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Combining Spectral and Spatial Features for Deep
Learning Based Blind Speaker Separation

Zhong-Qiu Wang

Abstract—This study tightly integrates complementary spectral
and spatial features for deep learning based multi-channel speaker
separation in reverberant environments. The key idea is to localize
individual speakers so that an enhancement network can be trained
on spatial as well as spectral features to extract the speaker from an
estimated direction and with specific spectral structures. The spa-
tial and spectral features are designed in a way such that the trained
models are blind to the number of microphones and microphone
geometry. To determine the direction of the speaker of interest, we
identify time-frequency (T-F) units dominated by that speaker and
only use them for direction estimation. The T-F unit level speaker
dominance is determined by a two-channel chimera—+ -+ network,
which combines deep clustering and permutation invariant train-
ing at the objective function level, and integrates spectral and inter-
channel phase patterns at the input feature level. In addition, T-F
masking based beamforming is tightly integrated in the system by
leveraging the magnitudes and phases produced by beamforming.
Strong separation performance has been observed on reverberant
talker-independent speaker separation, which separates reverber-
ant speaker mixtures based on a random number of microphones
arranged in arbitrary linear-array geometry.

Index Terms—Spatial features, beamforming, deep cluster-
ing, permutation invariant training, chimera--+ networks, blind
source separation.

I. INTRODUCTION

ECENT years have witnessed major advances of monau-
Rral talker-independent speaker separation since the in-
troduction of deep clustering [1]-[4], deep attractor networks
[5] and permutation invariant training (PIT) [6], [7]. These
algorithms address the label permutation problem in the
challenging monaural speaker-independent setup [8], [9] and
demonstrate substantial improvements over conventional algo-
rithms, such as spectral clustering [10], computational auditory
scene analysis based approaches [11] and target- or speaker-
dependent systems [12], [8].

Manuscript received June 17, 2018; revised September 19, 2018 and Novem-
ber 9, 2018; accepted November 13, 2018. Date of publication November 19,
2018; date of current version December 6, 2018. This work was supported in
part by an AFRL contract FA8750-15-1-0279, in part by the National Science
Foundation under Grant IIS-1409431, and in part by the Ohio Supercomputer
Center. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Tuomas Virtanen. (Corresponding author:
Zhong-Qiu Wang.)

Z.-Q. Wang is with the Department of Computer Science and Engineer-
ing, The Ohio State University, Columbus, OH 43210-1277 USA (e-mail:
wangzhon @cse.ohio-state.edu).

D. Wang is with the Department of Computer Science and Engineering, The
Ohio State University, Columbus, OH 43210-1277 USA, and also with the
Center for Cognitive and Brain Sciences, The Ohio State University, Columbus,
OH 43210-1277 USA (e-mail: dwang@cse.ohio-state.edu).

Digital Object Identifier 10.1109/TASLP.2018.2881912

, Student Member, IEEE, and DeLiang Wang

, Fellow, IEEE

When multiple microphones are available, spatial information
can be leveraged to alleviate the label permutation problem, as
speaker sources are directional and typically spatially separated
in real-world scenarios. One conventional stream of research is
focused on spatial clustering [13]-[15], where individual T-F
units are clustered into sources using complex Gaussian mix-
ture models (GMMs) or their variants based on spatial cues
such as interchannel time, phase or level differences (ITDs,
IPDs or ILDs) and spatial spread, under the speech sparsity
assumption. However, such spatial cues degrade significantly
in reverberant environments and lead to inadequate separation
when the sources are co-located, close to one another or when
spatial aliasing occurs. In addition, conventional spatial cluster-
ing typically does not exploit spectral information. In contrast,
recent developments in deep learning based monaural speaker
separation suggest that, even with spectral information alone,
remarkable separation can be obtained [9], although most of
such studies are only evaluated in anechoic conditions.

One promising research direction is hence to harness the mer-
its of these two streams of research so that spectral and spatial
processing can be tightly combined to improve separation and
at the same time, make the trained models as blind as possible
to microphone array configuration. In [16], [17], monaural deep
clustering is employed for T-F masking based beamforming.
Their methods follow the success of T-F masking based beam-
forming in the CHiME challenges [18]. Although beamforming
is found to be very helpful in tasks such as robust automatic
speech recognition (ASR), where distortionless response is a
major concern, for tasks such as speaker separation and speech
enhancement, it typically cannot achieve sufficient separation
in reverberant environments, when sources are close to each
other, or when the number of microphones is limited. For such
tasks, performing further spectral masking would be very help-
ful. The studies in [19], [20] apply single-channel deep attractor
networks on the outputs of a set of fixed beamformers. A major
motivation in [20] is that fixed beamformers together with a
separate beam prediction network can be efficient to compute
in an online low-latency system. However, their approach re-
quires the information of microphone geometry to carefully de-
sign the fixed beamformers, which are manually designed for a
single fixed device based on its microphone geometry and hence
are typically not as powerful as data-dependent beamformers
that can exploit signal statistics for significant noise reduction,
especially in offline scenarios. In addition, the fixed beamform-
ers point towards a set of discretized directions. This could lead
to resolution problems and would become cumbersome to apply
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when elevation is a consideration. Different from the approaches
that apply deep clustering and its variants on monaural spectral
information, our recent study [21] includes interchannel phase
patterns for the training of deep clustering networks to better
resolve the permutation problem. The trained model can be di-
rectly applied to arrays with any number of microphones in
different arrangements, and can be potentially applied to sep-
arating any number of sources. However, this approach only
produces a magnitude-domain binary mask and does not exploit
beamforming, which is capable of phase enhancement and is
known to perform very well especially in modestly reverberant
conditions or when many microphones are available.

In this context, our study tightly integrates spectral and spa-
tial processing for blind source separation (BSS), where spatial
information is encoded as additional input features to leverage
the representational power of deep learning for better separa-
tion. The overall proposed approach is a Separate-Localize-
Enhance strategy. More specifically, a two-channel chimera++
network that takes interchannel phase patterns into account is
first trained to resolve the label permutation problem and per-
form initial separation. Next, the resulting estimated masks are
used in a localization-like procedure to estimate speaker di-
rections and signal statistics. After that, directional (or spa-
tial) features, computed by compensating IPDs or by using
data-dependent beamforming, are designed to combine all the
microphones for the training of an enhancement network to fur-
ther separate each source. Here, beamforming is incorporated
in two ways: one uses the magnitude produced by beamform-
ing as additional input features of the enhancement networks to
improve the magnitude estimation of each source and the other
further considers the phase provided by beamforming as the en-
hanced phase. We emphasize that the proposed approach aligns
with human ability to focus auditory attention on one particular
source with its associated spectral structures and arriving from
a particular direction, and suppress the other sources [22].

