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 A B S T R A C T

Multi-speaker automatic speech recognition (ASR) has gained growing attention in a wide 
range of applications, including conversation analysis and human–computer interaction. Speech 
separation and enhancement (SSE) and single-speaker ASR have witnessed remarkable perfor-
mance improvements with the rapid advances in deep learning. Complex spectral mapping 
predicts the short-time Fourier transform (STFT) coefficients of each speaker and has achieved 
promising results in several SSE benchmarks. Meanwhile, self-supervised learning representation 
(SSLR) has demonstrated its significant advantage in single-speaker ASR. In this work, we 
push forward the performance of multi-speaker ASR under noisy reverberant conditions by 
integrating powerful SSE, SSL, and ASR models in an end-to-end manner. We systematically 
investigate both monaural and multi-channel SSE methods and various feature representations. 
Our experiments demonstrate the advantages of recently proposed complex spectral mapping 
and SSLRs in multi-speaker ASR. The experimental results also confirm that end-to-end fine-
tuning with an ASR criterion is important to achieve state-of-the-art word error rates (WERs) 
even with powerful pre-trained models. Moreover, we show the performance trade-off between 
SSE and ASE and mitigate it with a multi-task learning framework with both SSE and ASR 
criteria.

. Introduction

Recent advancements in deep learning have significantly improved the performance of single-speaker automatic speech recogni-
ion (ASR) (Hinton et al., 2012; Li et al., 2017; Chiu et al., 2018; Radford et al., 2023). The end-to-end (E2E) framework simplifies 
he system and has demonstrated promising results. In the literature, various sequence-to-sequence machine learning techniques 
ave been developed, such as the connectionist temporal classification (CTC) (Graves et al., 2006; Miao et al., 2015), the attention-
ased encoder–decoder (AED) (Chorowski et al., 2015; Chan et al., 2016), and the recurrent neural network transducer (Graves, 
012). Neural network architectures have also been explored, including Transformer (Karita et al., 2019) and Conformer (Gulati 
t al., 2020). Despite these advancements, there remains a large performance gap between single and multi-speaker conditions, 
specially in noisy and reverberant environments. In such ‘‘cocktail party’’ scenarios, speech separation and enhancement (SSE) is a 
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Table 1
Comparison of each module used in the proposed SIMO/MIMO-IRIS and relevant multi-speaker ASR systems with 
E2E training of SSE and ASR models. The system with † combines pre-trained models without fine-tuning (von 
Neumann et al., 2024). The system with ‡ uses the transducer for ASR (Kanda et al., 2023) while the others are 
based on joint CTC/AED (Watanabe et al., 2017).
 SSE Feature representation ASR  
 Monaural
 Settle et al. (2018) Time–frequency masking log mel-filterbank BLSTM  
 von Neumann et al. (2020b) ConvTasNet log mel-filterbank BLSTM  
 Shi et al. (2020) Conditional TasNet log mel-filterbank Transformer 
 von Neumann et al. (2024)† TF-GridNet WavLM Conformer  
 SIMO-IRIS (Proposed) TF-GridNet WavLM Conformer  
 Multi-channel
 Chang et al. (2019) Mask-based MVDR log mel-filterbank BLSTM  
 Chang et al. (2020) Mask-based MVDR log mel-filterbank Transformer 
 Zhang et al. (2022) Mask-based WPE+MVDR log mel-filterbank Transformer 
 Kanda et al. (2023)‡ VarArray+MVDR log mel-filterbank Transformer 
 MIMO-IRIS (Proposed) TF-GridNet WavLM Conformer  

key component to tackle a multi-speaker recording with an ASR system (Carletta et al., 2005; Barker et al., 2018; Watanabe et al., 
2020; Cornell et al., 2023b; Liang et al., 2023).

At the same time, in the last decade, SSE has remarkably progressed with the adoption of supervised deep learning approaches, 
most notably the permutation invariant training (PIT) (Yu et al., 2017b). PIT allows to train neural networks so that the predicted 
time–frequency masks are close to the ideal masks in the short-time Fourier transform (STFT) domain Yu et al. (2017b), Wang 
and Chen (2018). The encoder-masker-decoder approach, e.g., ConvTasNet (Luo and Mesgarani, 2019), typically leads to better 
performance by applying the masks in trainable latent space (Luo and Mesgarani, 2019; Luo et al., 2020; Subakan et al., 2021). 
Another approach is complex spectral mapping, where neural networks directly predict the real and imaginary parts of the STFT 
coefficients of each speaker. Recently, this approach outperforms the aforementioned approaches (Wang et al., 2023b,a; Tan et al., 
2022; Cornell et al., 2023a; Pan et al., 2023). These SSE models are, however, trained to minimize signal-level differences between 
the target and separated signals (Luo and Mesgarani, 2019; Luo et al., 2020). As such, the overall recognition performance may be 
sub-optimal or even degraded, if these SSE models are used as a front-end of ASR applications.

The SSE process typically introduces artifacts that degrade recognition performance when the SSE and ASR systems are pre-
trained separately (Koizumi et al., 2022; Iwamoto et al., 2022). To mitigate this issue, E2E integration of SSE and ASR via their 
joint training is an active research direction (Seltzer et al., 2004; Li et al., 2016; Heymann et al., 2017; Ochiai et al., 2017; Minhua 
et al., 2019; Chang et al., 2019, 2020; von Neumann et al., 2020b; Zhang et al., 2022). For instance, early research showed promising 
results in the context of single-speaker robust ASR by integrating a neural beamformer and a joint CTC/AED model (Ochiai et al., 
2017). This integration has been extended to multi-speaker settings, including MIMO-Speech (Chang et al., 2019). MIMO-Speech 
explicitly separates the observed mixture with beamforming, while the entire system is trained only by the multi-speaker ASR 
criterion. Such an approach preserves the modularity of the entire system and is able to output intermediate separated signals in 
contrast to fully E2E black-box approaches (Yu et al., 2017a; Seki et al., 2018; Meng et al., 2023; Kanda et al., 2020; Sklyar et al., 
2021). This approach has been successfully developed in both monaural (Settle et al., 2018; Chang et al., 2019; Shi et al., 2020) 
and multi-channel (Chang et al., 2019, 2020; Zhang et al., 2022; Kanda et al., 2023) scenarios where the existing systems typically 
used classical filterbanks as feature representation for ASR as summarized in Table  1.

Apart from the progress in SSE and its E2E integration with ASR, self-supervised learning (SSL) models have shown promising 
performance improvements in single-speaker ASR (Yang et al., 2021; Tsai et al., 2022). SSL aims to learn useful feature representation 
(SSLR) by solving a pretext task defined without manual labels. Many SSL models, including Wav2Vec 2.0 (Baevski et al., 2020) 
and HuBERT (Hsu et al., 2021), have been pre-trained only on clean single-speaker speech, and thus their strength under noisy 
reverberant conditions is limited (Chang et al., 2021). More recently, SSL models trained on noisy speech (Chen et al., 2022; Wang 
et al., 2022a,b; Huang et al., 2022) and on multi-speaker speech (Fazel-Zarandi and Hsu, 2023; Huang et al., 2023a) have been 
investigated. Among these models, WavLM (Chen et al., 2022), a robust variant of HuBERT, is particularly effective. It has achieved 
state-of-the-art (SOTA) performance on SUPERB benchmark tasks (Yang et al., 2021) and demonstrated promising recognition 
performance even in noisy reverberant environments (von Neumann et al., 2024; Cornell et al., 2024).

By fusing WavLM into the E2E integration of speech enhancement and ASR, the performance of single-speaker robust ASR 
has been significantly improved (Chang et al., 2022; Masuyama et al., 2023). IRIS (Chang et al., 2022) integrates ConvTasNet, 
WavLM, and the joint CTC/AED model, achieving SOTA performance on the CHiME-4 single-channel track. Multi-IRIS (Masuyama 
et al., 2023) extends IRIS to perform multi-channel speech enhancement by neural beamforming. These works focused only on 
single-speaker scenarios, and here we consider a multi-speaker extension for ‘‘cocktail party’’ scenarios.

