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Abstract—We propose TF-GridNet for speech separation. The
model is a novel deep neural network (DNN) integrating full- and
sub-band modeling in the time-frequency (T-F) domain. It stacks
several blocks, each consisting of an intra-frame full-band module,
a sub-band temporal module, and a cross-frame self-attention
module. It is trained to perform complex spectral mapping, where
the real and imaginary (RI) components of input signals are stacked
as features to predict target RI components. We first evaluate
it on monaural anechoic speaker separation. Without using data
augmentation and dynamic mixing, it obtains a state-of-the-art
23.5 dB improvement in scale-invariant signal-to-distortion ratio
(SI-SDR) on WSJ0-2mix, a standard dataset for two-speaker sep-
aration. To show its robustness to noise and reverberation, we
evaluate it on monaural reverberant speaker separation using the
SMS-WSJ dataset and on noisy-reverberant speaker separation
using WHAMR!, and obtain state-of-the-art performance on both
datasets. We then extend TF-GridNet to multi-microphone condi-
tions through multi-microphone complex spectral mapping, and
integrate it into a two-DNN system with a beamformer in between
(named as MISO-BF-MISO in earlier studies), where the beam-
former proposed in this article is a novel multi-frame Wiener filter
computed based on the outputs of the first DNN. State-of-the-art
performance is obtained on the multi-channel tasks of SMS-WSJ
and WHAMR!. Besides speaker separation, we apply the pro-
posed algorithms to speech dereverberation and noisy-reverberant
speech enhancement. State-of-the-art performance is obtained on a
dereverberation dataset and on the dataset of the recent L3DAS22
multi-channel speech enhancement challenge.

Index Terms—Acoustic beamforming, complex spectral
mapping, full- and sub-band integration, speech separation.
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I. INTRODUCTION

D EEP learning has dramatically advanced talker-
independent speaker separation in the past decade [1],

especially since deep clustering [2] and permutation invariant
training (PIT) [3] successfully addressed the label permutation
problem. Early studies train DNNs for magnitude estimation,
with or without estimating phase [4], [5], [6], [7]. Subsequent
studies carry out separation in the complex T-F domain via
complex ratio masking [8] or in the time domain via TasNets [9],
[10], [11]. Since 2019, Conv-TasNet and its variants [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], featuring advanced DNN architectures with learned
encoder-decoder modules operating on very short windows of
signals for end-to-end masking based separation, have gradually
become the most popular and dominant approach for speaker
separation in anechoic conditions. Their performance on the
standard WSJ0-2mix benchmark [2] has reached an impressive
SI-SDR improvement (SI-SDRi) of 22.1 dB [24].

In the meantime, T-F domain models, which usually use larger
window and hop sizes, have been largely under-explored and
under-represented in speaker separation in anechoic conditions.
Recently, TFPSNet [25] reported a strong SI-SDRi of 21.1 dB on
WSJ0-2mix, which is comparable to the top results achievable
by modern time-domain models. It leverages a modern dual-path
architecture, following DPRNN [15] and DPTNet [17], but
applies the architecture on complex T-F spectrogram [26], [27]
by using the transformer module proposed in DPTNet [17] to
model spectro-temporal information. Although TFPSNet op-
erates in the T-F domain [25], it closely follows the encoder-
separator-decoder scheme [11] widely-used in TasNets and its
performance, even with a modern DNN architecture, is still
much lower than contemporary time-domain models [22], [23],
[24].

In this context, for anechoic speaker separation our prelimi-
nary version [28] of this article made the following contributions
to improve complex T-F domain approaches:
� We proposed to use complex spectral mapping for speaker

separation in anechoic conditions. Complex spectral map-
ping [29], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], which predicts target RI components based on the RI
components of input signals, has shown strong potential on
noisy-reverberant speech separation when combined with
modern DNN architectures and loss functions, exhibiting
strong robustness to noise and reverberation in both single-
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and multi-microphone conditions. Its potential on anechoic
speaker separation, however, has not been studied, espe-
cially in an era when time-domain models, which perform
masking in a learned filterbank domain, have become so
popular and dominant on this task. This article is the
first study to explore this direction for monaural, anechoic
speaker separation.

� We proposed a novel DNN architecture named TF-GridNet
for speech separation. It operates in the complex T-F do-
main to model speech spectrograms in a grid-like manner.
Based on an improved TFPSNet [25], we add a cross-frame
self-attention path for dual-path models to leverage global
information across frames;

� Building upon the SI-SDR loss [11], [40], we proposed to
add a novel loss term to encourage estimated sources to
add up to the mixture. We also combine this loss term with
loss functions other than SI-SDR.

Without using any data augmentation and dynamic mixing,
on WSJ0-2mix [2] our best model obtains 23.5 dB SI-SDRi,
clearly better than the previous best (at 22.1 dB) [24].

However, our preliminary study [28] does not show the po-
tential of TF-GridNet for speech separation in noisy-reverberant
conditions and it lacks an extension to multi-channel condi-
tions. To address the first problem, we evaluate TF-GridNet on
monaural reverberant speaker separation using the SMS-WSJ
dataset [41] and monaural noisy-reverberant speaker separation
using WHAMR! [42]. To address the second problem, we
integrate TF-GridNet with a MISO-BF-MISO approach [34],
[35], [36], which sandwiches a beamformer with two multi-
channel-input single-channel-output (MISO) DNNs, with the
beamformer computed based on the output of the first DNN
and the second DNN performing post-filtering. In our recent
work [43], we follow this MISO-BF-MISO approach and stack
two TCN-DenseUNets with a novel multi-channel multi-frame
Wiener filter (MFWF) in between. The TCN-DenseUNet [32],
[33], [34], [35], [36], [37], [38], [39] is a strong, representative
model adopted in many previous complex spectral mapping
studies, and the MFWF is computed based on both DNN-
estimated target magnitude and phase, and leverages both future
and past frames for sub-band linear filtering. This solution won
the recent L3DAS22 3D speech enhancement challenge [44],
which attracted 17 submissions. In this article, a major differ-
ence from [43] is that we replace the TCN-DenseUNet with
the newly-proposed TF-GridNet by modifying TF-GridNet for
multi-microphone complex spectral mapping [34], [35], [36],
and we observe large improvement over [43] and many other
strong multi-channel systems. Both TF-GridNet and MISO-BF-
MISO can be understood from the perspective of integrated full-
and sub-band modeling, either inside TF-GridNet or outside
through beamforming and post-filtering.

State-of-the-art performance is achieved on four major speech
separation tasks, including reverberant speaker separation,
noisy-reverberant speaker separation, speech dereverberation
and noisy-reverberant speech enhancement, showing the effec-
tiveness of the proposed algorithms at single- and multi-channel
separation. In our experiments, for each task we strive to use
public datasets with strong results published by previous studies.