Our study makes five major contributions. First, interchan-
nel phase and level patterns are incorporated for the training
of two-channel chimera++ networks. This approach, although
straightforward, is found to be very effective for exploiting two-
channel spatial information. Second, two effective spatial fea-
tures are designed for the training of an enhancement network to
utilize the spatial information contained in all the microphones.
Third, data-dependent beamforming based on T-F masking is
effectively integrated in our system by means of its magnitudes
and phases. Fourth, a run-time iterative approach is proposed to
refine the estimated masks for T-F masking based beamform-
ing. Fifth, the trained models are blind to the number of micro-
phones and microphone geometry. On reverberant versions of
the speaker-independent wsjO-2mix and wsjO-3mix corpus [1],
spatialized by measured and simulated room impulse responses
(RIRs), the proposed approach exhibits large improvements over
various algorithms including MESSL [23], oracle and estimated
multi-channel Wiener filter, GCC-NMF [24], ILRMA [25] and
multi-channel deep clustering [21].

In the rest of this paper, we first introduce the physical
model in Section II, followed by a review of the monaural
chimera++ networks [3] in Section III. Next, we extend them to

Two-Channel
Chimera++

Room log(lY,
IOO Network g(l pl)
A©)
Speaker 1 Qpc Mask ‘
? , Alignment R /[ Multi-Channel
O\ Qy Mg Enhancement
— Network
Speaker C Two-Channel
Chimera++ Separated source ¢
Network at microphone p
Fig. 1. Illustration of proposed system for BSS. A two-channel chimera+ -+

network is applied to each microphone pair of interest for initial mask estimation.
A multi-channel enhancement network is then applied for each source at a
reference microphone for further separation.

two-microphone cases in Section IV.A. Based on the esti-
mated masks obtained from pairwise microphone processing,
Section IV.B encodes the spatial information contained in all
the microphones as directional features to train an enhance-
ment network for further separation, with or without utiliz-
ing the estimated phase produced by beamforming. An op-
tional run-time iterative mask refining algorithm is presented in
Section IV.C. Fig. 1 illustrates the proposed system. We present
our experimental setup and evaluation results in Section V and
VI, respectively, and conclude this paper in Section VII.

II. PHYSICAL MODEL

Given a reverberant P-channel C-speaker time-domain mix-
ture y[n] = 25:1 5(°)[n], the physical model in the short-time
Fourier transform (STFT) domain is formulated as:

C
Y(t,f):ZS(C> (t7.f)7 (D

c=1

where S()(t, f) and Y'(t, f) respectively represent the P-
dimensional STFT vectors of the reverberant image of source ¢
and the reverberant mixture captured by the microphone array at
time ¢ and frequency f. Our study proposes multiple algorithms
to separate the mixture Y}, captured at a reference microphone p
to individual reverberant sources S}(,C) , by integrating single- and
multi-channel processing under a deep learning framework. To
improve the usability, it is highly desirable to make the trained
models of our algorithms directly applicable to microphone ar-
rays with various numbers of microphones arranged in diverse
layouts. This property is especially useful for cloud-based ser-
vices, where the client setup can vary significantly in terms of
microphone array configuration or when array configuration is
not available. Note that the proposed algorithms focus on sep-
aration and do not address de-reverberation, although they can
be straightforwardly modified for that purpose.

III. MONAURAL CHIMERA++ NETWORKS

Our recent study [3] proposed for monaural speaker separa-
tion a novel multi-task learning approach, which combines the
permutation resolving capability of deep clustering [1], [2] and
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the mask inference ability of PIT [6], [7], yielding significant
improvements over the individual models. The objective func-
tion of deep clustering pulls in the T-F units dominated by the
same speaker and pushes away those dominated by different
speaker, creating hidden representations that can be utilized by
PIT to predict continuous mask values more easily and more
accurately. The objective function is also considered as a reg-
ularization term to improve the permutation resolving ability
of utterance-level PIT. In this section, we first introduce deep
clustering and permutation invariant training, and then review
the chimera++ networks.

The key idea of deep clustering [1] is to learn a unit-length
embedding vector for each T-F unit using a deep neural network
such that for the T-F units dominated by the same speaker, their
embeddings are close to one another, while farther otherwise.
This way, simple clustering algorithms such as k-means can be
applied to the embeddings at run time to determine the speaker
assignment at each T-F unit. More specifically, let v; denote
the D-dimensional embedding vector of the ith T-F unit and u;
represent a C-dimensional one-hot vector denoting which of the
C sources dominates the ith T-F unit. Vertically stacking them
yields the embedding matrix VeR”#*P and the label matrix
UeRTF*C The embeddings are learned to approximate the
affinity matrix UU” :

Lpe =||vVT —vU" | @)

Recent studies [3] suggested that a variant deep clustering
loss function that whitens the embeddings based on a k-means
objective leads to better separation performance.

1 _ _Ly2
F-utu)y UTvvtvy |

3)

= D — trace ((VTV)_lVTU(UTU)_lUTV> “)

Lpow = HV(VT V)

Itis important in deep clustering to discount the importance of
silence T-F units, as their labels are ambiguous and they do not
carry directional phase information for multi-channel separation
[21]. Following [3], the weight of each T-F is computed as the
magnitude of each T-F unit over the sum of the magnitudes
of all the T-F units. This weighting mechanism can be simply
implemented by broadcasting the weight vector to V' and U
before computing the loss.

A recurrent neural network with bi-directional long short-
term memory (BLSTM) units is usually utilized to model the
contextual information from past and future frames. The net-
work architecture of deep clustering is shown in the left branch
of Fig. 2.

A permutation-free objective function was proposed in [1],
and later reported to work well when combined with deep clus-
tering in [2]. In [6], [7], a permutation invariant training tech-
nique was proposed, first showing that such objective function
can produce comparable results by itself. The key idea is to train
a neural network to minimize the minimum utterance-level loss
of all the permutations. The phase-sensitive mask (PSM) [26]
is typically used as the training target. Following [7], the loss
function for phase-sensitive spectrum approximation (PSA) is

(. f) Oz(f) 1
; t
Sigmoid+ : :
unit norm, Vf [ Sigmoid

f T
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)

Fig. 2. Illustration of two-channel chimera+-+ networks on microphone
pair (p, q). spatial(Y}, (¢), Y, (t)) can be a combination of cos(£Y),, — ZY;),
sin(£Y, — £Y,) and log(|Y,|/|Y;|) for microphones p and ¢. F’ represents
input feature dimension and N is number of units in each BLSTM layer.

defined as:
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where p indexes a microphone channel, W is a set of permu-

tations over C' sources, SI(,C) and Y), are the STFT representa-
tions of source ¢ and the mixture captured at microphone p,
T(l)Y” ! (+) = max(0, min(|Y, |, -)) truncates the PSM to the range
[0,1], Q denotes the estimated masks, | - | computes magnitude,
and Z(-) extracts phase. We denote the best permutation as
& (+). Following our recent studies [27], [3], the L, loss is used
as the loss function, as it leads to consistently better separation
than the Lo loss. Following [3], sigmoidal units are utilized
in the output layer to obtain Ql(f) for separation. See the right
branch of Fig. 2 for the network structure.