In this paper, we advance the performance of robust multi-speaker ASR by proposing SIMO-/MIMO-IRIS: an E2E integration of 
monaural/multi-channel SSE, SSLR extraction, and ASR. Our systems are based on the literature of the E2E training of SSE and 
ASR models, but we leverage recently proposed powerful SSE and SSL models as summarized in Table  1. Specifically, we perform 
complex spectral mapping by using TF-GridNet (Wang et al., 2023a,b) and extract feature representation from WavLM (Chen et al., 
2 
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Fig. 1. Overview of SIMO/MIMO-IRIS via an E2E integration of SSE, SSLR extraction, and ASR. The input of the SSE model can be multi-channel as in MIMO-IRIS 
or monaural (only 𝐱1) as in SIMO-IRIS.

2022). The SSE model is pre-trained individually and then combined with SSL and ASR models. Afterwards, both the front-end (the 
SSE model) and back-end (the ASR model) are fine-tuned together based on an ASR criterion as illustrated in Fig.  1. This allows to 
simultaneously optimize the front-end for the subsequent ASR and adapt the back-end to the imperfect SSE outputs. We perform a 
comprehensive evaluation under anechoic/reverberant and clean/noisy conditions by using the spatialized WSJ0-2mix (Wang et al., 
2018) and WHAMR! datasets (Maciejewski et al., 2020). We explore various SSE methods, including time–frequency masking and 
neural beamforming, and feature representations. The results confirm the advantage of the E2E integration of a strong TF-GridNet-
based SSE front-end and the WavLM-based ASR back-end. The fine-tuning only with the ASR criterion degrades the signal-level 
separation quality while improving the word error rate (WER) as mentioned in von Neumann et al. (2020b). We explore this trade-
off by following a multi-task learning framework with SSE and ASR criteria and perform a detailed analysis of the trade-off. Our 
training recipes and model checkpoints will be released through the end-to-end speech processing (ESPnet) toolkit (Watanabe et al., 
2018; Li et al., 2021; Lu et al., 2022).

In our previous work (Masuyama et al., 2023), we introduced MIMO-IRIS and verified its efficacy with preliminary experiments. 
This paper extends the previous work by making substantial contributions in the following areas:

• developing SIMO-IRIS that integrates monaural SSE and SSLR-based ASR and performs the joint training;
• conducting an extensive evaluation of both SIMO-IRIS and MIMO-IRIS under various conditions;
• exploring various SSLRs and classical filterbank features in the multi-speaker ASR system;
• investigating the trade-off between separation and recognition performance in the E2E fine-tuning through a multi-task 
learning framework.

This paper is organized as follows. Section 2 reviews various monaural and multi-channel SSE methods under noisy reverberant 
conditions. Section 3 presents the proposed SIMO-/MIMO-IRIS and clarifies its relationship with other multi-speaker ASR frame-
works. Sections 4 and 5 describe the experimental investigations of SIMO-IRIS and MIMO-IRIS, respectively. In Section 6, we draw 
conclusions and highlight future research directions.

2. Review of monaural and multi-channel SSE

2.1. Problem settings

Let an audio mixture with 𝐾 speakers and noise be observed by 𝑀 microphones under reverberant conditions. The mixing 
process of the observed time-domain signal 𝐱𝑚 of length 𝐿 can be formulated as

𝐱𝑚 =
𝐾
∑

𝑘=1
𝐲𝑘,𝑚 + 𝐧𝑚

=
𝐾
∑

𝑘=1
(𝐝𝑘,𝑚 + 𝐫𝑘,𝑚) + 𝐧𝑚

=
𝐾
∑

𝑘=1
(𝐡𝑘,𝑚 ⊛ 𝐬𝑘 + 𝐫𝑘,𝑚) + 𝐧𝑚, (1)

where 𝐲𝑘,𝑚 is the reverberant source image of source 𝑘, 𝐧𝑚 is the background noise signal, and 𝑚 = 1,… ,𝑀 and 𝑘 = 1,… , 𝐾 are 
the microphone and source indices, respectively. Each source image 𝐲  is decomposed into the desired source image 𝐝  and the 
𝑘,𝑚 𝑘,𝑚
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undesired late reverberation 𝐫𝑘,𝑚. In (1), the desired source image is further modeled by the convolution of the impulse response 
𝐡𝑘,𝑚 and the dry source signal 𝐬𝑘, where ⊛ denotes the convolution.

Let us denote the STFT coefficients of 𝐱𝑚 by 𝐗𝑚 = 𝚂𝚃𝙵𝚃(𝐱𝑚) ∈ C𝑇×𝐹 , where 𝑇  and 𝐹  are the number of time frames and frequency 
bins, respectively. The mixing process in (1) can be reformulated as follows: 

𝐗𝑚 =
𝐾
∑

𝑘=1
(𝐃𝑘,𝑚 + 𝐑𝑘,𝑚) + 𝐍𝑚, (2)

where 𝐃𝑘,𝑚, 𝐑𝑘,𝑚, and 𝐍𝑚 are the STFT coefficients of the desired source image, late reverberation, and noise, respectively. With 
the reference microphone 𝑚 ∈ {1,… ,𝑀}, the (𝑡, 𝑓 )th entry of 𝐃𝑘,𝑚 is approximated by 

𝐷𝑘,𝑚(𝑡, 𝑓 ) = 𝑎𝑘,𝑚(𝑓 )𝐷𝑘,𝑚(𝑡, 𝑓 ), (3)

where 𝐚𝑘(𝑓 ) = [𝑎𝑘,1(𝑓 ),… , 𝑎𝑘,𝑀 (𝑓 )]𝖳 is the relative transfer function (Gannot et al., 2001), and (⋅)𝖳 denotes the transpose.
On the basis of the mixing process in (2), our SSE model aims to estimate the desired source image in the time–frequency domain: 

{�̂�1,𝑚,… , �̂�𝐾,𝑚} = 𝚂𝚂𝙴(𝐗1,… ,𝐗𝑀 ), (4)

where we need to not only separate each speaker but also suppress the noise and late reverberation. That is, the SSE model performs 
denoising and dereverberation along with separation. Building up on SSE, our goal is to predict the transcription sequence for each 
speaker 𝐖𝑘 from the mixture: 

{𝐖1,… ,𝐖𝐾} = 𝙼𝚞𝚕𝚝𝚒𝚂𝚙𝚎𝚊𝚔𝚎𝚛𝙰𝚂𝚁(𝐗1,… ,𝐗𝑀 ), (5)

where we do not care for the speaker order of the predicted transcripts.
Throughout this paper, we assume that the array geometry, including the number of microphones 𝑀 , and the number of 

speakers 𝐾 are known and fixed during both training and inference. While the integration of SSE and ASR with variable numbers 
of microphones (Kanda et al., 2023) and speakers (von Neumann et al., 2020a) is interesting, we defer such directions to future 
work. We instead focus on demonstrating comprehensive analysis of multi-speaker ASR under static conditions.

2.2. Monaural SSE

When 𝑀 = 1 and the input of 𝚂𝚂𝙴 is only 𝐱1, it is called monaural SSE. For monaural SSE in the time–frequency domain, 
time–frequency masking and complex spectral mapping have been widely used (Wang and Chen, 2018). In the former masking 
approach, a neural network is used to estimate a mask �̂�𝑘 ∈ C𝑇×𝐹  for each speaker 𝑘, and then the mask is applied to the STFT of 
the mixture:

{�̂�1,𝑚,… , �̂�𝐾,𝑚} = 𝙼𝚊𝚜𝚔𝙽𝚎𝚝(𝐗𝑚), (6)

�̂�𝑘,𝑚 = �̂�𝑘,𝑚 ⊙ 𝐗𝑚, (7)

where 𝑚 = 1 by definition, and ⊙ denotes the Hadamard product. While the time–frequency mask is usually restricted to non-negative 
real value, it can be complex (Williamson et al., 2016). The separated STFT coefficients are then converted to the time domain by 
the inverse STFT (iSTFT): 

�̂�𝑚 = 𝚒𝚂𝚃𝙵𝚃(�̂�𝑚). (8)

In the more modern encoder-masker-decoder approach, STFT and iSTFT are replaced by trainable 1D convolution and deconvolution 
layers, respectively (Luo and Mesgarani, 2019; Luo et al., 2020; Subakan et al., 2021).