A sound demo is available online.1 We have released the code
of TF-GridNet in the ESPnet-SE++ toolkit [45].2

II. SYSTEM OVERVIEW

A. Physical Model and Objective

For an N -sample, C-speaker mixture signal recorded by a P -
microphones array in a noisy-reverberant setting, at samplen the
physical model describing the relationship between the mixture
y[n] ∈ RP , reverberant non-target signals v[n] ∈ RP , and dry
source signal (o(c))[n] ∈ R, direct-path signal (s(c))[n] ∈ RP

and reverberation (h(c))[n] ∈ RP of speaker c can be formu-
lated in the time domain as

y[n] =

C∑
c=1

(o(c) ∗ r(c)) [n] + v[n]

=

C∑
c=1

((
o(c) ∗ rd(c)) [n] + (o(c) ∗ re+l(c)

)
[n]
)
+ v[n]

=

C∑
c=1

((s(c)) [n] + (h(c)) [n]) + v[n], (1)

where ∗ is the linear convolution operator, and the P -channel
room impulse response (RIR) of speaker c, r(c), can be decom-
posed into the RIR of the direct-path signal, rd(c), and that of
early reflections and late reverberation combined, re+l(c). In
the short-time Fourier transform (STFT) domain, the physical
model is formulated as

Y(t, f) =
C∑

c=1

(S(c, t, f) +H(c, t, f)) +V(t, f), (2)

where t indexesT frames, f indexesF frequencies, andY(t, f),
V(t, f), and S(c, t, f) and H(c, t, f) ∈ CP respectively denote
the STFT vectors of the mixture, non-target signals, and the
direct-path signal and reverberation of speaker c. The corre-
sponding spectrograms are denoted by Y, V, S(c), and H(c).
This formulation covers all the tasks we consider:
� For monaural, anechoic speaker separation, C > 1, P = 1

and there is no H and V;
� For reverberant speaker separation,C > 1 andV is a weak

stationary noise (e.g., microphone sensor noise);
� For noisy-reverberant speaker separation, C > 1 and V

consists of challenging non-stationary noises;
� For speech dereverberation, C = 1 and V is a weak sta-

tionary noise;
� For noisy-reverberant speech enhancement, C = 1 and V

contains challenging non-stationary noises.
Given a single- or multi-channel mixture, we aim at recon-

structing the direct-path signal of each speaker at a reference
microphone q (i.e., sq(c)). This requires us to not only remove
noise and reverberation but also separate the speakers if there are
more than one. For all the tasks, we assume that the maximum

1See https://zqwang7.github.io/demos/TF-GridNet-demo/index.html.
2See https://github.com/espnet/espnet/pull/5395
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Fig. 1. System overview.

number of speakers in each mixture is known, and that the array
geometry is fixed between training and testing.

B. Approach Outline

Our system (see Fig. 1) operates in the complex T-F domain.
It follows a two-DNN approach named MISO-BF-MISO [35],
[36], [37], where DNN1 first produces an initial estimate for
each target source, the initial estimate is then used to compute a
sub-band linear filter (in this article a multi-frame Wiener filter)
for each source, and DNN2 takes in the mixture, the outputs of
DNN1, and the linear-filtering results for post-filtering. In our
experiments, DNN1 and DNN2 are trained sequentially rather
than jointly. After DNN1 is trained, we use it to generate an
initial estimate Ŝ

(1)
q (c) and compute a sub-band linear filtering

result ŜMFWF
q (c) for each speaker c, and feed them and Y to

DNN2 to further predict target speech (denoted as Ŝ(2)
q (c)). The

superscripts in Ŝ
(1)
q (c) and Ŝ

(2)
q (c) denote which of the two

DNNs produces the estimate. Following [35], [37], [39], for
speaker separation DNN1 is trained with utterance-wise PIT [3]
but DNN2 is trained in an enhancement way (i.e, predicting
all the speakers but not using PIT), since the label-permutation
problem has been addressed by DNN1. For monaural, anechoic
speaker separation, we only train DNN1, without using linear
filtering and DNN2.

III. TF-GRIDNET

Fig. 2 illustrates the proposed TF-GridNet for DNN2. DNN1

has the same architecture but uses only Y as input. Both DNNs
are trained to perform complex spectral mapping [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39], where the RI compo-
nents of input signals are stacked as input features to predict the
RI components of each speaker at the reference microphone q,
i.e., Sq(c). Our system is non-causal. We normalize the sample
variance of each input mixture to 1.0 and use the same scaling
factor to scale each target source before using them for training.
This amounts to adjusting the volume of each input mixture to
a similar level.

In Fig. 2, for each of the three real-valued input features
(i.e., the stacked RI components of the mixture Y with shape
2P × T × F , DNN1’s outputs Ŝ(1)

q (1), . . . , Ŝ
(1)
q (C)with shape

2C × T × F , and MFWF’s outputs ŜMFWF
q (1), . . . , ŜMFWF

q (C)
with shape 2C × T × F ), we first use a two-dimensional (2D)
convolution (Conv2D) with a 3× 3 kernel followed by global
layer normalization (gLN) [11] to compute a D-dimensional

TABLE I
LIST OF HYPER-PARAMETERS OF TF-GRIDNET

embedding for each T-F unit, and then summate the T-F em-
beddings generated for the three input features, obtaining a
tensor with shape D × T × F . Next, we feed the tensor to B
stacked TF-GridNet blocks, each consisting of an intra-frame
full-band module, a sub-band temporal module, and a cross-
frame self-attention module, to leverage spectral, spatial and
temporal information to gradually make the T-F embeddings
more discriminative for separation. After that, a 2D deconvolu-
tion (Deconv2D) with 2C output channels and a 3× 3 kernel
followed by linear units is used to obtain the predicted RI compo-
nents for all theC speakers, and inverse STFT (iSTFT) is applied
for signal re-synthesis. The rest of this section describes the three
modules in each TF-GridNet block, and the loss functions. To
avoid confusion, in Table I we list the hyper-parameters we will
use to describe TF-GridNet.

A. Intra-Frame Full-Band Module

For the intra-frame module, we view the input tensor Rb ∈
RD×T×F to the bth block as T separate sequences, each with
length F , and use a sequence model to capture the full-band
spectral and spatial information within each frame.

In detail, we first use the torch.unfold function [46] with kernel
size I and stride J to stack nearby embeddings at each step
along frequency, after zero-padding the frequency dimension to
F ′ = �F−I

J � × J + I , and then apply layer normalization (LN)
along the first dimension, i.e.,

Ṙb = LN ([Unfold(Rb[:, t, :]),

for t = 1, . . . , T ]) ∈ R(I×D)×T×(F ′−I
J +1). (3)

We denote this order of operations as Unfold-LN. An alternative
is to first perform LN on Rb and then zero-pad and stack nearby
embeddings, i.e.,

Ṙb = [Unfold (LN(Rb)[:, t, :]) ,

for t = 1, . . . , T ] ∈ R(I×D)×T×(F ′−I
J +1). (4)

We denote this order as LN-Unfold. We point out that LN-
Unfold uses fewer parameters than Unfold-LN, and, since the
torch.unfold function creates a view of the input tensor with-
out allocating new memory, LN-Unfold consumes less mem-
ory when I/J > 1. Note that our preliminary paper [28] uses
Unfold-LN, and this article proposes LN-Unfold, which leads
to slightly better separation.
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Fig. 2. Proposed TF-GridNet based DNN2.

We then use a single bi-direcitonal long short-term mem-
ory (BLSTM) with H units in each direction to model inter-
frequency information within each frame:

R̈b =
[
BLSTM

(
LN(Ṙb)[:, t, :]

)
,

for t = 1, . . . , T ] ∈ R2H×T×(F ′−I
J +1). (5)

Note that J can be larger than one so that the sequence length
and thus the amount of computation can be reduced.

