SISO1-BF-SISO1 

represents a typical beamforming followed by post-filtering approach in DNN based multi-

channel speech enhancement [189]. In addition, both MISO1 and MIMO are better than 

SISO1. This indicates that concatenating multiple microphones for complex spectral 

mapping clearly helps. MIMO is worse than MISO1, because producing multiple outputs 

is a harder task. Overall, MISO1-BF-MISO2 and MIMO-BF-MISO3 perform the best. This 

is likely because MISO networks used for post-filtering can benefit from multi-microphone 

modeling.  

In Table 8-2 we also evaluate the trained models in terms of ASR performance directly 

on the real test set of REVERB. Both MISO1-BF-MISO2 and MIMO-BF-MISO3 exhibit 

strong generalization ability, and better ASR performance than SISO1-BF-SISO1 and 

SISO1-BF-SISO2, which are not sensitive to geometry mismatch. Clear improvements are 

also observed using the trained models over the baseline WPE [77] and WPE followed by 

BeamformIt algorithms, both available in Kaldi. 

8.6. Conclusion 

We have proposed a multi-microphone complex spectral mapping approach for speech 

dereverberation, and integrated it with beamforming and post-filtering into a unified 
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system. Experimental results suggest that on a fixed geometry, concatenating multiple 

microphone signals for complex spectral mapping is a simple and effective way of 

combining spectral and spatial information for speech dereverberation. 
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Chapter 9. Conclusions and Outlook 

 

9.1. Contributions 

Microphone array processing is essential in modern hands-free speech communitation 

such as speech enhacnement, speaker separation and robust ASR. In this dissertation, we 

have employed deep learning to improve robust speaker localization, acoustic 

beamforming, post-filtering, phase estimation, speech separation and robust ASR.  

In Chapter 2, we have proposed to jointly train an frontend, a mel-filterbank and an 

acoustic model for robust ASR. We have explored several representitive noise- and 

reverberation-robust features for acoustic modeling, applied sequence-discriminative 

training for better seqeunce modeling, and conducted run-time unsupervised adaption to 

address the mismatches between training and testing. At the time of publication, these 

techniques together achieved the state-of-the-art performance on CHiME-2. 

In Chapter 3, we have proposed three algorithms to utilize deep learning based T-F 

masking for robust speaker localization. Experimental results suggest that these algorithms 

dramatically improve conventional cross-correlation, beamforming and subspace based 

approaches for speaker localization in noisy-reverberant environments. In addition, our 

study finds that the ideal ratio mask can serve as a strong training target for robust speaker 

localization. 
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In Chapter 4, we have proposed a Separate-Localize-Enhance approach for deep 

learning based multi-channel blind speaker separation, where spatial features are combined 

with spectral features for DNN to extract target speech from an estimated direction and 

with particular spectral structure. This novel approach leads to large improvements over 

conventional methods and other DNN based algorithms that do not leverage spatial features 

for model training.  

In Chapter 5, we have proposed multiple algorithms for monaural phase reconstruction 

based on magnitude estimates, based on a trigonometric perspective. The obtained state-

of-the-art speaker separation results at the time of publication indicate that DNN based 

magnitude estimation can clearly help phase reconstruction. The proposed geometric 

constraint affords a mechanism to confine the possible solutions of phase. It could play a 

fundamental role in future research on phase estimation.  

In Chapter 6, we have investigated a complex spectral mapping approach for phase 

estimation and proposed a target cancellation algorithm for multi-channel speech 

dereverberation. The trained single- and multi-channel models show clear improvements 

over single- and multi-channel WPE and other DNN based models. The improved phase 

produced by complex spectral mapping also leads to better beamforming. The trained 

models exhibit strong generalization ability to new and representative reverberant 

environments and array configurations. 

In Chapter 7, we have applied single- and multi-channel complex spectral mapping for 

multi-channel speech enhancement. We have proposed a new and effective approach for 

time-varying beamforming. State-of-the-art performance has been obtained on the 

enhancement and recognition tasks of CHiME-4. 
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In Chapter 8, we have proposed a multi-microphone complex spectral mapping 

approach for speech dereverberation, and integrated it with acoustic beamforming and 

post-filtering. Experimental results indicate that, on a fixed geometry, concatenating 

multiple microphone signals for complex spectral mapping is an effective and simple way 

of integrating spectral and spatial information for robust speech processing.  

Perhaps the most valuable insight I have gained in this dissertation study is that DNN 

based single-channel processing provides reliable signal statistics for spatial processing, 

even in environments with very strong noise and reverberation. By further combining such 

spatial processing and spectral processing using a DNN, we can integrate spectral and 

spatial cues for much better speech separation and recognition. 

9.2. Future Work 

This dissertation achieves large speech separation and ASR improvements over 

conventional and other DNN based algorithms. The proposed algorithms represent 

comprehensive solutions by exploiting spatial informaiton for modern speech 

communication, and have the potential to benefit numerous commercial speech 

applications. Here we put forth serveral directions for future research. 

• Online and time-varying beamforming. This dissertation assumes offline 

processing scenarios and that the speakers are still within each utterance. To make 

the algorithms online, one can consider modifying DNN architectures causal by 

making them look at past observations only. In addition, the beamforming 

components can be made online by simply collecting statistics from past and 

current frames. This strategy could potentially deal with moving speakers.  
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• Multi-channel multi-speaker separation in noisy and reverberant conditions. 

Strong room reverberation and encironmental noise can drastically increase the 

difficulty of speaker separation. Future research could consider simultaneous 

speaker separation, denoising and dereverberation, which could be approached by 

using direct sound as the training target. An end-to-end system that optimizes all 

the modules could further elevate performance.  

• Phase estimation. Phase estimation is a notoriously difficult but useful task in 

speech enhancement and dereverberation, and speaker separation. Using supervised 

learning where a model is trained to predict clean speech from a corrupted version, 

be it in the complex or time domain, might be fundamentally limited. Generative 

modeling could be a possible direction to produce more natural sounding, enhanced 

speech [101], [23]. 
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