Complex spectral mapping directly predicts the complex STFT coefficients of each speaker �̂�𝑘,𝑚 instead of the mask �̂�𝑘,𝑚 (Tan 
and Wang, 2020; Wang et al., 2020; Yang et al., 2022): 

{�̂�1,𝑚,… , �̂�𝐾,𝑚} = 𝙼𝚊𝚙𝚙𝚒𝚗𝚐𝙽𝚎𝚝(𝐗𝑚). (9)

This approach has less restriction on the output and demonstrates comparable or better performance than the encoder-masker-
decoder approach (Cornell et al., 2023a; Pan et al., 2023).

2.3. Multi-channel SSE

Multi-channel SSE exploits spatial information obtained from multiple microphones. It is typically realized in the time–frequency 
domain because we can efficiently implement spatial filtering with the narrow-band approximation (Gannot et al., 2017). As a front-
end for ASR, mask-based beamforming has demonstrated promising results (Heymann et al., 2016; Erdogan et al., 2016), where the 
non-negative time–frequency masks {�̂� ,… , �̂� } in (6) are used to build the beamformers.
1,𝑚 𝐾,𝑚

4 
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In mask-based beamforming, a concatenation of STFT of the 𝑀-channel mixture 𝝌(𝑡, 𝑓 ) = [𝑋1(𝑡, 𝑓 ),… , 𝑋𝑀 (𝑡, 𝑓 )]𝖳 ∈ C𝑀  is 
considered, where 𝑋𝑚(𝑡, 𝑓 ) is the (𝑡, 𝑓 )th entry of 𝐗𝑚. We first compute the spatial covariance matrix of the each speaker �̂�𝑘(𝑓 ) and 
their respective interference �̂�∖𝑘(𝑓 ) as follows:

�̂�𝑘(𝑓 ) =
1

∑𝑇
𝑡=1 𝐺𝑘(𝑡, 𝑓 )

𝑇
∑

𝑡=1
𝐺𝑘(𝑡, 𝑓 )𝝌(𝑡, 𝑓 )𝝌(𝑡, 𝑓 )𝖧, (10)

�̂�∖𝑘(𝑓 ) =

(𝐾+1
∑

𝑘′=1
�̂�𝑘′ (𝑓 )

)

− �̂�𝑘(𝑓 ), (11)

𝐺𝑘(𝑡, 𝑓 ) =
1
𝑀

𝑀
∑

𝑚=1
𝐺𝑘,𝑚(𝑡, 𝑓 ), (12)

where (⋅)𝖧 denotes the Hermitian transpose, and �̂�𝐾+1 represents the spatial covariance matrix of the noise. Then, the beamformers 
are constructed based on well-studied criteria such as the minimum variance distortionless response (MVDR) beamformer (Souden 
et al., 2010) and the generalized eigenvalue beamformer (Warsitz and Haeb-Umbach, 2007).

The MVDR beamformer can be implemented by leveraging the spatial covariance matrix of each speaker instead of the relative 
transfer function (Souden et al., 2010). Specifically, the spatial filter �̂�𝑘(𝑓 ) can be expressed as: 

�̂�𝑘(𝑓 ) =
�̂�−1
∖𝑘 (𝑓 )�̂�𝑘(𝑓 )

trace
(

�̂�−1
∖𝑘 (𝑓 )�̂�𝑘(𝑓 )

)𝐮, (13)

where trace(⋅) denotes the matrix trace, and 𝐮 ∈ R𝑀  is a one-hot vector indicating the reference microphone 𝑚. Then, the beamformer 
is applied to the STFT of the mixture, and the results are converted to the time domain via iSTFT:

�̂�𝑘,𝑚(𝑡, 𝑓 ) = �̂�𝖧
𝑘 (𝑓 )𝝌(𝑡, 𝑓 ), (14)

𝐝𝑘,𝑚 = 𝚒𝚂𝚃𝙵𝚃(�̂�𝑘,𝑚). (15)

The process of the mask-based beamforming is differentiable, and thus we can optimize MaskNet in (6) with a loss function defined 
on the separated signals {𝐝1,𝑚,… ,𝐝𝐾,𝑚}. The main advantage of mask-based beamforming is the fact that the obtained spatial filter 
is linear and based on well-studied array signal processing principles. These properties mitigate artifacts (Iwamoto et al., 2022) and 
improve the robustness and generalization capability (Chang et al., 2019; Zhang et al., 2021a; Masuyama et al., 2023).

Since the MVDR beamformer is mainly designed for separation and denoising, we need additional dereverberation under 
reverberant conditions. The weighted prediction error (WPE) (Nakatani et al., 2010) has been widely used to suppress the late 
reverberation in (2) (Kinoshita et al., 2016; Barker et al., 2018). WPE estimates the late reverberation by using an inverse filter and 
subtracts it. It is typically performed before beamforming, and its integration with beamforming has been explored (Nakatani and 
Kinoshita, 2019; Zhang et al., 2022).

Complex spectral mapping in (9) can be easily extended to multi-channel SSE as follows (Wang et al., 2020, 2021b; Tan et al., 
2022): 

{�̂�1,𝑚,… , �̂�𝐾,𝑚} = 𝙼𝚊𝚙𝚙𝚒𝚗𝚐𝙽𝚎𝚝(𝐗1,… ,𝐗𝑀 ). (16)

In (16), 𝙼𝚊𝚙𝚙𝚒𝚗𝚐𝙽𝚎𝚝 implicitly performs time-varying nonlinear spatial filtering. Compared with the time-invariant beamformers, the 
output may reduce the interference more but can introduce more artifacts on the separated speech. Although prior studies showed 
that the time-invariant beamformers would be preferable for ASR (Chang et al., 2019; Zhang et al., 2021a), we expect that the 
combination of modern front-ends and back-ends can address the issue of artifacts.

2.4. Loss functions for SSE

In this subsection, we briefly review popular signal-level loss functions for SSE. During the training of an SSE model, the order 
of the separated signals 𝐝1,𝑚,… ,𝐝𝐾,𝑚 is unconstrained and can be different from the original order. To compute the signal-level loss 
functions, however, we need to assign each estimate 𝐝𝑘′ ,𝑚 to one of the desired source images 𝐝𝑘,𝑚. To address this problem, PIT 
computes all the possible permutations and uses the best assignment as follows (Kolbæk et al., 2017): 

SSEPIT = min
𝝅∈𝐾

𝐾
∑

𝑘=1
(𝐝𝜋𝑘 ,𝐝𝑘), (17)

where 𝐾 is the set of 𝐾! possible permutations on {1,… , 𝐾}, and 𝜋𝑘 is the 𝑘th entry of the permutation. In (17),  denotes a loss 
function computed for each pair of signals.