Next, a one-dimensional deconvolution (Deconv1D) layer
with kernel size I , strideJ , input channel 2H and output channel
D (and without subsequent normalization and non-linearity) is
applied to the hidden embeddings of the BLSTM:

...
Rb =

[
Deconv1D(R̈b[:, t, :]),

for t = 1, . . . , T ] ∈ RD×T×F ′
. (6)

After removing zero paddings, this tensor is added to the input
tensor via a residual connection to produce the output tensor:

Ub =
...
Rb[:, :, : F ] +Rb ∈ RD×T×F . (7)

B. Sub-Band Temporal Module

In the sub-band temporal module, the procedure is almost
the same as that in the intra-frame full-band module. The only
difference is that the input tensor Ub ∈ RD×T×F is viewed as
F separate sequences, each with length T , and a BLSTM is
used to model the temporal information within each frequency.
Note that the parameters of the BLSTM are shared across all the
frequencies. The output tensor is denoted as Zb ∈ RD×T×F .

C. Discussion on Full- and Sub-Band Modeling

In multi-channel conditions, performing sub-band modeling
is a reasonable strategy to leverage spatial information afforded
by multiple microphones. The idea is that inter-microphone
spatial patterns such as the inter-channel phase differences (IPD)
do not change along time for sources that do not move within
each utterance, while they usually change with frequency due
to the linear phase structure of phase differences and the effects

of phase wrapping (see an example plot of IPD vs. frequency in
anechoic conditions in Fig. 3 of [47]). This is partly the reason
why many conventional beamforming [48], dereverberation [49]
and spatial clustering [50] algorithms are performed separately
within each frequency. In light of this physical phenomenon, we
believe that it intuitively makes sense to perform such a DNN-
based sub-band modeling, as the inter-channel phase patterns
important for supervised learning are stable and salient within
each frequency for each source. In addition, using a shared DNN
block to separately model each sub-band is easier than using a
DNN block to simultaneously model all the frequencies, as there
are fewer variations to model. This echoes the idea of weight
sharing, a core concept in convolutional neural networks [51].

Similarly, in multi-microphone conditions the intra-frame
full-band module described in the previous subsection could not
only model the full-band, spectral patterns such as the harmonic
structure along frequency but also model the gradual changes
of inter-microphone phase patterns along frequency (see the
helix structure of IPD along frequency in Fig. 3(c) of [47]).
We emphasize that the pattern of such gradual changes along
frequency exists at every frame where the target source (assumed
non-moving) is active. It is therefore reasonable to run the same
BLSTM based full-band module at each frame to model such
patterns.

Such sub-band modeling approach could better deal with
reverberation. Since reverberation time (T60) and reverbera-
tion patterns vary with frequency [52], it is reasonable to use
sub-band modules in TF-GridNet to separately model each
frequency. In a broader perspective, weighted prediction error
(WPE) [49], the most popular conventional algorithm for dere-
verberation, is also performed per-frequency by computing a
linear, inverse filter at each frequency (preferably with different
number of filter taps at different frequencies [53]) to estimate late
reverberation. There are studies [54] using a non-linear LSTM
to mimic the linear, inverse filtering of WPE, but the LSTM
is trained to model all the frequencies simultaneously rather
than separately. We believe that using sub-band DNN modules
to mimic sub-band inverse filtering is likely better, because
reverberation, at each frequency, can be approximated as a
linear convolution of a sub-band filter and the anechoic signal,
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according to the narrow-band approximation property [37], [48]
in the STFT domain.

There are earlier studies using DNNs to perform full-band
and sub-band modeling [55], [56], [57], [58]. Some differences
include: (1) they only perform sub-band modelling without
full-band modelling [55], [56]; and (2) they perform sub-band
modeling followed by full-band modelling [57], [58] but without
iterative information flow from sub- to full-band modules and
from full- to sub-band, while we stack multiple TF-GridNet
blocks to enable such an information flow so that full- and
sub-band modelling can be integrated.

There are earlier studies [25], [59] using LSTMs to model
spectrograms along time and frequency in monaural anechoic
speaker separation. However, they do not reach very strong
performance.

D. Cross-Frame Self-Attention Module

In the cross-frame self-attention module (shown in Fig. 2),
we first compute frame embeddings at each frame using the
T-F embeddings within that frame, and then use full-utterance
self-attention on these frame embeddings to model long-range
context information. The motivation is that the information flow
between two T-F units needs to go through many steps in the
intra-frame full-band and sub-band temporal BLSTMs, and the
self-attention module enables each frame to directly attend to
any frames of interest to allow for more direct information
flow. We follow the self-attention mechanism proposed in [60],
[61], which is designed for U-Net based monaural music source
separation and speech denoising. In contrast, we use multi-head
attention instead of single-head and we use the self-attention
mechanism with the proposed sub-band and full-band modules
rather than with U-Net for single- and multi-microphone speech
separation.

The self-attention module has L heads. In each head l, we
apply point-wise Conv2D, PReLU, LN along the channel and
frequency dimensions (denoted as cfLN), and reshape layers
to respectively obtain 2D query Ql ∈ RT×(F×E), key Kl ∈
RT×(F×E) and valueVl ∈ RT×(F×D/L) tensors. The point-wise
Conv2D layers for computing the query and key tensors have E
output channels, leading to F × E-dimensional query and key
vectors at each frame. Similarly, the point-wise Conv2D layer
for computing the value tensor hasD/Loutput channels, leading
to an F ×D/L-dimensional value vector at each frame. All the
three point-wise Conv2D layers has D input channels. Follow-
ing [62], we compute the attention output Al ∈ RT×(F×D/L)

by:

Al = softmax

(
QlK

T
l√

F × E

)
Vl. (8)

We then concatenate the attention outputs of all the L heads
along the second dimension, reshape it back to D × T × F ,
apply a point-wise Conv2D with D input and D output channels
followed by a PReLU and a cfLN to aggregate cross-head
information. Next, we add it to the input tensor Zb via a residual
connection to obtain the output tensor Rb+1, which is fed to the
next TF-GridNet block.

This self-attention mechanism only adds a negligible number
of parameters by using point-wise Conv2D layers. It operates
at the frame level and the memory cost on attention matrices is
O(B × L× T 2). In comparison, TFPSNet [25] uses multi-head
self-attention in each path-scanning module, and the memory
cost on attention matrices is O(B × L× F × T 2) +O(B ×
L× T × F 2), which is much higher.

E. Loss Functions

Since evaluation metrics usually change with datasets, we
use different loss functions for different datasets, considering
that different loss functions have their strengths and weak-
nesses [63]. This section describes two loss functions, SI-SDR
and Wav+Mag, both defined based on the re-synthesized signals
of predicted RI components. They have been proposed in earlier
studies. Our novelty is a mixture-constraint loss term to be used
with SI-SDR and Wav+Mag.

1) SI-SDR Loss With Mixture Constraint: For anechoic
speaker separation, there is only DNN1, without the linear-
filtering module and DNN2. The model in this case is trained
with utterance-level PIT [3]. The loss function follows the
SI-SDR loss [11], [40], but with two differences.