In [3], a multi-task learning approach is proposed to com-
bine the merits of both algorithms. The objective function is a
combination of the two loss functions:

Leniv+ =alpew +(1—a)Lpr (6)

At run time, only the PIT output is needed to make pre-
dictions: 55 = @ )Y, Here, the mixture phase is used for
time-domain signal re-resynthesis.

IV. PROPOSED ALGORITHMS
A. Two-Channel Extension of Chimera++ Networks

Following our previous studies on multi-channel speech en-
hancement [28], [29] and speaker separation [21], the key idea
of the proposed approach for two-channel separation is to uti-
lize not only spectral but also spatial features for model training.
This way, complementary spectral and spatial information can
be simultaneously utilized to benefit from the representational
power of deep learning to better resolve the permutation problem
and achieve better mask estimation. See Fig. 2 for an illustration
of the network architecture.
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Fig. 3. Distribution of interchannel phase patterns of an example reverberant three-speaker mixture with 759 = 0.54 s and microphone spacing 21.6 cm. Each

T-F unit is colored according to its dominant source. (a) IPD vs. Frequency; (b) cosIPD vs. Frequency; (c) cosIPD and sinIPD vs. Frequency.

Given a pair of microphones p and ¢ with a random spacing,
it is well-known that, because of speech sparsity, the STFT ra-
tio Y,/ Y, = |Y,| /|Y,|e/(“¥»=4Ys)  which is indicative of the
relative transfer function [30], naturally forms clusters within
each frequency for spatially separated speaker sources with dif-
ferent time delays to the array [14], [13]. This property estab-
lishes the foundations of conventional narrowband spatial clus-
tering [31]-[34], which typically first employs spatial informa-
tion such as directional statistics and mixture STFT vectors for
within-frequency bin-wise clustering based on complex GMM
and its variants, and then aligns the clusters across frequencies.
However, such approaches perform clustering largely based on
spatial information, and typically do not leverage spectral cues,
although there are recent attempts at using spectral embeddings
produced by deep clustering for spatial clustering [16]. In ad-
dition, the clustering is usually only conducted independently
within each frequency because of the IPD ambiguity, and thus
does not exploit inter-frequency structures. By IPD ambiguity
we mean that IPD varies with frequency and the underlying
time delay cannot be uniquely determined only from the IPD at
a frequency when spatial aliasing and phase wrapping occur.

Our study investigates the incorporation of the spatial infor-
mation contained in Y, /Y, for the training of a two-channel
chimera++ network. We consider the following interchannel
phase and level patterns:

IPD = £&/(“Yr=4Y0) = mod (LY, — £Y, +7,27) — 7 (7)

cosIPD = cos (£Y, — £Y)) 8)
sinIPD = sin (LY, — £Y}) 9
ILD = log(|Y, | / [Y,]) (10)

In our experiments, the combination of cosIPD and sinIPD
leads to consistently better performance than the individual ones
and the IPD. Our insight is that according to the Euler’s for-
mula, the distribution of cosIPD and sinIPD for directional
sources naturally follows a helix-like structure with respect
to frequency. See Fig. 3(c) for an illustration of the cosIPD
and sinIPD distribution of a reverberant three-speaker mixture.
Such helix structure could be exploited by a strong learning
machine like deep neural networks to better model inter-

frequency structures and achieve better separation. Indeed, in
conventional spectral clustering, which significantly motivated
the design of deep clustering [10], [1], it is suggested that spec-
tral clustering has the capability of modeling such a distribution
for clustering [35]. The distribution of an alternative represen-
tation, IPD, is depicted in Fig. 3(a). Clearly, the wrapped lines
are not continuous across frequencies because of phase wrap-
ping. Such abrupt discontinuity could make it harder for the
neural network to exploit the inter-frequency structures. As a
workaround, the distribution of cosIPD is depicted in Fig. 3(b).
Although the continuity improves, without sinIPD, the number
of crossings among the wrapped lines significantly increases.
Such crossings, also observed in Fig. 3(a) and Fig. 3(c), are
mostly resulted from spatial aliasing and phase wrapping, indi-
cating that the interchannel phase patterns are indistinguishable
even though the sources are spatially separated with different
time delays and therefore posing fundamental difficulties for
conventional BSS techniques that only utilize spatial informa-
tion. In such cases, spectral information would be the only cue to
rely on for separation. Our study hence also incorporates spectral
features log(|Y,|) for model training, and leverages the recently
proposed chimera++ networks [3], which have been shown
to produce state-of-the-art monaural separation, although only
tested in anechoic conditions. Another advantage of including
spectral features is that IPD itself is ambiguous across frequen-
cies when the microphone spacing is large, meaning that there
does not exist a one-to-one mapping between IPDs and ideal
mask values. The incorporation of spectral features could help
at resolving this ambiguity, as is suggested in our recent study
[21]. Note that the chimera++ network naturally models all
the frequencies simultaneously to exploit inter-frequency struc-
tures, hence avoiding an error-prone second-stage frequency
alignment step that is necessary in conventional narrowband
spatial clustering. In addition, the BLSTM better models tem-
poral structures than complex GMMs and their variants, which
typically make strong independence assumptions along the tem-
poral axis.

We also incorporate ILDs, computed as in Eq. (10), to train
chimera+-+ networks, as they become indicative about target
directions especially when the microphone spacing is large and
in setups like the binaural setup [11], [36].
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B. Multi-Channel Speech Enhancement

To extend the proposed two-channel approach to multi-
channel cases, one straightforward way is to concatenate the
interchannel phase patterns and spectral features of all the mi-
crophone pairs as the input features for model training, as is
done in [37]. However, this makes the input dimension depen-
dent on the number of microphones and could make the trained
model accustomed to one particular microphone geometry. Our
recent study [21] proposes an ad-hoc approach to extend two-
channel deep clustering to multi-channel cases by performing
run-time K-means clustering on a super-vector obtained by con-
catenating the embeddings computed from each microphone
pair. However, it only performs model training using pairwise
microphone information, hence incapable of exploiting the geo-
metrical constraints and the spatial information contained in all
the microphones.

To build a model that is directly applicable to arrays with
any number of microphones arranged in diverse layouts, we
think that it is necessary to constructively combine all the mi-
crophones into a fixed-dimensional representation. Under this
guideline, we propose two fixed-dimensional directional fea-
tures, one based on compensating ambiguous IPDs using esti-
mated phase differences and the other based on T-F masking
based beamforming, as additional inputs to train an enhance-
ment network to improve the mask estimation of each source at
the reference microphone. See Fig. 1 for an illustration of the
overall pipeline of our proposed approach. Note that at run time,
we need to run the enhancement network once for each source
for separation.