Regarding the pair-wise loss function in (17), various loss functions have been developed. The scale-invariant signal-to-distortion 
ratio (SI-SDR) has been widely used not only for evaluation but also as a loss function: 

SI-SDR = 20 log10

(

‖𝛼𝐝‖2
)

, (18)

‖𝛼𝐝 − 𝐝‖2

5 
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Fig. 2. Overview of TF-GridNet. Here, gLN stands for global layer normalization.

where 𝛼 = 𝐝𝖳𝐝∕‖𝐝‖22, and ‖ ⋅ ‖2 denotes the 𝓁2 norm. In (18), 𝛼 compensates for the scale of the target signal to fit to the estimate. 
While the SI-SDR loss is defined in the time domain, recent studies (Wang et al., 2023a) have shown the benefit of combining the 
time-domain and STFT-domain losses: 

MIX = 𝛽‖‖
‖

𝐝 − 𝛼𝐝‖‖
‖1

+ (1 − 𝛽)‖‖
‖

|𝚂𝚃𝙵𝚃(𝐝)| − |𝚂𝚃𝙵𝚃(𝛼𝐝)|‖‖
‖1
, (19)

where ̂𝛼 = 𝐝𝖳𝐝∕‖𝐝‖22, | ⋅ | computes magnitude in entry wise, and ‖ ⋅‖1 denotes the 𝓁1 norm. Here, the estimate is rescaled instead of 
the target following (Ma et al., 2020; Wang et al., 2023a). In (19), the 𝓁1 norm of the STFT magnitude is computed for |𝚂𝚃𝙵𝚃(𝛼𝐝)|
instead of |𝛼�̂�|. As a result, the second term takes into account the inconsistency issue in �̂� (Masuyama et al., 2020; Wang et al., 
2021c).

3. E2E multi-speaker ASR with SSLR

3.1. Overview of proposed SIMO- and MIMO-IRIS

Our multi-speaker ASR system consists of three modules: monaural/multi-channel SSE (SSE), SSLR extraction (SSLR), and E2E 
ASR (ASR), as illustrated in Fig.  1. The observed mixture (𝐱1,… , 𝐱𝑀 ) is first separated into 𝐾 sources, where 𝑀 = 1 in the monaural 
case. Then, we extract SSLR from each separated signal and feed it into E2E ASR as follows:

{�̂�1,𝑚,… , �̂�𝐾,𝑚} = 𝚂𝚂𝙴(𝐗1,… ,𝐗𝑀 ), (20)

�̂�𝑘 = 𝚂𝚂𝙻𝚁(𝚒𝚂𝚃𝙵𝚃(�̂�𝑘,𝑚)), (21)

𝐖𝑘 = 𝙰𝚂𝚁(�̂�𝑘), (22)

where �̂�𝑘 is the SSLR for the 𝑘th speaker. The modularity of our system allows to leverage powerful pre-trained models for each 
module. To recognize multi-speaker conversation, we can cascade pre-trained SSE and ASR models. This cascaded strategy without 
fine-tuning is not optimal because the ASR model is sensitive to the imperfect SSE outputs. To mitigate this issue, we optimize the 
entire multi-speaker ASR system in an E2E fashion using backpropagation.

3.2. Complex spectral mapping by TF-GridNet

While our system can use any SSE model, we leverage complex-spectral mapping to simultaneously perform separation, denoising, 
and dereverberation as it is seamlessly applicable to both monaural and multi-channel cases. Specifically, we use TF-GridNet that 
has shown SOTA performance in various SSE benchmarks (Hershey et al., 2016; Wang et al., 2018; Maciejewski et al., 2020; Cornell 
et al., 2023a; Pan et al., 2023). Its overview is illustrated in Fig.  2. The STFT of the observed mixture is expanded to 𝐶-dimensional 
embeddings for each time–frequency bin by using a 2D convolution layer followed by global layer normalization. The number of 
input channels of the 2D convolution layer is 2𝑀 by concatenating the real and imaginary parts for all the microphone channels. 
These embeddings are passed to 𝐵 TF-GridNet blocks, each consisting of an intra-frame spectral module, a sub-band temporal 
module, and a cross-frame self-attention module. The real and imaginary parts of each speaker are obtained by applying a 2D 
deconvolution layer to the output of the final TF-GridNet block.

In the intra-frame spectral module, the embeddings of size 𝑇 ×𝐹 ×𝐶 are treated as 𝑇  sequences of length 𝐹 . For each sequence, we 
apply layer normalization and stack adjacent 𝐼 embeddings along frequency with shift 𝐽 . The resulting sequence of 𝐶×𝐼 dimensional 
features are passed to a bi-directional long short-term memory (BLSTM) layer and a 1D deconvolution layer. This module focuses on 
modeling spectral information at each time frame. Meanwhile, the sub-band temporal module views the embeddings as 𝐹  sequences 
of length 𝑇  and performs a similar procedure. This module handles the temporal information at each sub-band.

While the aforementioned modules handle the spectral and temporal relationships separately, the cross-frame self-attention 
module is designed to aggregate full-band information between distant time frames. In detail, we apply a point-wise 2D convolution 
6 
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to the 2D embeddings and concatenate the embeddings for the frequency direction with layer normalization. The attention matrix 
is computed over the time frames, i.e., its size is 𝑇 × 𝑇 . The attention outputs of multiple heads are concatenated for the channel 
direction, and then it is passed to another point-wise 2D convolution layer followed by layer normalization.

After 𝐵 TF-GridNet blocks, the embeddings are passed to a 2D deconvolution layer with 2𝐾 output channels to obtain the real 
and imaginary parts of each speaker. Each estimate is converted back to the time domain as 𝐝𝑘,𝑚 by iSTFT.

3.3. SSLR extraction by WavLM

Separated signals may contain residual noise, reverberation, and artifacts introduced by the SSE process. To robustly extract 
SSLRs, we use WavLM (Chen et al., 2022) that has shown remarkable performance in the SUPERB benchmark (Yang et al., 2021) 
and multi-speaker ASR (Cornell et al., 2023b; von Neumann et al., 2024). WavLM consists of a convolutional encoder block and 
𝐿SSL Transformer layers. During pre-training, the input speech is augmented with noise and interference speech, and the augmented 
speech is fed into the convolutional encoder block. Its output 𝐙0,𝑘 is passed to the Transformer layers after masking out some frames. 
We optimize the Transformer layers to predict the 𝑘-means cluster assignment of clean speech on the masked frames. Although this 
training strategy is similar to HuBERT, the training of WavLM uses multiple datasets (Kahn et al., 2020; Chen et al., 2021; Wang 
et al., 2021a) and significantly leverages data augmentation.

Following the SUPERB strategy (Yang et al., 2021), the output from each Transformer layer 𝐙𝑙,𝑘 are averaged with trainable 
weights in our multi-speaker ASR system: 

�̂�𝑘 =
𝐿SSL
∑

𝑙=0
𝛾𝑙𝐙𝑙,𝑘, (23)

where 𝑙 = 0 indicates the convolution encoder output, 𝛾𝑙 ∈ [0, 1] is the non-negative weight satisfying ∑𝐿SSL
𝑙=0 𝛾𝑙 = 1. This trainable 

weight is jointly optimized with the following E2E ASR model while WavLM itself is frozen.

3.4. E2E ASR by joint CTC/AED

To predict the transcript of each speaker, we use the joint CTC/AED model (Watanabe et al., 2017) as a powerful E2E ASR 
framework. It leverages the CTC module with an encoder shared with AED, which enforces the alignment between the feature 
representation and transcription. In the joint CTC/AED model, SSLR from WavLM �̂�𝑘 is passed to an encoder: 

�̂�𝑘 = 𝙰𝚂𝚁𝙴𝚗𝚌(�̂�𝑘), (24)

where �̂�𝑘 = [�̂�1,𝑘,… , �̂�𝑇 ′ ,𝑘] is the encoder output, and 𝑡′ = 1,… , 𝑇 ′ is the sub-sampled frame index. The CTC module predicts the 
posterior distribution of the alignment between the feature representation 𝐐𝑘 and the transcription 𝐖𝑘:

𝑝(A𝑘 ∣ �̂�𝑘) ≈
𝑇 ′
∏

𝑡′=1
𝑝(a𝑡′ ,𝑘 ∣ �̂�𝑘), (25)

𝑝(a𝑡′ ,𝑘 ∣ �̂�𝑘) = 𝙲𝚃𝙲(�̂�𝑡′ ,𝑘), (26)

where A𝑘 = [a1,𝑘,… , a𝑇 ′ ,𝑘] is the alignment sequence, a𝑡′ ,𝑘 is an entry of the vocabulary or a blank token, and 𝑝(a𝑡′ ,𝑘 ∣ �̂�𝑘) denotes the 
frame-level posterior distribution. In (25), we introduce the conditional independence assumption between the frame-level outputs 
for the approximation. Then, the posterior distribution of the transcription is computed as follows (Graves et al., 2006): 