First, in the original SI-SDR metric paper [40], there are two
definitions for SI-SDR. One scales source to equalize its gain
with that of estimate, and the other instead scales estimate. The
SI-SDR loss proposed in the seminal DANet [64] and Conv-
TasNet [11] studies (and almost all the follow-up studies) uses
the former, while our study uses the latter:

LSI-SDR-SE = −
C∑

c=1

10 log10
‖s(c)q ‖22

‖α̂(c)
q ŝ

(c)
q − s

(c)
q ‖22

, (9)

where ‖ · ‖22 computes the L2 norm, ŝ(c)q is the re-synthesized
signal based on the predicted RI components for speaker c,
α̂
(c)
q = argminα ‖αŝ(c)q − s

(c)
q ‖22 = (ŝ

(c)
q )Ts

(c)/
q (ŝ

(c)
q )Tŝ

(c)
q , and

the “SE” inLSI-SDR-SE means “scaling estimate”. We observe that
this loss leads to similar performance and faster convergence,
compared with the former.

Second, we add a loss term between the summation of target
sources and that of scaled estimated sources:

LSI-SDR-SE+MC = LSI-SDR-SE

+
1

N

∥∥∥ C∑
c=1

α̂(c)
q ŝ(c)q −

C∑
c=1

s(c)q

∥∥∥
1
, (10)

where ‖ · ‖1 computes the L1 norm and N denotes the number
of samples. Since yq =

∑C
c=1 s

(c)
q in our considered task of

monaural, anechoic speaker separation, we name the loss term
as mixture-constraint (MC) loss. It is motivated by a trigono-
metric perspective [7] in source separation, which suggested
that constraining the separated sources to sum up to the mixture
yields better phase estimation. We point out that

∑C
c=1 α̂

(c)
q ŝ

(c)
q

would not equal yq at run time. This distinguishes our loss from
mixture consistency [65], which enforces the separated sources
to sum up to the mixture. Our loss is also different from another
mixture consistency loss proposed in [66], where the DNN is
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trained for real-valued phase-sensitive masking without phase
estimation and the task is target speaker extraction based meeting
transcription.

In (10), we do not include a weighting term between the two
losses for two reasons. First, this can avoid a weighting term to
tune. Second, nowadays it is common for speaker separation
systems to obtain more than 10 dB SI-SDRi, and when the
sample variance of the input mixture has been normalized to
1.0 (which is the case in our study), the second term in our
experiments has a scale less than 0.01 when the models converge.
This way, the first term dominates the combined loss. This is
desirable as the first term is directly related to the final separation
performance.

2) Wav+Mag Loss: Following [63], we define the loss on the
re-synthesized signal and its magnitude:

LWav+Mag =

C∑
c=1

(
1

N
‖ŝq(c)− sq(c)‖1

+
1

T × F

∥∥∥∣∣∣STFT(ŝq(c))
∣∣∣− ∣∣∣STFT(sq(c))

∣∣∣∥∥∥
1

)
,

(11)

where | · | computes magnitude and STFT(·) extracts a complex
spectrogram. It has been demonstrated in [63] that the magnitude
loss can improve metrics such as perceptual evaluation of speech
quality (PESQ), short-time objective intelligibility [67] (STOI),
and word error rates (WER) which favor signals with a good
magnitude, at a degradation on time-domain metrics such as
SI-SDR. When C > 1, we can also add a mixture-constraint
loss, similarly to (10):

LWav+Mag+MC =

C∑
c=1

(
1

N
‖ŝq(c)− sq(c)‖1

+
1

T × F

∥∥∥ ∣∣∣STFT(ŝq(c))
∣∣∣− ∣∣∣STFT(sq(c))

∣∣∣ ∥∥∥
1

)

+
1

N

∥∥∥∥∥
C∑

c=1

ŝq(c)−
C∑

c=1

sq(c)

∥∥∥∥∥
1

+
1

T × F

∥∥∥∥∥
∣∣∣∣∣STFT

(
C∑

c=1

ŝq(c)

)∣∣∣∣∣
−
∣∣∣∣∣STFT

(
C∑

c=1

sq(c)

)∣∣∣∣∣
∥∥∥∥∥
1

. (12)

In (11) and (12), we do not use a weighting term, as the time-
domain loss and the frequency-domain loss are on a similar scale
due to the Parseval’s theorem.

IV. BEAMFORMING AND SUB-BAND MODELLING

This section proposes a novel DNN-supported beamformer
and connects it with integrated sub- and full-band modeling.

A. DNN-Supported Multi-Frame Wiener Filter

Assuming that target speakers are non-moving within each
utterance and based on the estimated target speech Ŝ

(1)
q (c) by

DNN1, we compute a time-invariant MFWF per frequency by
solving the minimization problem below:

argmin
wq(c,f)

T∑
t=1

∣∣Ŝ(1)
q (c, t, f)−wq(c, f)

HỸ(t, f)
∣∣2, (13)

where Ỹ(t, f) = [Y(t−Δl, f)
T, . . . ,Y(t, f)T, . . . ,Y(t+

Δr, f)
T]T stacks the mixtures at nearby T-F units,

wq(c, f) ∈ C(Δl+1+Δr)×P is a time-invariant linear filter,
and (·)H computes complex Hermitian. Δl (≥ 0) and Δr

(≥ 0) control the context of frames for filtering, resulting in a
single-frame Wiener filter when Δl and Δr are both zeros and
an MFWF otherwise. A closed-form solution is available:

ŵq(c, f)

=

(
T∑

t=1

Ỹ(t, f)Ỹ(t, f)H

)−1 T∑
t=1

Ỹ(t, f)
(
Ŝ(1)
q (c, t, f)

)∗
,

(14)

where (·)∗ computes complex conjugate. The filtering result
ŜMFWF
q (c) is computed as

ŜMFWF
q (c, t, f) = ŵq(c, f)

HỸ(t, f). (15)

We name MFWF as MCMFWF when P > 1 and as single-
channel MFWF (SCMFWF) when P = 1.

The idea of MCMFWF was proposed in [68]. Differently,
we use multi-microphone complex spectral mapping to obtain
Ŝ
(1)
q (c), which consists of DNN-estimated magnitude and phase,

while the system in [68], even in multi-microphone cases,
performs monaural, real-valued magnitude masking to obtain
Ŝ
(1)
q (c), which consists of DNN-estimated magnitude and the

mixture phase. It should be noted that in our recent studies [36],
[69], we proposed to project the mixture to DNN-estimated
target speech using (13), but the beamformer is single-frame
(i.e., Δl = 0 and Δr = 0). We will show in our experiments
that single-frame filtering leads to worse performance than
multi-frame filtering, likely due to its insufficient degrees of
freedom for suppressing non-target signals.

In monaural conditions, (14) becomes an SCMFWF, which
can reduce reverberation by exploiting the correlations among
nearby frames due to reverberation. It is similar to the inverse
convolutive prediction filter proposed in [37]. The key different
is that, in [37], only past frames are filtered (i.e., Δl > 0 and
Δr = 0). However, future frames are also correlated with the
current frame and they can also be linear-filtered to reduce the
reverberation at the current frame.

In the literature, convolutional beamformer [53] and
WPE [49] are the most popular multi-frame linear filters. In their
DNN-supported versions, DNN-estimated target magnitude is
used in a maximum-likelihood objective for filter computa-
tion [70]. We will show in our experiments that the output of
the proposed MFWF improves the performance of DNN2 by a
larger factor.