« Compensated IPD: More specifically, for the P(> 2) mi-
crophones, we first apply the trained two-channel chimera+-+
network to each of the P pairs consisting of one pair (p, ¢)
between the reference microphone p and a randomly-chosen
non-reference microphone ¢, and P — 1 pairs (¢, p) for any
non-reference microphone ¢’ (# p). The motivation of using this
set of pairs is that we try to obtain an estimated mask for each
source at each microphone. Note that for any non-reference
microphone ¢’, we can indeed randomly select another micro-
phone to make a pair, but here we simply pair it and the reference
microphone p. After obtaining the estimated masks Q(f) e,

erf) of all the P pairs from the two-channel chimera++ net-
work, we permute the C' masks at each microphone to create
for each source ¢ a new set of masks Ml(c), ., M I(f ) such that
they are all aligned to source c. At training time such an align-
ment is readﬂy avallable from Eq. (5), i.e., M Q*”

=Q }ZP . At run time, we align the masks using Algo-
rithm 1, where an average mask is maintained for each source in
the alignment procedure to determine the best permutation for
each non-reference microphone. We then compute the speech
covariance matrix of each source using the aligned estimated
masks, following recent developments of T-F masking based
beamforming [38]-[40].

}:n LHYEHT, A

Algorithm 1: Mask Alignment Procedure At Run Time.
Binary Weight Matrix W Used In Step (4) Indicates T-F
Units With Energy Larger Than —40 dB Of The Mixture’s
Maximum Energy.

Input: QY:), ..,QS{;), forc=1,...,
microphone p.
Output: Aligned masks Mfc), . Ml(f), forc=1,...,C;
M M =0 fore=1,...,C;
@ M), =M fore=1,...,C;
(3) counter = 1;
For non-reference microphone ¢’ in {1, ...,

(', and reference

—1,p+1,...,P}do

(4) p* = argmmww S WS, = Q5

5) M Q*g Jforc=1,...,C;

(6) Mmq = (Ma, g * counter + M( ))/(counter +1),
forc=1,...,C,

@) counter—i— =1,

End
where (-)7 computes Hermitian transposition, 7" is the num-

ber of frames, and 7
estimated masks:

1) (¢, f) = median (Mf‘” t 1),

°)(t, f) is the median [39] of the aligned

Mg h) ()

The key idea here is to only use the T-F units dominated by
source c for the estimation of its covariance matrix. The steering
vector for each source 7(¢) (f) is then computed as:

#(f) =P {8 ()}, (13)

where P{-} compute the principal eigenvector. The motivation
is that if () ( f) is well-estimated, it would be close to a rank-
one matrix for a directional speaker source [38], [40], [13].
Its principal eigenvector is hence a reasonable estimate of the
steering vector. This way of estimating steering vectors [38],
[40] has been demonstrated to be very effective in recent CHIME
challenges [18]. Note that this steering vector estimation step is
essentially similar to direction of arrival (DOA) estimation.

Following our recent study [41], the directional features are
then compensated in the following way:

DE (4, f) = 5= 3 cos {2V (t.) = 2, (. f)

(q",p)eQ
— (4 =2i) )

where ) contains all the P — 1 pairs between each non-
reference microphone ¢’ and the reference microphone p. Here,
LY, (t, f) — LY, (t, f) represents the observed phase differ-
ence and 4?;9 (f) — £\ (f) the estimated phase difference
(or the phase compensation term for source c). The motivation
is that if a T-F unit is dominated by source c, the observed phase
difference is expected to be aligned with its estimated phase dif-
ference. The phase compensation term is used to establish the
consistency of the directional features along frequency such that

(14)
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at any frequency and no matter which direction source c arrives

from, a value close to one in DF,EC> (t, f) would indicate that the
T-F unit is likely dominated by the source ¢, while dominated
by other sources if much smaller than one, only if the steer-
ing vector can be estimated accurately. This property makes
the directional features highly discriminative for DNN based
T-F masking to enhance the signal from a specific direction.
In addition, by establishing the consistency along frequency,
the phase compensation term alleviates the ambiguity of IPDs,
which could be problematic when directly used for the train-
ing of the two-channel chimera++ networks in Section II.C.
When there are more than two microphones, we simply average
the compensated IPDs together. This makes the trained models
directly applicable to microphone arrays with various numbers
of microphones arranged in diverse geometry. The phase com-
pensation term is designed to combine all the microphone pairs
constructively.

There were previous studies [28], [42], [43], [29] utilizing
spatial features for deep learning based speech enhancement
(i.e., speech vs. noise). The spatial features in those studies are
only designed for binaural speech enhancement, where only two
sensors are considered and the target is right in the front direc-
tion. However, in more general cases, the target speaker may
originate in any directions and the spatial features used in those
studies would no longer work well. There was one speech en-
hancement study [43] considering compensating cosIPDs. How-
ever, it needs a separate DOA module that requires microphone
geometry, and does not address DOA estimation in a robust way.
Diffuseness features have also been applied in deep learning and
T-F masking based beamforming for speech enhancement [41],
[44]. However, such features are incapable of suppressing direc-
tional interferences, which we aim to suppress in this study. On
the other hand, directional features are capable of suppressing
diffuse noises.

* T-F Masking Based Beamforming: Another alternative di-
rectional feature is derived using beamforming, as beamforming
can constructively combine target signals captured by different
microphones and destructively for non-target signals, only if the
signal statistics or target directions critical for beamforming can
be accurately determined. Recent development in the CHIME
challenges has suggested that deep learning based T-F masking
can be utilized to compute such signal statistics accurately [18],
demonstrating state-of-the-art robust ASR performance. Here,
we leverage this recent development to construct a multi-channel
Wiener filter [13]:

a)(f) = (89(1)) (1)

where ) (f) = LS Y (t, )Y (t, f)" is the mixture co-
variance matrix and w is a one-hot vector with w, being one.
Clearly, this way of constructing beamformers is blind to mi-
crophone geometry and the number of microphones. The direc-
tional feature is then computed as:

DE (¢, f) = log ( (16)

@ (N)"Y (t.£))

* Enhancement Network 1: Clearly, using the spatial features
alone for enhancement network training is not sufficient enough
for accurate separation, as the sources could be spatially close
and the reverberation components of other sources could also
arrive from the estimated direction. We hence combine DF,gC)
with spectral features log(]Y,|), and the initial mask estimates

Ml(yc) obtained from the two-channel chimera++ network to
train an enhancement network to estimate the phase-sensitve
spectrum of source c at microphone p. This way, the neural net-
work can take in both spectral and spatial information, and learn
to enhance the signals with particular spectral characteristics and
arriving from a particular direction. The objective function for
training the enhancement network (denoted as Enh, ) is:

R Y|

Y, c
T (st

‘CE’thl =

cos (45;@ _ Afp)) H1 . an

where Rf(f) denotes the estimated mask from the Enh; network.
Following [27], the L; loss is used to compute the objective
function. At run time, we execute the enhancement network
once for each source, and the separated source c is obtained as
S\ = R ()Y, Note that here the mixture phase is used for
re-resynthesis.

e Enhancement Network 2: The above approach however
cannot utilize the enhanced phase provided by beamforming.
When the number of microphones is large, the enhanced phase
0 (t, f) = 2(@\ (HTY (¢, £)) is expected to be better than
2Y,,if the speech distortion introduced by beamforming is min-
imal. We hence use the former as the phase estimate of source c.
To obtain a good magnitude estimate, we train an enhancement
network (denoted as Enhy) to predict the phase-sensitive spec-

. o)
trum of source ¢ with respect to |Y,|e’? ', based on the same

features used in Enhy, i.e., DF;C), log(]Y}|) and MISC). The loss
function used for training is:

EEnhz = HZA[()F> |)/I1|

va c
-~ 1) \()S]Q

cos (45;;‘) _ }gc))) H1 (18)

where ZA;C) denotes the estimated mask of the Enhy net-
work. At run time, the separated source c is obtained as
S =2y, e

Different from the above two ways of integrating beamform-
ing, another alternative is to extract spectral features from the
beamformed mixture, train an enhancement network to predict
the ideal masks computed from the beamformed sources, and
at run time apply the estimated masks to the beamformed mix-
ture [29]. In contrast, our approach uses beamforming results
as directional features to improve the mask estimation at the
reference microphone p, with or without using the phase of
the beamformed mixture, since S}Sf’), rather than beamformed
sources w'®) (f)# 8(°) (¢, f), is considered as the reference for
metric computation. This way, we can systematically compare
the performance of single- and multi-channel processing, as
well as the effects of various algorithms for reverberant source
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separation. Note that we do not use beamformed sources as
the reference signals for metric computation, as they usually
contain speech distortions in reverberant environments, and are
sensitive to the number of microphones, microphone geometry,
and the type of beamformer used to obtain w ) ( f). In addition,
for BSS algorithms that do not involve any beamforming, such
as spatial clustering or independent component analysis (ICA),
it is not reasonable to use beamformed sources as the reference
signals for evaluation. We will leave this alternative for future
research on de-reverberation and multi-speaker ASR.

We emphasize again that our models, once trained, can be
directly applied to arrays with any numbers of microphones ar-
ranged in various layouts. At run time, we can first apply the
trained two-channel chimera++ network on each microphone
pair of interest, then use Eq. (14) or (16) to constructively com-
bine the spatial information contained in all the microphones,
and finally apply the well-trained Enh; or Enh, networks for
further separation. Note that the two-channel chimera++ net-
work essentially functions as a DOA module to estimate target
directions and signal statistics for spatial feature computation
and beamforming. Indeed, it can be replaced by a monaural
chimera++ network, while the two-channel one produces much
better initial mask estimation because of the effective exploita-
tion of spatial information, although in a very straightforward
way.

C. Run-Time Iterative Mask Refinement

In Eq. (12), ) is computed from the estimated masks 1/}
produced by the chimera++ network that only exploits two-
channel information. Such masks are expected to be not as
accurate as R;(f’) produced by Enh;, which can utilize the spatial
information from all the microphones and suffers less from IPD

ambiguity. Using Rl(,c) for T-F masking based beamforming
would hence likely leads to better beamforming results, which
can in turn benefit the enhancement networks.

More specifically, at run time, after obtaining Rz(f) using

Enh;, we use it in Eq. (12) to recompute a multi-channel Wiener

= (c) . =~(¢), .\ H
filterw,, ~ and feed the combination of log(|w, (f)" Y (¢, f)I),

. =(¢)
log(]Y,|) and R,(,C) directly to Enhy to get Z, . The sepa-

o ()
rated source is then obtained as Sl(,(') =7 ;(f’) Y, e’ , where

(¢ R
é\; )(t,f) = 4(@;C>(f)HY(t,f)). We denote this iterative
mask estimation approach as Enh; +Enh,. We emphasize this
approach is performed at run time and does not require any
model training. Note that R},") can be improved with more it-
erations, but here we only do one iteration due to computation

considerations.

V. EXPERIMENTAL SETUP

We train our models using only simulated RIRs, while test on
simulated as well as real-recorded RIRs. The RIRs are convolved
with the anechoic two-speaker and three-speaker mixtures in the

Algorithm 2: Data Spatialization Process (Simulated RIRs).

Input: wsj0-3mix;

Output: spatialized reverberant wsjO-3mix;

For each source s/, source s2, source s3 in wsjO-3mix do
Sample room length 7, and width r, from [5, 10] m;
Sample room height r, from [3, 4] m;

Sample mic array height a, from [1, 2] m;
Sample displacement n, and n, of mic array from
[—0.2,0.2] m;
Place array center at [%- + 1, '7” +ny,a.| m;
Sample microphone spacing a, from [0.02,0.09] m;
Forp=1:P(=38)do
Place mic p at [ + n, — Z5ta, + (p — Da,, &
+ny,a,] m;
End
Sample speaker locations in the frontal plane:

0,5, 5 = g
52,525 = a0
sgfi),sf),s?) =a.;

such that any two speakers are at least 15° apart
from each other with respect to the array center,
and the distance from each speaker to the array
center is in between [0.75, 2] m;

Sample T60 from [0.2,0.7] s;

Generate impulse responses using RIR generator and

convolve them with s/, s2 and s3;

Concatenate channels of reverberated s/, s2 and s3,

scale them to match SIR among original s/, s2

and 53, and add them to obtain reverberated mixture;

End

recently proposed wsjO-2mix and wsj0-3mix corpus' [1], each
of which contains 20,000, 5,000 and 3,000 anechoic monaural
speaker mixtures in its 30-hour training, 10-hour validation and
5-hour test data. Note that the speakers in the training set and test
set are not overlapped. The task is hence speaker-independent.
The signal to interference ratio (SIR) for wsjO-2mix mixtures
are randomly drawn from —5 dB to 5 dB. For wsj0-3mix, the
third speaker is added such that its energy is the same as that of
the first two speakers combined. The sampling rate is 8§ kHz.
The data spatialization process using simulated RIRs for
wsj0-3mix is detailed in Algorithm 2. The RIR generator? is
employed to generate the simulated RIRs. The general guideline
is to make the setup as random as possible while still subject to
realistic constraints. For each wsj0-3mix mixture, we randomly
generate a room with random room characteristic, speaker lo-
cations, and microphone spacing. Our study considers a linear
array setup, where the target speakers are placed in the frontal
plane and are at least 15° apart from each other. We generate
20,000, 5,000, and 3,000 eight-channel mixtures for training,

! Available at http://www.merl.com/demos/deep-clustering
2 Available at https://github.com/ehabets/RIR-Generator
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(a) Simulated RIRs 0°

TABLE I
SDR (DB) RESULTS ON SPATIALIZED REVERBERANT WSJ0-2MIX USING UP TO
TwO MICROPHONES

@ Speaker Source

Fig. 4. Illustration of experimental setup.

validation and testing, respectively. A T60 value for each mix-
ture is randomly drawn in the range [0.2, 0.7] s. See Fig. 4(a) for
an illustration of this setup. The spatialization of wsj0-2mix is
performed in a similar way. The average speaker-to-microphone
distance is 1.38 m with 0.37 m standard deviation and the av-
erage direct-to-reverberant energy ratio (DRR) is 0.49 dB with
3.92 dB standard deviation.