𝑝ctc(𝐖𝑘 ∣ �̂�𝑘) =
∑

A𝑘∈−1(𝐖𝑘)

𝑝ctc(A𝑘 ∣ �̂�𝑘), (27)

where −1(𝐖𝑘) indicates all the possible alignments compatible with the transcription 𝐖𝑘.
Meanwhile, AED computes the posterior distribution without the conditional independence assumption:

𝑝att (𝐖𝑘 ∣ �̂�𝑘) =
𝜏𝑘
∏

𝜏=1
𝑝att (𝑊𝜏,𝑘 ∣ �̂�𝑘,𝑊1,𝑘,… ,𝑊𝜏−1,𝑘), (28)

𝑝att (𝑊𝜏,𝑘 ∣ �̂�𝑘,𝑊1,𝑘,… ,𝑊𝜏−1,𝑘) = 𝙰𝚂𝚁𝙳𝚎𝚌(�̂�𝑘,𝑊1,𝑘,… ,𝑊𝜏−1,𝑘), (29)

where 𝜏 = 1,… , 𝜏𝑘 is the index of tokens in the transcription for the 𝑘th speaker. During training, we use teacher forcing to condition 
the decoder. At the inference, we combine the posteriors from the CTC module and the decoder and apply beam search.

3.5. Training strategy of SIMO- and MIMO-IRIS

Training of a multi-speaker ASR system from scratch is computationally intensive and potentially leads to sub-optimal perfor-
mance, as reported in previous studies (Chang et al., 2022; Masuyama et al., 2023). To address this issue, we first individually 
pre-train SSE, SSLR, and ASR, and then fine-tune SSE and ASR in an E2E manner. In detail, the SSE model is pre-trained with 
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the signal-level loss function in (19). Meanwhile, the ASR model is pre-trained on monaural clean speech datasets, e.g., the WSJ 
corpus, based on the following sum of two loss functions (Watanabe et al., 2017): 

ASR = −𝜆 log 𝑝ctc(𝐖 ∣𝐐) − (1 − 𝜆) log 𝑝att (𝐖 ∣ 𝐐), (30)

where 𝜆 ∈ [0, 1] is a hyperparameter for balancing two terms. In (30), we omit the source index because the pre-training is performed 
on a single-speaker dataset. While freezing the pre-trained WavLM to avoid overfitting, we optimize the trainable weights introduced 
in (23) together with the ASR model (Chang et al., 2022; Masuyama et al., 2023).

After pre-training, the integrated system is fine-tuned with the ASR criterion defined in (30) with PIT:

ASRPIT =
𝐾
∑

𝑘=1
ASR(𝐖𝜋⋆𝑘

, �̂�𝑘), (31)

𝝅⋆ = min
𝝅∈𝐾

𝐾
∑

𝑘=1
− log 𝑝ctc(𝐖𝜋𝑘 , �̂�𝑘), (32)

where the CTC loss is used to determine the permutation 𝝅⋆ that will be used in the subsequent computation of both terms in (30) for 
all the sources. This is because the CTC loss requires only 𝐾 forward passes to determine the permutation, while the AED loss takes 
𝐾2 forward passes for considering every combination of the feature representation and the transcription for teacher forcing (Seki 
et al., 2018).

We can also include the SSE loss in (19) with PIT even during the fine-tuning according in a multi-task learning fashion: 

MULTI = ASRPIT(𝐖1∶𝐾 , �̂�1∶𝐾 ) + 𝜅SSEPIT(𝐝1∶𝐾 ,𝐝1∶𝐾 ), (33)

where 𝜅 ≥ 0 is a weight for the SSE loss, and the subscript 1 ∶ 𝐾 indicates variables for all the sources. We choose the speaker 
permutation on the basis of the SSE loss as in (17) and use that permutation for the ASR loss (Settle et al., 2018; von Neumann 
et al., 2020b).

3.6. Relation to other multi-speaker ASR

Towards multi-speaker ASR, the classical strategy is to separate a mixture into single-speaker streams and then recognize each 
separated speech (Yoshioka et al., 2018a,b; Raj et al., 2021). This strategy employs the pre-trained SSE and ASR models in a 
cascade, which is not optimal as discussed in Section 3.5. This strategy has been extended to jointly train both SSE and ASR models 
(Qian et al., 2018; Settle et al., 2018; Chang et al., 2019; von Neumann et al., 2020b; Zhang et al., 2022). In particular, MIMO-
Speech (Chang et al., 2019) integrates the mask-based beamformer and the joint CTC/AED model and trains the entire system 
with an ASR criterion in an E2E manner. Our multi-speaker ASR system advances this E2E integration by incorporating the robust 
SSL model, WavLM. We further provide a comprehensive analysis of various SSE strategies, including time–frequency masking, 
mask-based beamforming, and complex spectral mapping. Another relevant study (von Neumann et al., 2024) uses TF-GridNet and 
WavLM similarly to our work. The latter system, however, still cascades the pre-trained models and does not perform E2E training.

Another E2E strategy directly estimates multiple transcriptions without explicitly performing SSE (Yu et al., 2017a; Seki et al., 
2018; Meng et al., 2023). While this strategy originally used PIT, the serialized output training (Kanda et al., 2020, 2022a; Sklyar 
et al., 2021; Li et al., 2023) and the heuristic error assignment training (L. Lu and Gong, 2021; Raj et al., 2022) have been developed 
to reduce computational complexity. This strategy has recently been extended to multi-channel cases (Kanda et al., 2023; Yifan et al., 
2023). In contrast to these systems, our system preserves modularity and exploits pre-trained SSE and ASR models, which stabilizes 
the training of the combined multi-speaker ASR system. We can even pre-train each model on separate datasets.

Meanwhile, speaker-attributed ASR (Fiscus et al., 2007; Barker et al., 2018; Watanabe et al., 2020), which aims to jointly 
recognize ‘‘who said what’’, has gained much attention in conversation analysis (El Shafey et al., 2019; Kanda et al., 2022b; Cui 
et al., 2023; Cornell et al., 2024). Speaker-attributed ASR provides rich speaker attribution in addition to the transcription. On the 
other hand, our multi-speaker ASR system does not provide speaker attribution. It can be predicted by a subsequent diarization 
system or via continuous speech separation, which will be explored in future works.

Finally, SSL models handling multiple speakers have recently been developed (Fazel-Zarandi and Hsu, 2023; Huang et al., 2023a). 
These models are trained to predict the cluster assignments of each speaker from a mixture. In addition, WavLM has been adapted 
to extract SSLR of the target speaker by conditioning (Huang et al., 2023b). By feeding in the conditioning information of each 
speaker, the adapted SSL model can extract SSLRs for multi-speaker ASR. While our main experiments freeze the SSL model, we 
will also explore adapting the SSL model to multi-speaker ASR.

4. Experimental validation of SIMO-IRIS

We first evaluated SIMO-IRIS under noisy anechoic and reverberant conditions. Our experiments were conducted using the 
ESPnet-SE toolkit (Li et al., 2021; Lu et al., 2022) and S3PRL (Yang et al., 2021).
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Table 2
WERs (%) on the clean WSJ corpus with different feature representation.
 dev93 eval92 
 Fbank 6.6 4.4  
 HuBERT Base 4.0 2.6  
 WavLM Base+ 3.6 2.1  
 HuBERT Large 2.6 1.5  
 WavLM Large 2.5 1.2  

4.1. Dataset

We used the WHAMR! dataset. It contains anechoic and reverberant two-speaker mixtures with noise recorded in urban 
environments (Maciejewski et al., 2020). Its dry source signals are from the WSJ0-2mix dataset (Hershey et al., 2016), but artificially 
simulated room impulse responses are convolved with each clean source signal to obtain reverberant signals. To exploit the pre-
trained WavLM large model,1 we used the source signals sampled at 16 kHz. The WHAMR! dataset provides two versions of 
overlapped mixtures: min and max versions. The longest of the two utterances is truncated in the min version, while the max
version pads the shorter utterance by zero. We used the min version to pre-train the SSE model since it resulted in better separation 
performance compared with pre-training on the max version in our preliminary experiments. Meanwhile, the fine-tuning of the 
entire system was performed on the max version because the ASR loss in (31) requires the entire utterances of both speakers 
without truncation. We combined the anechoic and reverberant conditions during training and validation following (Zhang et al., 
2022). For reference, the SI-SDRs of the input noisy mixtures are −4.5 dB and −6.1 dB under anechoic and reverberant conditions, 
respectively (Maciejewski et al., 2020).