B. Discussion on Beamforming and Sub-Band Modelling

When beamforming results are used as extra features for DNN
training (e.g., in the way shown in Fig. 1), large improvement
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has been observed in earlier studies [35], [36] (see for example
the last two rows of Table XI). One interesting observation is that
the DNNs in these studies usually perform full-band modelling,
where one typical approach is to use an encoder to encode
each frame into an embedding, perform sequence modelling to
refine the frame embeddings, and use a decoder to reconstruct
target speech from the refined embeddings. The encoder, for
example, can be just a linear fully-connected layer followed by a
non-linear activation [11] or contain a stack of non-linear layers
in the form of a UNet-style encoder [35]. Our insight is that
the large improvement is likely because the beamformers are
computed based on signals only within each sub-band and the
beamforming results could hence be complementary to full-band
modeling, which simultaneously models all the frequencies
but may not be good at sufficiently modeling each frequency
since different frequencies exhibit diverse spectral, temporal and
spatial patterns (see also our discussions in Section III-C).

Each sub-band temporal module in TF-GridNet models each
frequency using a BLSTM shared across all the frequencies to
mimic sub-band filtering. This could be a better way of neural
beamforming than earlier approaches where DNNs are mainly
used for full-band modeling. In our best-performing system, we
still compute an MCMFWF result based on the output of a first
TF-GridNet and use a second TF-GridNet for post-filtering (i.e.,
Fig. 1). This can be viewed as another way of full- and sub-band
integrated modeling, and is found to improve the performance of
using just one single TF-GridNet, but the improvement brought
by the beamformer followed by post-filtering is much less im-
pressive than the one achieved when the two DNNs are trained
to perform full-band modelling. See also our discussion later in
Section VI-C.

We point out that the sub-band (a.k.a narrow-band) property
for per-frequency modeling is afforded by STFT. This property
bears an important advantage of STFT-domain approaches: we
can exploit intra- and cross-frequency information to achieve
potentially better separation. In comparison, the learned bases
by time-domain models are usually not narrow-band [11], [71],
and many current time-domain models do not have a concept of
sub-band or narrow-band frequency to exploit.

V. EXPERIMENTAL SETUP

We evaluate the proposed algorithms on five tasks, includ-
ing speaker separation in anechoic, reverberant and noisy-
reverberant conditions, speech dereverberation, and noisy-
reverberant speech enhancement. This section describes the
setup for each task, baselines, and miscellaneous configurations.
Our experiments cover major speech separation tasks and we
use public datasets with existing published results to highlight
that the improvements obtained in our study are relative to very
strong baselines.

A. Setup for Monaural, Anechoic Speaker Separation

We use WSJ0-2mix [2], the most popular dataset to
benchmark monaural talker-independent speaker separation al-
gorithms in anechoic conditions. It has 20,000 (∼30.4 h), 5,000
(∼7.7 h) and 3,000 (∼4.8 h) two-speaker mixtures respectively
in its training, validation and test sets. The clean source signals

are sampled from the WSJ0 corpus. The speakers in the training
and validation sets are different from the speakers for testing. The
two utterances in each of the mixtures available in WSJ0-2mix
are fully-overlapped, and their relative energy level is uniformly
sampled from the range [−5, 5] dB when WSJ0-2mix is created.
The sampling rate is 8 kHz.

B. Setup for Reverberant Speaker Separation

We use SMS-WSJ [41], a popular corpus for comparing
two-speaker separation algorithms in reverberant conditions.
The clean speech is sampled from the WSJ0 and WSJ1 datasets.
The corpus contains 33,561 (∼87.4 h), 982 (∼2.5 h) and 1,332
(∼3.4 h) two-speaker mixtures for training, validation and
testing, respectively. The simulated microphone array has six
microphones arranged uniformly on a circle with a diameter
of 20 cm. For each mixture, the speaker-to-array distance is
drawn from the range [1.0, 2.0] m, and T60 from [0.2, 0.5] s. A
weak white noise is added to simulate microphone sensor noises,
and the energy level between the sum of the reverberant speech
signals and the noise is sampled from the range [20, 30] dB. The
sampling rate is 8 kHz.

For ASR evaluation, the default Kaldi-based ASR back-
end provided with SMS-WSJ [41] is used. It is trained using
single-speaker noisy-reverberant speech as inputs and the state
alignments of its corresponding direct-path signal as labels. A
standard tri-gram language model is used for decoding.

We perform joint denoising, dereverberation and separation.
We consider one-, two- and six-channel tasks, and use the direct-
path signals as the training target. For two-channel processing,
we take the signals at microphone 1 and 4 as input, and for
monaural separation, we use the signal at microphone 1. The
first microphone is always used as the reference.

C. Setup for Noisy-Reverberant Speaker Separation

We use WHAMR! [42] to validate our algorithms for noisy-
reverberant speaker separation. It re-uses the two-speaker mix-
tures in WSJ0-2mix [2] but reverberates each clean source
and adds non-stationary noises. In each mixture, the T60 is
sampled from the range [0.2, 1.0] s, signal-to-noise ratio (SNR)
between the louder speaker and noise from [−6, 3] dB, relative
energy level between the two speakers from [−5, 5] dB, and
speaker-to-array distance from [0.66, 2.0] m. There are 20,000
(∼30.4 h), 5,000 (∼7.7 h) and 3,000 (∼4.8 h) binaural mixtures
respectively for training, validation and testing. We use its min
and 8 kHz version.

We aim at joint dereverberation, denoising and speaker sepa-
ration. The direct-path signal of each speaker at the first micro-
phone is used as the target for training and as the reference for
metric computation.

D. Setup for Speech Dereverberation

We use a simulated reverberant dataset with weak air-
conditioning noises, since there lacks a well-designed popular
dataset for speech dereverberation.3 Although simulated by

3We considered the REVERB corpus [72], but its training set is simulated
based on 24 eight-channel RIRs, which are too few for training DNN models.
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ourselves, this dataset has been used in our recent studies [36],
[37], which reported very strong results. The clean source signals
for simulation are from the WSJCAM0 corpus, which includes
7,861, 742 and 1,088 utterances respectively in its training,
validation and test sets. Based on them, we simulate 39,293
(∼77.7 h), 2,968 (∼5.6 h), and 3,262 (∼6.4 h) noisy-reverberant
mixtures respectively as our training, validation, and test sets.
The data spatialization process follows [34], where, for each
utterance, we randomly sample a room with random room char-
acteristics and speaker and microphone locations, using the Py-
roomacoustics RIR generator [73]. The simulated microphone
array has eight microphones arranged on a circle with a diameter
of 20 cm. The speaker-to-array distance is drawn from the range
[0.75, 2.5] m and T60 from [0.2, 1.3] s. For each utterance, an
eight-channel diffuse air-conditioning noise is sampled from the
REVERB dataset [72] and added to the reverberant speech, and
the SNR between the direct-path signal and the noise is sampled
from the range [5, 25] dB. The sampling rate is 16 kHz. We
denote this dataset as WSJ0CAM-DEREVERB.

We aim at removing any early reflections and late reverber-
ation. The direct-path signal of the target speaker at the first
microphone is used as the reference for metric computation.