We also generate another 3,000 -eight-channel mix-
tures using the Multi-Channel Impulse Responses Database’
[45], which is recorded at Bar-Ilan University using
eight-microphone linear arrays with three different inter-
microphone spacing, including 3-3-3-8-3-3-3, 4-4-4-8-4-4-4,
8-8-8-8-8-8-8 cm, under three reverberant time (0.16, 0.36,
0.61 s) created by using a number of covering panels on the
walls. The RIRs are measured in steps of 15° from —90° to 90°
and at a distance of 1 m and 2 m to the array center, in a room
with size approximately at 6 x 6 x 2.4 m. See Fig. 4(b) for
an illustration of this setup. For each mixture, we place each
speaker in a random direction and at a random distance, using a
randomly-chosen linear array and a randomly-chosen reverber-
ation time among 0.16, 0.36 and 0.61 s. Note that for any two
speakers, they are at least 15° apart with respect to the array cen-
ter. The average DRR is 2.8 dB with 3.8 dB standard derivation
in this case. We emphasize that this is a very realistic setup, as it
is speaker-independent and more importantly, we use simulated
RIRs for training and real RIRs for testing.

At run time, we randomly pick a subset of microphones for
each utterance for testing. The aperture size can be 2 cm at
minimum and 63 c¢cm at maximum for the simulated RIRs, and
3 cm and 56 cm for the real RIRs.

3 Available at http://www.eng.biu.ac.il/~gannot/RIR_DATABASE/

: ; . Approaches Input Features Isgﬁn{sl }l{{]igls
’ L ..~'>0‘75 mand<2m - Unprocessed - 0.0 fI 0.0
L T " Ich PIT log(|Y,]) 75 [ 7.3
R Ich deep clustering log(1Y,|) 73 || 74
. SIS s Ich chimera++ log(|Y,]) 84 || 84
90 e DT v - 190° 2ch chimera++ log([Y,]).IPD 102 98
- 0.75 m 2m 2ch chimera++ log(|Y,|),cosIPD 9.7 |l 10.0
(b) Real RIRs 0,0 2ch chimera++ log(|Yp|),cosIPD,sinIPD 10.4 |f 10.1
e % + Enh, log(|Y,).11" 10.7 || 10.5
FE A Ll e + Enh, log(|¥, ),DE© (Bq. (14), 8 | 108 | 10.7
-45° - : T T s + Enh, log(|Y, ).DE (Eq. (16),17 | 11.1 | 11.1
oo : ) T 2ch chimera++ log(|¥,|),cosIPD,sinIPD,ILD | 10.4 || 10.1
.X ’ ’ N X . .
® X 5 * The chimera++ and enhancement network respectively con-
Bt SR : tains four and three BLSTM layers, each with 600 units in each
S UAE SERERERRS x Q] o X '2‘;*]'90"' direction. We cut each mixture into 400-frame segments and

use these segments to train our models. The Adam algorithm
is utilized for optimization. A dropout rate of 0.3 is applied to
the output of each BLSTM layer. The window size is 32 ms
and the hop size is 8 ms. A 256-point DFT is applied to ex-
tract 129-dimensional log magnitude features after square-root
Hann window is applied to the signal. The « in Eq. (6) is em-
pirically set to 0.975 and the embedding dimension D set to
20, following [3]. We emphasize that the enhancement network
is trained using the directional features computed from various
numbers of microphones, as the quality of the directional fea-
tures varies with the number of microphones. For all the input
features, we apply global mean-variance normalization before
feed-forwarding.

Following the SiSEC challenges [46], average signal-to-
distortion ratio (SDR) computed using the bss_eval_images
software is used as the major evaluation metric. We also re-
port average perceptual estimation of speech quality (PESQ)
and extended short-time objective intelligibility (eSTOI) [47]
scores to measure speech quality and intelligibility. Note that
we consider the reverberant image of each source at the refer-

ence microphone, i.e., séd, as the reference signal for metric

computation.

VI. EVALUATION RESULTS

We first report the results on the reverberant wsj0-2mix spa-
tialized using the simulated RIRs in the second last column of
Table I. Clearly, the chimera++ network shows clear improve-
ments over the individual models (8.4 vs. 7.5 and 7.3 dB), which
align with the findings in [3]. Even with random microphone
spacing, incorporating interchannel phase patterns for model
training produces large improvement compared with only using
monaural spectral information. This is likely because interchan-
nel phase patterns naturally form clusters within each frequency
regardless of microphone spacing, and we use a clustering-based
DNN model to exploit such information for separation. Among
various forms of IPD features, the combination of cosIPD and


http://www.eng.biu.ac.il/gannot/RIR_DATABASE/

WANG AND WANG: COMBINING SPECTRAL AND SPATIAL FEATURES FOR DEEP LEARNING BASED BLIND SPEAKER SEPARATION 465

TABLE II
SDR (DB) RESULTS ON SPATIALIZED REVERBERANT WSJ0-3MIX USING UP TO
TwO MICROPHONES

Approaches Input Features IS{IIIEISJ gﬁgls
Unprocessed - -3.3 | -3.2
Ich chimera++ log(|Y,]) 40 || 4.0
2ch chimera++ log(|¥,).IPD 7.1 | 6.1
2ch chimera++ log(]Y,|),cosIPD 58 || 59
2ch chimera++ log(]Y,|),cosIPD,sinIPD 73 ] 63
+ Enh, log(|Y, )11 76 | 6.7
+ Enh, log(|Y,).DE® (Eq. 14).M" | 7.8 || 6.9
+ Enh, log(|Y,).DE (Eq. (16),47 | 7.9 | 7.1

sinPD leads to consistently better performance over using IPD
or cosIPD (10.4 vs. 10.2 and 9.7 dB), likely because this com-
bination naturally maintains the helix structures that can be
exploited by the network. Further including the ILD features for
training does not lead to clear improvement (10.4 vs. 10.4 dB),
likely because level differences are very small in far-field con-
ditions. Using the Enh; network brings further improvement
as it provides better magnitude estimates. Compensating IPDs
(i.e., Eq. (14)) using estimated phase differences to reduce the
ambiguity and using beamforming results (i.e., Eq. (16)) as di-
rectional features push the performance from 10.4 to 10.8 and
11.1 dB, respectively. The former feature is worse than the lat-
ter one, likely because the former is mathematically similar
to the delay-and-sum beamformer, which is known to be less
powerful than the multi-channel Wiener filter. In the following
experiments, we use Eq. (16) to compute the directional feature
if not specified. The last column of Table I presents the results
on the real RIRs. The performance is as comparably good as on
the simulated RIRs, although the model is trained only on the
simulated RIRs.