For the pre-training of the ASR model, we used the WSJ corpus. Since it is also used as the source signal in the WHAMR! dataset, 
there is no domain mismatch regarding the speaking style or semantic content of the speech signal between the pre-training and 
fine-tuning data.

4.2. Experimental configuration

TF-GridNet was compared with a monaural SSE baseline, BLSTM-based time–frequency masking. STFT was implemented with 
the Hann window of 512 samples with a 256-sample shift. To estimate the time–frequency masks, we employed a 4-layer BLSTM 
along with time direction, where each layer has 600 units for each direction. Regarding the TF-GridNet, the kernel size of the initial 
2D convolution and the final 2D deconvolution layers was 3, where the embedding dimension 𝐶 = 48. The number of TF-GridNet 
blocks 𝐵 was 6, where the BLSTM layer has 192 units in each block. We set 𝐼 and 𝐽 to 4 and 2, respectively. The cross-frame 
self-attention module leveraged 4 heads. The SSE models were pre-trained based on the combination of the time-domain and STFT 
domain losses in (19), where 𝛽 = 0.99. The Adam optimizer was used with a learning rate of 0.001.

The ASR encoder consisted of 12 Conformer (Gulati et al., 2020) blocks, where each block had 4 attention heads with 
feed-forward layers of 2048 units. The kernel size of the convolution layers was set to 15. The ASR decoder consists of 6 
Transformer (Karita et al., 2019) blocks with 4 attention heads. The dimensions of SSLR 𝐙 in (23) were reduced to 80 from 1024 
by an additional feed-forward layer. The ASR model and the trainable weight in (23) were pre-trained on the WSJ corpus with the 
joint CTC/AED loss in (30). We used the Adam optimizer with a warmup scheduler, where the peak learning rate was 0.005. We 
performed model averaging over the 10 checkpoints with the highest accuracy.

Our entire system had 368M parameters, where the TF-GridNet and the joint CTC/AED consisted of 8M and 44M parameters, 
respectively. The rest of the parameters came from the frozen WavLM large model. The SSE and ASR models were fine-tuned with 
the ASR criterion using stochastic gradient descent with a learning rate of 0.001 and a momentum of 0.9. This is because stochastic 
gradient descent typically performs better in fine-tuning (Zhou et al., 2020) and led to stable performance improvements in our 
previous study for robust single-speaker ASR (Masuyama et al., 2023). Training and inference scripts will be available through 
ESPnet.2

4.3. Experimental results with different feature representation

Before moving on to multi-speaker ASR, we investigate the recognition performance on the WSJ corpus with different feature 
representation: filterbanks, HuBERT, and WavLM. We explored two model sizes for HuBERT and WavLM. The recognition 
performance on the development and evaluation sets is summarized in Table  2. Consistent with the SUPERB benchmark results (Yang 
et al., 2021), SSLRs dramatically improved single-speaker recognition performance, and the WavLM large model performed the best.

Table  3 reports the WER as well as the substitution, deletion, and insertion errors for different feature representations in the 
monaural WHAMR! dataset. Here, the pre-trained TF-GridNet and the joint CTC/AED model are combined without fine-tuning, where 

1 https://huggingface.co/microsoft/wavlm-large
2 https://github.com/espnet/espnet
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Table 3
WERs (%) and their breakdown on the test set of monaural WHAMR! dataset with different feature representation. TF-GridNet 
is used for SSE.
 Noisy anechoic Noisy reverberant
 Sub. Del. Ins. WER Sub. Del. Ins. WER 
 Fbank 17.3 2.1 10.1 29.5 17.4 1.7 10.2 29.3  
 HuBERT Base 12.4 1.6 7.5 21.5 11.9 1.3 6.4 19.5  
 WavLM Base+ 9.3 1.5 5.8 16.7 8.7 1.2 4.3 14.2  
 HuBERT Large 8.0 1.3 5.6 14.9 7.2 1.0 3.9 12.1  
 WavLM Large 6.1 1.1 6.4 13.6 5.8 0.9 5.0 11.6 

Table 4
Separation and recognition performance on the monaural WHAMR! test set with different training strategies. The 
shaded rows indicate the systems with the proposed E2E integration, i.e., SIMO-IRIS. During E2E fine-tuning, we 
used only the ASR loss except for the system with † that was fine-tuned with the multi-task learning framework 
in (33).

SSE model Fine-tuned models SDR SIR SAR Sub. Del. Ins. WER

Noisy anechoic
Time–frequency masking - 4.75 16.47 5.65 23.3 3.2 16.0 42.6

TF-GridNet

- 10.17 27.25 10.42 6.1 1.1 6.4 13.6
ASR 4.0 0.9 1.9 6.7

SSE, ASR 4.67 19.99 4.91 2.3 0.4 0.8 3.6
SSE, ASR† 11.92 29.81 12.04 2.9 0.5 1.0 4.3

Noisy reverberant
Ravenscroft et al. (2024) SSE - - - - - - 26.7

Time–frequency masking - 3.28 15.61 4.19 30.8 3.6 17.9 52.3

TF-GridNet

- 8.96 27.55 9.07 5.8 0.9 5.0 11.6
ASR 3.6 0.7 1.3 5.7

SSE, ASR 4.00 19.26 4.21 2.2 0.3 0.6 3.1
SSE, ASR† 10.77 29.21 10.86 2.6 0.4 0.8 3.8

TF-GridNet results in SDRs of 10.17 dB and 8.96 dB under noisy anechoic and reverberant conditions, respectively. While the order 
of WERs is consistent with that on the clean WSJ corpus, the overall recognition performance was degraded even with TF-GridNet. 
This result shows that multi-speaker ASR under noisy conditions remains a challenge for a naïve cascaded method. Interestingly, 
all the systems achieved lower WERs under the reverberant condition, although TF-GridNet resulted in better SDR in the anechoic 
scenario. We suppose that this is because the residual interference and artifacts are masked out by the late reverberation. Such 
masking effect could improve the performance of subsequent ASR (Cord-Landwehr et al., 2022). In our informal listening tests, we 
heard the residual interference more clearly in the anechoic scenario.

4.4. Experimental results on monaural WHAMR!

We then compare our systems with different SSE models and training strategies. Table  4 summarizes both separation and 
recognition performance. Here, we also show WER of an existing method (Ravenscroft et al., 2024) that uses a time-domain SSE 
model fine-tuned with a loss defined on the ASR encoder output. Its WER was obtained by using Whisper (Radford et al., 2023). 
Even without fine-tuning, our combination of TF-GridNet, WavLM, and the Conformer-based joint CTC/AED model outperformed 
the existing system and the time–frequency masking baseline. This suggests that time–frequency masking might be too restrictive 
to restore clean speech, especially under noisy reverberant condition. The fine-tuning of the ASR model on the SSE outputs brought 
better recognition performance, notably reducing insertion errors. This result indicates that the fine-tuning stage mainly helps the 
ASR model to focus on the primary speaker in each separated signal, as observed in von Neumann et al. (2020b) with ConvTasNet 
for SSE. In the second bottom row, both the SSE and ASR models were fine-tuned with the ASR loss in (31), further improving 
recognition performance. This suggests that the fine-tuning of both models is essential for the best performing multi-speaker ASR 
system.