E. Setup for Noisy-Reverberant Speech Enhancement

The L3DAS22 3D speech enhancement task [44] chal-
lenges participants to reconstruct the dry speech source signal
from its far-field mixture simulated by using two four-channel
Ambisonic-format signals in a noisy-reverberant office environ-
ment. The dry source signals are drawn from LibriSpeech and
noise signals from FSD50k [74]. The SNR is sampled from
the range [6, 16] dB. Real RIRs are used for simulation. Such
RIRs were recorded in an office room by using two first-order
A-format Ambisonic arrays, each with four microphones. The
microphone placement is fixed, with one Ambisonic microphone
array placed at the room center and the other being 20 cm away.
The room configuration is the same between training and test-
ing, and the source positions are sampled uniformly inside the
room with no overlap of positions between training and testing.
Artificial mixtures are generated by convolving dry speech and
dry noise signals with the measured RIRs and the convolved
signals are then added together. There are 37,398 (∼81.3 h),
2,362 (∼3.9 h) and 2,189 (∼3.5 h) mixtures respectively in
the training, validation and test sets. The generated A-format
Ambisonic mixtures are converted to B-format Ambisonic via
a transformation consisting of a pre-filter, a mixing matrix and
a post-filter. The task is to predict the dry speech based on the
B-format Ambisonic mixture. The sampling rate is 16 kHz.

The submitted systems were ranked by using a combination
of STOI and WER:

Task1Metric = (STOI + (1− WER)) /2. (16)

Since STOI and WER scores are both in the range of [0, 1], the
composite metric is also in [0, 1]. The WER is computed from
the transcription of enhanced speech with that of the dry speech,
both decoded by a pre-trained wav2vec2 ASR model.

Differently from the other setups, the goal in this task is to pre-
dict the dry speech from far-field multi-channel mixtures. This
requires the submitted systems to not only remove reverberation
and noises, but also to time-align the estimated speech with
the dry speech (as STOI degrades with misalignment), which
requires the systems to perform implicit or explicit localization
of the target source so that a time-aligned estimate can be
obtained. This is achievable since the Ambisonic arrays form
a fixed three-dimensional geometry.

F. Baselines

We can compare our approaches with others by using system-
level performance. For MFWF, we provide the results of other
linear filters, including (1) in multi-channel cases, convolutional
beamformer [53]; and (2) in monaural cases, WPE [49], [70]. We
replace the MFWF module between DNN1 and DNN2 in Fig. 1
with a DNN-supported convolutional beamformer or WPE filter
to compare their effectiveness at improving DNN2.

1) System-Level Baselines: Since the datasets in all the con-
sidered tasks have existing results reported in earlier studies,
we can compare our results with the strongest ones achieved
by competing approaches. Notably, we will compare with our
previous studies [35], [37], [39], [43], which also follow the
MISO-BF-MISO approach shown in Fig. 1 but uses TCN-
DenseUNet and other sub-band linear filters.

2) Baseline for MCMFWF: In multi-channel cases, we con-
sider convolutional beamformer [53], a very popular multi-
channel multi-frame filter in speech separation, as the baseline.
We compute it by solving the problem [53] below:

argmin
wq(c,f)

T∑
t=1

|wq(c, f)
H Ȳ(t, f)|2

λ̂q(c, t, f)

subject to wq;0(c, f)
Hd̂q(c, f) = 1, (17)

where Ȳ(t, f) = [Y(t−Δd −Δl + 1, f)T, . . . ,Y(t−
Δd, f)

T,Y(t, f)T]T ∈ C(Δl+1)×P with Δd denoting a
prediction delay and Δl the number of filter taps for
past frames beyond the prediction delay, wq(c, f) =
[wq;−Δd−Δl+1(c, f)

T, . . . ,wq;−Δd
(c, f)T,wq;0(c, f)

T]T ∈
C(Δl+1)×P with wq;i(c, f) ∈ CP denoting the filter applied to
frame t+ i in order to produce the result at the current frame
t, and d̂q(c, f) is the estimated relative transfer function for
microphone q. Following [75] and based on the DNN-estimated
target speech Ŝ

(1)
q (c), λ̂q(c), the estimated power spectral

density of target speech, can be computed as:

λ̂q(c, t, f) = max
(
ε max(|Ŝ(1)

q (c)|2), |Ŝ(1)
q (c, t, f)|2

)
, (18)

where max(·) extracts the maximum value of a spectrogram,
max(·, ·) returns the larger of two values, and ε is a floor value
to avoid putting too much weight on T-F units with low energy.
Through T-F masking and also based on the DNN-estimated
target speech Ŝ

(1)
q (c), d̂q(c, f) is computed as the principal

eigenvector of an estimated speech covariance matrix [48], [76],
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[77] for non-moving point sources, i.e.,

Φ̂(c, f) =
T∑

t=1

m̂(c, t, f)Y(t, f)Y(t, f)H, (19)

m̂(c, t, f) =
|Ŝ(1)

q (c, t, f)|
|Ŝ(1)

q (c, t, f)|+ |Yq(t, f)− Ŝ
(1)
q (c, t, f)|

, (20)

d̂(c, f) = P
(
Φ̂(c, f)

)
, (21)

d̂q(c, f) = d̂(c, f)/d̂(c, f ; q), (22)

where P(·) extracts the principal eigenvector, and d̂(c, f ; q)

denotes the qth element in d̂(c, f). The results of convolutional
beamformer is comptued as

ŜConvBF
q (c, t, f) = ŵq(c, f)

H Ȳ(t, f), (23)

where “ConvBF” denotes convolutional beamformer.
Notice that our DNN-supported MCMFWF in (13) is simpler

to compute than the convolutional beamformer.
3) Baseline for SCMFWF: In the single-microphone case,

convolutional beamformer turns into the WPE filter [49]. Fol-
lowing the DNN-WPE algorithm [70], we compute it by using
the magnitude of Ŝ

(1)
q (c) estimated by DNN1. The filter is

computed by solving the following problem:

argmin
wq(c,f)

T∑
t=1

|Yq(t, f)−wq(c, f)
H Y̆(t−Δd, f)|2

λ̂q(c, t, f)
, (24)

where Y̆q(t, f) = [Yq(t−Δl + 1, f)T, . . . , Yq(t, f)
T]T ∈

CΔl , wq(c, f) ∈ CΔl , Δd is a prediction delay, and λ̂q(c) is
computed using (18). The WPE result is obtained as

ŜWPE
q (c, t, f) = Yq(t, f)− ŵq(c, f)

HY̆(t−Δd, f). (25)

G. Miscellaneous Setup

In default, for STFT, the window length is 32 ms and hop
length 8 ms, and the square-root Hann window is used as the
analysis window. In this case, for 16 kHz sampling rate, a 512-
point discrete Fourier transform (DFT) is applied to extract 257-
dimensional complex STFT spectra at each frame, and for 8 kHz,
a 256-point DFT is used to extract 129-dimensional complex
STFT spectra.E (see its definition in Table I) is set to 4 for 8 kHz
and to 2 for 16 kHz. This way, the dimension of frame-level
embeddings (i.e., F × E) used for self-attention is reasonable.