Table II presents the results obtained on the spatialized wsj0-
3mix using the simulated RIRs and real RIRs, with up to two
microphones. Similar trends as in Table I are observed.

Table IIT and Table IV compare the proposed algorithms with
other systems along with the oracle performance of various
ideal masks, using up to eight microphones, and in terms of
SDR, PESQ and eSTOI. Because of utilizing the phase pro-
vided by beamforming, Enhy shows consistent improvement
over Enh;, especially when more microphones are available.
This justifies the proposed way of integrating beamforming for
separation. Performing run-time iterative mask refinement using
Enh; +Enh, leads to slight improvement over Enh; in the two-
speaker case, while clear improvement is observed in the three-
speaker case, especially when more microphones are available.
This indicates the effectiveness of using 1:2,()6) for T-F masking
based beamforming, especially when MISC) is not good enough.

Recent studies [17] apply monaural deep clustering on each
microphone signal to derive a T-F masking based beamformer
for each frequency for separation. To compare with their al-
gorithms, we use the truncated PSM (tPSM), computed as
TH0(1S5 | cos(£85) — £Y,)/|Y, ). in Eq. (12) to compute or-
acle ®(¢) and report oracle MCWF results (denoted as tPSM-

MCWEF). We also report the estimated MCWF (eMCWF) per-

formance obtained using Méc) computed from the two-channel
chimera++ network. Clearly, the beamforming approach re-
quires relatively large number of microphones to produce rea-
sonable separation. Although using estimated masks, the eM-
CWEF is comparable to tPSM-MCWF. As can be observed, both
of them are not as good as Enhs, which combines beamforming
with spectral masking. We also compare the proposed algo-
rithms with MESSL* [23], a popular wideband GMM based
spatial clustering algorithm proposed for two-microphone ar-
rays, and GCC-NMF’ [24], a location based stereo BSS al-
gorithm, where dictionary atoms obtained from non-negative
matrix factorization (NMF) are assigned to individual sources
over time according to their time difference of arrival estimates
obtained from GCC-PHAT. Note that oracle microphone spac-
ing information is supplied to MESSL and GCC-NMF for the
enumeration of time delays. Independent low-rank matrix anal-
ysis (ILRMA)® [25], originated from the ICA stream of re-
search, is a strong and representative algorithm for determined
and over-determined BSS. It unifies independent vector analysis
(IVA) and multi-channel NMF by exploiting NMF decomposi-
tion to capture the spectral characteristics of each source as the
generative source model in IVA. The recently proposed multi-
channel deep clustering (MCDC) [21] integrates conventional
spatial clustering with deep clustering by including interchan-
nel phase patterns to train deep clustering networks. Its ex-
tension to multi-channel cases is achieved by first applying a
well-trained two-channel deep clustering model on every mi-
crophone pair, then stacking the embeddings obtained from all
the pairs, and finally performing K-means on the stacked em-
beddings to obtain an estimated binary mask for separation.
Following the suggestions by an anonymous reviewer, we eval-
uate two extensions of MCDC as alternative ways of exploit-
ing multi-channel spatial information. The first one, denoted
as MC-Chimera++-, concatenates the embeddings provided by
our two-channel chimera++ network for K-means clustering,
and the second one uses the median mask produced in Eq. (12)
for separation, i.e., S”,(,C) = 77(‘7)Yp. Clearly, the proposed algo-
rithms are consistently better than the MCDC approach and the
two extensions, likely because the proposed algorithm is more
end-to-end and better exploits spatial information contained in
more than two microphones.

The performance of various oracle masks is presented in the
last columns of Table III and Table IV. The ideal binary mask
(IBM) is computed based on which source is dominant at each
T-F unit. The ideal ratio mask (IRM) is calculated as the mag-
nitude of each source over the sum of all the magnitudes. Com-
pared with such monaural ideal masks that use mixture phase
for re-synthesis, the multi-channel tPSM (MC-tPSM), calcu-
lated as TOI'O(|S](,C) | COS(ZS;,C) - é,g())/ﬂ/;, |) where él()c) here is
computed from tPSM-MCWEF and used as the phase for re-
synthesis, is clearly better and becomes even better when more
microphones are available. Note that MC-tPSM represents the

4 Available at https://github.com/mim/messl
3 Available at https://github.com/seanwood/GCC-nmf
% Available at http://d-kitamura.net/programs/ILRMA _release20180411.zip
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TABLE III
PERFORMANCE COMPARISON WITH OTHER APPROACHES ON REAL RIRS USING VARIOUS NUMBERS OF MICROPHONES ON SPATIALIZED REVERBERANT WSJ0-2MIX
MESSLCC i RMAMEDC|  MC- Using n(© tPSM- Qracl: Mass

Metrics|#mics|Mixture 23] I\[g\;{f (25 | [21] |Chimera++in Eq (12) eMCWF|Enh,(Enh,[Enh;+Enh, MCWE[RMIIBMIPSM tll\)/[SCl\:I
2 4.1 5.0 8.9 9.2 9.4 10.2 6.7 |11.1]11.1 11.2 7.1 14.1

3 - - 9.5 9.6 9.8 10.4 8.1 [11.5|11.9 12.1 8.6 14.8

SDR 4 - - 9.5 9.8 9.9 10.5 9.0 |11.7]12.5 12.7 9.6 15.3
(dB) 5 0.0 - - 9.7 9.9 10.0 10.6 9.7 |11.8]|13.0 13.2 104 [12.1(13.0|14.1|15.8
6 - - 9.8 10.0 10.0 10.6 10.3 [11.9]13.3 13.6 11.0 16.2