As shown in the second bottom row of Table  4, the fine-tuning of the SSE model degrades the separation performance, resulting 
in lower SDR and SAR even compared with the time–frequency masking baseline under the anechoic condition. TF-GridNet-based 
complex spectral mapping does not impose any constraints on its outputs and thus can easily generate artifacts. When SSE models are 
trained on signal-level loss functions, the generated artifacts degrade the recognition performance (Koizumi et al., 2022; Iwamoto 
et al., 2022). On the other hand, the artifacts improved WER in our case because our E2E fine-tuning enforces the SSE outputs to 
preserve critical information for subsequent ASR, as discussed in von Neumann et al. (2020b). The artifacts can be observed from 
examples of the separated signals shown in Fig.  3. Meanwhile, by incorporating the SSE loss as in (33) with 𝜅 = 1.0, the degradation 
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Fig. 3. Examples of log magnitude of the separated STFT coefficients with and without fine-tuning of the SSE model.

of separation metrics was mitigated3 at the bottom row of Table  4. A similar trend was reported in a previous work using ConvTasNet 
for SSE and log-mel features instead of SSLR (von Neumann et al., 2020b). We therefore conclude that the degradation of the SSE 
performance due to fine-tuning only with an ASR criterion is mitigated by using also an SSE loss regardless of SSE models and 
feature representations.

Even with and without fine-tuning, the trainable weights in (23) for the SSLRs were mainly concentrated in the last layer. In 
detail, 𝛾𝐿SSL  was 0.88 and 0.90 for with and without fine-tuning, respectively, which are similar to previous studies (Chang et al., 
2021, 2022; Masuyama et al., 2023).

3 The joint fine-tuning with the multi-task learning framework improved the separation performance even from the cascaded method in which the SSE model 
was pre-trained without the ASR loss. This is because the pre-training was performed on the min version and caused domain mismatch to the max version used 
in the fine-tuning and evaluation.
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Table 5
Statistics of our two-speaker utterance groups.
 # of mixtures Average duration (sec) Total # of words 
 Train SDM Original 19 605 5.0 328800  
 IHM-mix 19528 5.1 328640  
 Dev SDM Original 2322 4.6 37137  
 IHM-mix 2315 4.6 37123  
 Eval SDM Original 2133 4.7 34301  

Table 6
WERs (%) and their breakdown on the two-speaker utterance groups in the development 
and evaluation sets of AMI SDM recordings. The scores for (Kanda et al., 2021) is from the 
original paper, where the score with † indicates that the training leveraged additional 900K 
multi-speaker mixtures simulated by using in-house recordings.

Fine-tuned Development Evaluation
models Sub. Del. Ins. WER Sub. Del. Ins. WER

Kanda et al. (2021) - - - - - - - 59.5
- - - - - - - 19.6†

- 14.9 13.1 20.8 48.8 15.7 15.6 20.2 51.5
ASR 14.0 14.1 17.7 45.7 13.9 16.8 15.9 46.6

SSE, ASR 9.9 7.3 5.8 23.0 10.9 9.1 4.6 24.5

4.5. Experiment on two-speaker segments of AMI

To further investigate the performance in more realistic conditions, we tested SIMO-IRIS on the AMI dataset (Carletta et al., 2005). 
AMI consists of recordings of real long-form meetings, where each meeting has 3 to 5 participants. Here, we consider utterance-
group based evaluation only (Kanda et al., 2023) and restrict ourselves to two speakers utterance groups. We followed the ESPnet 
AMI recipe (Watanabe et al., 2018) to partition the original AMI data into training, development, and evaluation sets. Afterwards, 
for each split, we extracted two-speaker utterance groups based on the given word-level segmentation annotation. The resulting 
dataset consists of sparsely overlapped single-channel noisy/reverberant mixtures of two speakers from a distant microphone (SDM). 
Following, Kanda et al. (2021), Cornell et al. (2024), we augmented the training data by generating mixtures from individual 
headset microphone (IHM) recordings. More in detail, we mixed headset recordings at two-speaker overlapped segments to obtain 
two-speaker mixtures. We used pyloudnorm (Steinmetz and Reiss, 2021) to align the loudness of the generated mixture and the 
corresponding SDM recording. We excluded utterance groups that were too short to compute the loudness. The statistics of these 
mixtures are summarized in Table  5.

The network architecture and training configurations are the same as in the previous experiment on the WHAMR! dataset. To 
construct SIMO-IRIS, we used the TF-GridNet model pre-trained on the WHAMR! dataset because there are no signal-level ground 
truth for the two-speaker utterance groups of SDM recordings of AMI. Although IHM provides relatively clean signals, these signals 
are typically still contaminated by their own noises and cross-talk speech (Wang et al., 2024). Training an SSE model on such 
imperfect target signals is still not an easy task (Maciejewski et al., 2023) and is out of the scope of this work. Meanwhile, the 
ASR model was pre-trained on the IHM recordings of AMI, which achieved WERs of 12.8% and 11.4% on the development and 
evaluation sets, respectively. Then, we fine-tuned only the ASR model or both SSE and ASR models with the ASR loss. The proposed 
E2E integration allows the adaptation of the entire system, including the SSE model, to realistic scenarios by using mixture recordings 
with transcripts. This is preferable because signal-level ground truth corresponding to a real mixture is difficult to obtain without a 
careful recording setup.

Table  6 shows the recognition performance on the two-speaker utterance groups from the development and evaluation sets. 
The system without the E2E fine-tuning resulted in poor performance. This is because TF-GridNet did not work well due to the 
domain mismatch between the WHAMR! and AMI datasets. Hence, the WERs were not improved significantly even with fine-tuning 
of the ASR model. By fine-tuning both SSE and ASR models, SIMO-IRIS achieved WER of 23.0% and 24.5% on the development and 
evaluation sets, respectively. While SIMO-IRIS still lags behind the best-performing system that was trained with huge amount of 
in-house recordings, these experiments confirm the advantage of the E2E fine-tuning with the ASR loss on real meeting scenarios.

5. Experimental validation of MIMO-IRIS

In this section, we demonstrate the efficacy of MIMO-IRIS under various conditions. Then, we explore multi-task learning during 
the joint fine-tuning of SSE and ASR models.

5.1. Dataset

We used the spatialized WSJ0-2mix dataset (Wang et al., 2018) as a dataset of multi-channel two-speaker mixtures without noise. 
It convolved the simulated room impulse responses with the dry source signals provided in WSJ0-2mix dataset, and we used the 
12 
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Table 7
Separation and recognition performance on the two-channel reverberant test set of spatialized WSJ0-2mix. 
The shade indicates the system with the proposed E2E integration, i.e., MIMO-IRIS, where the systems 
were fine-tuned only with the ASR loss.

SSE model Fine-tuned models SDR SIR SAR Sub. Del. Ins. WER

Zhang et al. (2020b) - - - - - - - 25.3

WPE-MVDR - 4.77 8.75 8.40 20.2 0.6 27.3 48.1
SSE, ASR 4.08 8.64 7.17 9.1 1.5 3.2 13.8

TF-GridNet - 15.06 31.29 15.21 1.3 0.1 0.6 2.0
SSE, ASR 6.75 25.98 6.82 1.3 0.1 0.3 1.6

first two channels as observations. In this dataset, SDR with respect to the input mixture is 0.07 dB. We combined both anechoic 
and reverberant mixtures during training as in Zhang et al. (2022).

The two-channel version of the WHAMR! dataset was also used to investigate the performance of MIMO-IRIS in challenging 
noisy environments. The real noise in the WAHMR! dataset was recorded in two-channels (Maciejewski et al., 2020), and thus we 
can add the noise to the simulated clean two-channel mixtures.