For MFWF, we setΔl andΔr, which controls the filter taps, to
4 and 3 for eight-channel separation, to 5 and 4 for six-channel, to
15 and 14 for two-channel, and to 20 and 19 for single-channel.
For convolutional beamformer, we set the prediction delayΔd to
3 following [53], and tune Δl to 7 for eight-channel processing,
to 9 for six-channel, and to 29 for two-channel. For WPE, Δd

is also 3 and Δl is tuned to 40. We emphasize that a positive
prediction delay Δd is found important for convolutional beam-
former and WPE to avoid target cancellation [49], [53], and both
filters are designed by the original authors to not filter future
frames, because future frames contain the reverberation of the
target speech at the current frame and including them for linear

filtering would lead to target cancellation. ε in (18) is tuned to
10−5.

In each epoch, we sample a 4-second segment from each
mixture for training. We normalize the sample variance of each
mixture segment to 1.0 and use the same scaling factor to scale
the target sources, before using them for training. Adam is used
as the optimizer. The L2 norm for gradient clipping is set to 1.0.
The learning rate starts from 0.001 and is reduced by half if the
validation loss does not improve in 3 epochs.

We do not use any dynamic mixing or data augmentation [19].

H. Evaluation Metrics

The evaluation metrics vary with tasks. We consider SI-SDR
or SI-SDRi [40], SDR or SDR improvement (SDRi) [78], PESQ,
STOI or extended STOI (eSTOI) [67]4, and WER. For PESQ, we
use the python-pesq toolkit5 to report narrow-band MOS-LQO
scores. SI-SDR and SDR measure the quality of predictions at
the sample level, PESQ and STOI are objective metrics of speech
quality and intelligibility respectively, and WER is a widely-
used metric for measuring speech recognition performance.

The number of model parameters is reported in millions (M).
We use the flops-counter.pytorch toolkit6 to count the number
of multiply–accumulate (MAC) operations needed to process
a 4-second mixture, and report it in giga-operations per second
(GMAC/s). Following [79], we implement Deconv1D as a linear
layer followed by overlap-add. This can reduce the number of
MAC operations when the stride J is larger than 1, and speed
up training and inference when the kernel size I equals J (> 1).

VI. EVALUATION RESULTS

We first show the effectiveness of TF-GridNet at separation on
various tasks and datasets, and then present a study on the com-
putational requirements of different TF-GridNet configurations
and their performance on WSJ0-2mix.

A. Results on WSJ0-2mix

We evaluate TF-GridNet on monaural, anechoic speaker sep-
aration. SI-SDRi [40] and SDRi [78] are used as the evaluation
metrics, following previous studies. The mixture SI-SDR is 0 dB
and the mixture SDR 0.2 dB. We always use B = 6 blocks for
WSJ0-2mix.

1) Comparison With DPRNN: Table II compares the perfor-
mance of TF-GridNet with DPRNN [15]. We configure TF-
GridNet to use almost the same number of parameters and
almost the same amount of computation as DPRNN. This is
implemented by using BLSTMs in each model and unifying the
embedding dimension (and the bottleneck dimension in the cases
of DPRNN) to 64 and the hidden dimension of the BLSTMs to
128. For DPRNN, we set the window size to 2 samples, hop

4https://github.com/mpariente/pystoi, v0.3.3
5https://github.com/ludlows/python-pesq, v0.0.2
6https://github.com/sovrasov/flops-counter.pytorch. Note that, in default,

flops-counter.pytorch only tries to count the MAC operations of a list of pre-
defined modules that are already available in Pytorch. We confirm that we also
count the MAC operations of our customized modules.
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TABLE II
MASKING AND MAPPING COMPARISON BASED ON WSJ0-2MIX

TABLE III
ABLATION RESULTS ON WSJ0-2MIX

size to 1 sample, chunk size to 250 frames, and overlap between
consecutive chunks to 50%, following the best configuration
reported in [15]. For TF-GridNet, in each block we remove the
full-band self-attention module, and set I and J to 1 (in this case,
the order of LN and Unfold does not matter). From row 1 and
4, we observe that TF-GridNet with complex spectral mapping
obtains better results (21.2 vs. 18.8 dB). Table II also reports
the performance of using TF-GridNet with masking in row 2
and 3. In row 2, we mask learned embeddings, following [11],
[15], [25]. We closely follow the encoder-masking-decoding
modules used in [25], but replace their path-scanning modules
with our intra-frame full-band and sub-band temporal modules.
In row 3, we use TF-GridNet for complex ratio masking based
separation [8], [29]. After obtaining the output tensor of the
Deconv2D module (see Fig. 2), we first truncate the values in
the tensor to the range [−5, 5] to obtain an estimated complex
ratio mask and then multiply it with the mixture spectrogram for
separation. From row 2, 3 and 4, we notice that complex spectral
mapping performs better (21.2 vs. 20.7 and 20.8 dB).

2) Ablation Results With Different Hyper-Parameters: Ta-
ble III presents the ablation results of our models on WSJ0-2mix
using different model hyper-parameters. From row 1-4, we can
see that, when the kernel size is sufficiently large (i.e., I = 8),
using the Unfold and Deconv1D mechanism together with a
smaller embedding dimension (i.e., D = 16) does not decreases
SI-SDRi, compared with the configuration that uses a larger
embedding dimension (i.e., D = 128) but does not stack nearby
T-F embeddings (i.e., I = 1). One benefit of using the former
configuration is that the memory consumption is lower. From
row 4 and 5, we can see that the MC loss produces slightly
better SI-SDRi (21.6 vs. 21.8 dB). Comparing row 7 with 5
and 6, we notice that enlarging the model size by increasing
the number of hidden units H in BLSTMs and the embedding

TABLE IV
PERFORMANCE COMPARISON WITH OTHER SYSTEMS ON WSJ0-2MIX

dimension D produces clear improvement. The results in row
7, 8 and 9 suggest that including the full-band self-attention
module is beneficial, and using four attention heads leads to
better performance than just using one (22.9 vs. 22.6 dB). In
row 10, we increase the embedding dimension to 48 and reduce
the kernel size I to 4, and obtain slightly better SI-SDRi than the
model in row 9 (23.0 vs. 22.9 dB). In row 11, we use LN+Unfold
rather than Unfold+LN. This results in 0.2 dB better SI-SDRi
(23.2 vs. 23.0 dB). Further enlarging model size in row 12
produces further gains (from 23.2 to 23.5 dB).

3) Comparison With Previous Models: Table IV compares
the performance of our best TF-GridNet with previous models
on WSJ0-2mix. Compared with previous best such as Sep-
Former [19], SFSRNet [23] and QDPN [24], our model has
a modest size. Notice that, since 2019, T-F domain models
have been largely under-explored and under-represented for
anechoic speaker separation, and many research efforts have
been devoted to time-domain approaches. The recent TFPSNet
model [25] achieves a competitive SI-SDRi at 21.1 dB, but the
performance still falls within the range of scores (i.e., [20.0,
22.0] dB SI-SDRi) that can be commonly achieved by modern
time-domain models. Our study, for the first time since 2019,
unveils that complex T-F domain models, with a contemporary
DNN architecture, can outperform modern time-domain models
by a large margin. Later in Section VI-E, we will provide the
computational cost of TF-GridNet.
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TABLE V
RESULTS ON SMS-WSJ (1CH)

TABLE VI
RESULTS ON SMS-WSJ (2CH)

B. Results on SMS-WSJ and WHAMR!

This section evaluates TF-GridNet and the two-DNN system
on reverberant and noisy-reverberant speaker separation. In the
following experiments, in default we useB = 4 andH = 192 to
save computation7 and use LN+Unfold. Based on the validation
sets, we set I = 4, J = 1 andD = 48 for SMS-WSJ, and I = 8,
J = 1 and D = 24 for WHAMR!.