7 - - 9.8 10.0 10.0 10.6 10.7 [12.0{13.6 13.9 11.5 16.5

8 - - 9.7 10.0 10.1 10.6 11.0 [12.0{13.8 14.2 11.9 16.7

2 227 |2.16| 2.73 | 2.19 2.20 2.98 251 |3.12]3.21 324 2.53 3.92

3 - - 2.80 | 2.24 2.24 2.98 2.66 |3.23|13.35| 3.40 2.69 3.97

4 - - 2.82 | 2.26 2.26 3.01 2.75 (3.29]3.43| 3.48 2.79 4.00

PESQ| 5 2.06 - - 2.83 | 2.27 2.27 3.01 2.81 |3.33|13.49| 3.54 2.86 (3.79(3.29]3.834.02
6 - - 2.84 | 2.27 2.27 3.03 2.86 [3.353.52| 3.58 291 4.04

7 - - 2.84 | 2.27 2.27 3.02 290 |3.37|3.55| 3.60 2.96 4.06

8 - - 2.84 | 2.27 2.27 3.03 293 |3.38]|3.57] 3.63 2.99 4.07

2 589 |56.7| 73.8 | 71.8 72.5 79.0 65.8 [82.183.4| 84.1 66.7 94.0

3 - - 75.6 | 73.5 74.0 79.2 70.5 [83.7|85.6| 86.4 71.8 94.6

STOI 4 - - 76.0 | 74.2 74.5 79.9 73.4 [84.7|87.0| 87.8 74.9 95.1
(%) 5 54.8 - - 76.5 | 74.6 74.8 80.0 75.6 [85.3|87.9| 88.7 77.2 192.1|87.7|92.7 [ 95.4
6 - - 76.7 | 74.8 74.9 80.2 77.2 (85.8/88.5| 89.3 79.0 95.7

7 - - 76.7 | 74.9 75.0 80.2 78.5 [86.1189.0| 89.8 80.4 95.9

8 - - 76.7 | 74.9 75.0 80.3 79.4 [86.3189.4| 90.2 81.4 96.1

TABLE IV
PERFORMANCE COMPARISON WITH OTHER APPROACHES ON REAL RIRS USING VARIOUS NUMBERS OF MICROPHONES ON SPATIALIZED REVERBERANT WSJ0-3MIX
MESSLISCC iLRMAMCDC|  MC- Using n© tPSM- Qracle Mass

Metricsi#mics[Mixture| 23] I\[Ié\z/{]F (25 | [21] |Chimera++in Eq. (12) eMCWF|Enh,(Enh,|Enh,+Enh, MCWE[RMIBMIPSM t1;)/15(31\;[
2 2.0 2.6 - 5.6 5.5 6.6 39 71173 7.4 4.5 11.6

3 - - 4.6 6.1 5.9 6.7 49 75179 8.2 5.7 12.1

SDR 4 - - 5.0 6.3 6.2 7.0 57 78|84 8.8 6.5 12.5
(dB) 5 -3.2 - - 5.1 6.4 6.3 7.2 6.3 8.0189 9.4 72 (9.2(10.1)11.3]12.9
6 - - 52 6.5 6.4 7.3 6.7 8293 9.8 7.7 13.2

7 - - 52 6.5 6.4 7.3 70 |83(9.6 10.1 8.2 13.5

8 - - 5.3 6.5 6.4 7.3 7.3 84198 10.4 8.5 13.7

2 1.87 | 1.68 - 1.49 1.48 2.45 2.10 |2.48(2.55| 2.59 2.14 3.73

3 - - 222 | 1.55 1.54 2.46 226 |2.64[2.74] 2.81 2.30 3.79

4 - - 226 | 1.57 1.56 2.53 235 [2.73]2.85| 294 241 3.83

PESQ| 5 1.67 - - 228 | 1.58 1.57 2.54 243 12.81{2.95| 3.05 2.48 (3.60(2.87|3.64 | 3.85
6 - - 229 | 1.59 1.58 2.56 248 (2.84]3.00| 3.12 2.54 3.87

7 - - 2.30 | 1.59 1.59 2.56 2.52 |2.88(3.05| 3.17 2.59 3.89

8 - - 2.31 1.59 1.59 2.57 2.55 12.90(3.09] 3.21 2.63 391

2 433 (379 - 53.0 52.4 62.5 47.5 165.4(669| 68.2 49.4 90.2

3 - - 543 | 555 55.0 62.9 53.2 [68.5|70.7| 725 55.9 91.2

STOI 4 - - 56.3 | 56.7 56.4 64.9 57.2 (70.7\73.4| 75.5 60.0 91.8
(%) 5 37.5 - - 57.0 | 57.3 56.9 65.2 60.1 (72.4|75.5| 77.8 63.1 |87.6(80.4|88.5(92.3
6 - - 57.5 | 57.6 57.3 65.9 62.2 (73.4|76.8| 79.2 65.4 92.7

7 - - 578 | 57.7 57.4 65.8 63.9 (742|779 80.3 67.4 93.0

8 - - 58.0 | 57.6 57.6 66.2 65.2 [74.7|78.6| 8.1 69.0 93.3

monaural IBM, IRM and tPSM in terms of the SDR metric,
confirming the effectiveness of multi-channel processing.

upper bound performance of Enh,. The results clearly show the
effectiveness of using éff') as the phase estimate.

By exploiting spatial information, we improve the perfor-
mance of monaural chimera++ network from 8.4 to 11.2 dB
when using two microphones and to 14.2 dB when using eight
microphones on the spatialized wsj0-2mix corpus, and from
4.0 to 7.4 and 10.4 dB on the spatialized wsjO-3mix corpus.
These results are comparable to the oracle performance of the

VII. CONCLUDING REMARKS

We have proposed a novel approach that combines comple-
mentary spectral and spatial features for deep learning based
multi-channel speaker separation in reverberant environments.
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This spatial feature approach is found to be very effective for
improving the magnitude estimate of the target speaker in an
estimated direction and with particular spectral structures. In
addition, leveraging the enhanced phase provided by masking
based beamforming driven by a two-channel chimera++ net-
work produces further improvements. Future research will con-
sider simultaneous separation and de-reverberation, which can
be simply approached by using direct sound as the target in the
PIT branch of the chimera++ network and in the outputs of the
enhancement network, as well as applications to multi-speaker
ASR. We shall also consider combining the proposed approach
with end-to-end optimization [4].

Before closing, we point out that our current study has sev-
eral limitations that need to be addressed in future work. First,
similar to many deep learning based monaural speaker separa-
tion studies, our approach assumes that the number of speakers
is known in advance. Second, our current system is focused
on offline processing to push performance boundaries. To built
an online low-latency system, one should consider replacing
BLSTMs with uni-directional LSTMs, and accumulating the
signal statistics, such as ®()(f) and ®(°)(f), used in beam-
forming in an online fashion. Third, our current system deals
with reverberant speaker separation and no environmental noise
is considered. Future research will need to consider de-noising
as well, perhaps by extending our recent work in [41] and [48].
We shall also consider algorithms and experiments on conditions
with shorter utterances, moving speakers, and even stronger re-
verberations, as they appear to pose challenges for masking
based beafmorming in some ASR applications [49], [50].
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