5.2. Experimental configuration

TF-GridNet was compared with a multi-channel SSE baseline employing mask-based beamforming. For the mask-based beam-
forming, we computed the spatial covariance matrix of each speaker by using time–frequency masks as in (10) and used the MVDR 
beamformer as formulated in (13). The time–frequency masks were predicted by a 3-layer BLSTM, where each layer has 512 units 
for each direction (forward/backward along the frame dimension). In addition, we performed dereverberation by using WPE before 
feeding the mixture to the beamformer. WPE leveraged a time–frequency mask calculated by another 3-layer BLSTM to compute the 
spatial filter following (Zhang et al., 2020a). TF-GridNet was adapted to the two-channel input by increasing the number of input 
channel of the initial convolution layer from 2 to 4. Both multi-channel SSE front-ends were pre-trained with the loss function in 
(19).

The ASR model was pre-trained on the WSJ corpus similar to the monaural case, and then we fine-tuned the system with (31). 
We used the same configuration as in the previous experiment.

5.3. Experimental results on spatialized WSJ0-2mix

The separation and recognition performance on the two-channel reverberant test set of the spatialized WSJ0-2mix dataset is 
summarized in Table  7. We include the score of an existing time-domain method (Zhang et al., 2020b). Although our mask-based 
beamforming lagged behind the existing method in terms of WER, its E2E fine-tuning resulted in better WER with a small degradation 
in separation performance. That is, the E2E fine-tuning is beneficial in multi-channel scenarios, similar to monaural cases. TF-GridNet 
without joint training consistently outperformed the mask-based beamformer. That is, the unconstrained complex spectral mapping 
is advantageous for ASR when the number of microphones is limited. In contrast to the mask-based beamforming, we observed a 
severe separation performance degradation in the E2E fine-tuning with TF-GridNet. This is because TF-GridNet can easily generate 
artifacts through time-varying nonlinear filtering, whereas the mask-based MVDR beamforming is a distortionless linear filtering. 
We emphasize that the E2E integration of TF-GridNet and the Conformer-based joint CTC/AED model achieved WER of 1.6%, 
comparable to the performance on the clean WSJ corpus in Table  2.

5.4. Experimental results on two-channel WHAMR!

Table  8 shows the separation and recognition performance on the two-channel WHAMR! dataset. Compared with existing 
methods based on mask-based beamforming (Zhang et al., 2022) and time-domain target speaker extraction (Zhang et al., 
2021b), our combination of TF-GridNet, WavLM, and Conformer-based joint CTC/AED model dramatically improved WER. It also 
outperformed SIMO-IRIS in Table  4 by successfully leveraging spatial information. We then fine-tuned the ASR model while freezing 
the SSE model, obtaining a WER of 3.6% and 3.9% under anechoic and reverberant conditions, respectively. By fine-tuning WavLM 
in addition to the ASR model, we further improved WER. These fine-tuning strategies are advantageous for the front-end because 
we can preserve the original SSE model.

Our MIMO-IRIS with the E2E fine-tuning of both SSE and ASR models decreased the separation performance but yielded WERs 
of 2.3% under both anechoic and reverberant conditions. The fine-tuning of the SSE model is more beneficial than that of the SSL 
model for multi-speaker ASR. Finally, we further fine-tuned the entire model, including WavLM, after fine-tuning the SSE and ASR 
models. Its performance gain was marginal, which highlights the importance of fine-tuning the SSE model. We emphasize that the 
WER of 2.3% under the noisy reverberant condition is remarkable because the input SI-SDR is around −6.1 dB, demonstrating the 
potential of E2E integration of modern SSE and ASR models.
13 
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Table 8
Separation and recognition performance on the two-channel WHAMR! test set with different training 
strategies. The shaded rows are for MIMO-IRIS. The fine-tuning of the systems was performed only with 
the ASR loss.

SSE model Fine-tuned models SDR SIR SAR Sub. Del. Ins. WER

Noisy anechoic

TF-GridNet

-
13.2 32.9 13.3

3.0 3.6 0.3 6.9
ASR 2.3 0.3 1.0 3.6

SSLR, ASR 2.1 0.3 0.8 3.1

SSE, ASR 8.9 28.9 9.0 1.5 0.2 0.6 2.3
SSE, SSLR, ASR 8.7 29.1 8.8 1.5 0.2 0.5 2.2

Noisy reverberant
Zhang et al. (2022) SSE, ASR -2.27 - - - - - 28.9
Zhang et al. (2021b) - - - - - - - 20.9

TF-GridNet

-
11.1 30.2 11.3

3.4 0.3 4.6 8.3
ASR 2.5 0.3 1.1 3.9

SSLR, ASR 2.2 0.2 0.8 3.2

SSE, ASR 7.9 25.0 8.0 1.6 0.2 0.5 2.3
SSE, SSLR, ASR 7.7 25.8 7.8 1.6 0.2 0.5 2.3

5.5. Multi-task learning framework with SSE and ASR losses

In this subsection, we investigate the impact of the multi-task learning with the SSE loss in addition to the ASR loss during the 
fine-tuning. Similar to Section 5.4, we used the two-channel anechoic and reverberant mixtures from the WHAMR! dataset. Since 
the dataset provides the clean source images for each mixture, we can seamlessly investigate the effect of the SSE loss in (19) by 
changing 𝜅 in (33). The previous multi-channel experiments does not use the SSE loss, corresponding to 𝜅 = 0. The joint fine-tuning 
of the SSE and ASR models was conducted on the max version to compute the ASR loss, while the SSE model was pre-trained on 
the min version. As a result, the separation performance on the max version could be improved through fine-tuning with the SSE 
loss.

Fig.  4 shows the relationship between SDR and WER for different weights on the SSE loss 𝜅. Even with small weights, multi-task 
learning substantially mitigated the degradation of the separation performance. In detail, WERs were inversely proportional to 
SDRs under both anechoic and reverberant conditions across multi-task learning systems. The SSE loss in (33) enforced the model 
to achieve better signal-level separation and thus improved SDR. Meanwhile, E2E fine-tuning without the SSE loss is optimal for ASR 
applications, and WERs deteriorated as the weight 𝜅 increases. This could be because, for 𝜅 > 0, the SSE model separates sources 
more effectively but also introduces undesirable artifacts (Koizumi et al., 2022; Iwamoto et al., 2022), negatively impacting ASR 
performance. Meanwhile, the ASR loss may allow the SSE model to ignore the signal parts that are unimportant for the subsequent 
ASR, which degrades the signal-level metrics. These results reveal a trade-off between the SDR and WER, where improvements in 
one metric come at the expense of the other. This finding suggests the importance of task-specific fine-tuning because improving 
popular signal-level metrics might compete with down-stream objectives.

We emphasize that models with multi-task fine-tuning still outperformed existing systems (Zhang et al., 2022, 2021b) in Table 
8 and our system without any fine-tuning.

6. Conclusions

We propose SIMO/MIMO-IRIS, a monaural/multi-channel multi-speaker ASR system, which integrates monaural/multi-channel 
SSE, SSLR extraction, and ASR in an E2E manner. By integrating TF-GridNET, WavLM, and a Conformer-based joint CTC/AED model, 
we obtained significant WER improvements and SOTA results on the spatialized WSJ0-2mix and WHAMR! datasets. Our experimental 
results demonstrated the importance of the E2E fine-tuning of the pre-trained SSE and ASR models, even with powerful pre-trained 
models including WavLM. E2E fine-tuning with only the ASR loss significantly decreased SDR by introducing artifacts, which can 
be mitigated via multi-task learning with an SSE loss.

In this paper, we focused on ideal settings where the numbers of microphones and speakers are time-invariant and known. In 
addition, our experiments were based on simulated reverberation, while using real noise recordings. In the future, we would like 
to extend SIMO/MIMO-IRIS to handle a time-varying number of speakers and long-form recordings e.g., via continuous speech 
separation (Chen et al., 2020; von Neumann et al., 2024). Such an extension would make the proposed system applicable to real 
multi-speaker conversations featured in the recent CHiME challenges (Watanabe et al., 2020; Cornell et al., 2023b).
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Fig. 4. SDR and WER with different weights 𝜅 on the SSE loss in multi-task learning framework. The star, 𝜅 = 0, indicates the fine-tuning without the SSE loss.
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