1) Comparison of Loss Functions: The speaker separation
community usually uses SI-SDR as the key evaluation metric and
many previous models are trained to optimize SI-SDR. We also
do this in our experiments on WSJ0-2mix in order to compare
TF-GridNet with earlier models. However, using SI-SDR as the
loss is known to produce sub-optimal magnitude estimates due to
the compensation between estimated magnitude and phase [63],
while metrics such as PESQ, eSTOI and WER favor signals with
good magnitude estimates. Based on SMS-WSJ and WHAMR!,
in Tables V, VI, VII, VIII and IX we make a direct comparison
of training TF-GridNet (i.e., DNN1) with the SI-SDR+MC
loss in (10), Wav+Mag in (11) and Wav+Mag+MC in (12).
We observe that, compared with SI-SDR+MC, Wav+Mag+MC

7We also experimented with larger TF-GridNets and observed better perfor-
mance but we consider this unnecessary. We will show later that TF-GridNet
with this setup already produces better results than competing models.

TABLE VII
RESULTS ON SMS-WSJ (6CH)

TABLE VIII
RESULTS ON WHAMR! (1CH)

TABLE IX
RESULTS ON WHAMR! (2CH)

performs better or comparably good in PESQ, eSTOI and WER,
and slightly worse in SI-SDR and SDR; and compared with
Wav+Mag, it usually performs better. We will in default use the
Wav+Mag+MC loss in the following experiments.

2) Comparison in Monaural, Single-DNN Setup: Tables V
and VIII respectively present the results of TF-GridNet (denoted
as DNN1) on the monaural tasks of SMS-WSJ and WHAMR!.
TF-GridNet substantially outperforms competing systems that
train a single DNN for separation. For example, in Table V TF-
GridNet is 9.2 dB better than DPRNN-TasNet (15.7 vs. 6.5 dB
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SI-SDR) [15] and 10.0 dB better than TCN-DenseUNet based
SISO1 (15.7 vs. 5.7 dB SI-SDR) [35]. To obtain state-of-the-art
performance, many previous speaker separation studies tend to
use dynamic mixing (DM) to generate more training mixtures.
Their DM results on the monaural task of WHAMR! are listed
in the bottom panel of Table VIII. Although DM yields slight
improvements for previous models, their final performance is
still worse than the 10.6 dB SI-SDR result obtained by TF-
GridNet without DM (i.e., the DNN1 row). These results show
the effectiveness of TF-GridNet for noisy-reverberant speaker
separation.

3) Comparison in Multi-Channel, Single-DNN Setup: Ta-
bles VI and VII respectively present the results of TF-GrdiNet
based DNN1 for two- and six-channel separation on SMS-WSJ,
and Table IX reports two-channel results on WHAMR!. TF-
GridNet shows substantially better performance than competing
single-DNN approaches. For example, in Table VII TF-GridNet
obtains 19.9 dB SI-SDR, while FasNet+TAC [81], MC-Conv-
TasNet [80], TCN-DenseUNet [35] and LBT [82] respectively
obtain 8.6, 10.8, 10.2 and 13.2 dB.

4) Effectiveness of Including MFWF and Post-Filtering:
For the post-filtering network (i.e., DNN2), which is trained
in an enhancement way, we use the same configuration as
DNN1 but use B = 3 TF-GridNet blocks. Although TF-
GridNet based DNN1 already exhibits strong separation per-
formance, we observe that using its outputs to compute an
MFWF and another TF-GridNet for post-filtering still pro-
duces clear improvements. This can be observed in Tables VI
and VII by comparing DNN1+MCMFWF+DNN2, DNN1, and
DNN1+DNN2 (which stacks two TF-GridNets but not perform-
ing linear filtering in between). In the monaural case, in Table V
DNN1+SCMFWF+DNN2 is also better than DNN1.

5) MFWF vs. Other Linear Filters: In Tables VI and VII,
we observe that using MCMFWF with both past and future
context (i.e., Δl > 0 and Δr > 0) between DNN1 and DNN2

produces clear improvements over MCMFWF with only past
context (i.e., Δl > 0 and Δr = 0), MCMFWF with no context
(i.e., Δl = 0 and Δr = 0), and convolutional beamformer. In
Table V, SCMFWF with both past and future context leads to
better scores than WPE as well as SCMFWF with only past
context in the single-channel case.

C. Results on WSJ0CAM-DEREVERB

For the rest experiments (including the ones in this subsection
and in the next subsection), we set I = 4, J = 2, and D = 48.
J is increased to 2 as the sampling rate is 16 kHz. The other
setups are the same as those in the previous subsection.

Tables X and XI respectively present the results of using TF-
GridNet for one- and eight-channel dereverberation. Trained to
perform complex spectral mapping, DNN1 based on TF-GridNet
achieves substantially better performance than SISO1 (16.6 vs.
8.4 dB SI-SDR in Table X) and MISO1 (19.9 vs. 11.3 dB SI-SDR
in Table XI) proposed in [36], which also uses complex spec-
tral mapping but with TCN-DenseNet. With beamforming and
post-filtering, DNN1+MCMFWF+DNN2 based on TF-GridNet
also shows better results than the competing approach (21.2 vs.

TABLE X
RESULTS ON WSJ0CAM-DEREVERB (1CH)

TABLE XI
RESULTS ON WSJ0CAM-DEREVERB (8CH)

TABLE XII
RESULTS ON L3DAS22 3D SPEECH ENHANCEMENT TASK (8CH)

18.2 dB SI-SDR) in [36], which uses two TCN-DenseUNets
with a composition of linear filters.

From the last two rows of Table XI, we notice that, based on
TCN-DenseUNet, using complicated sub-band linear filtering
followed by post-filtering (i.e., the last row) produces large
improvement over MISO1 (18.2 vs. 11.3 dB SI-SDR) [36].
This indicates that the sub-band linear filters can model what
TCN-DenseUNet, which performs full-band modeling, is not
good at modeling. In comparison, using a single TF-GridNet
alone is already better than the last two rows (i.e., 19.9 vs.
11.3 and 18.2 dB SI-SDR) and the improvement brought by
beamforming and post-filtering is not large (21.2 vs. 19.9 dB
SI-SDR). This indicates that TF-GridNet could, to a large extent,
model what sub-band linear filters complement to full-band
models, likely through the sub-band temporal modules.

D. Results on L3DAS22

L3DAS22 requires participants to estimate the dry source
signal. Following (11), we define the loss as

LWav+Mag,GEQ =
C∑

c=1

(
1

N
‖α̂(c)ô(c)− o(c)‖1

+
1

T × F

∥∥∥∣∣∣STFT(α̂(c)ô(c))
∣∣∣− ∣∣∣STFT(o(c))

∣∣∣∥∥∥
1

)
, (26)
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TABLE XIII
ABLATION RESULTS OF COMPUTATION COST AND SEPARATION PERFORMANCE ON WSJ0-2MIX

where o(c) denotes the dry source signal of speaker c (see our
physical model in (1)) and α̂(c) = argminα ‖αô(c) − o(c)‖22 =
(ô(c))To(c)/(ô(c))Tô(c) is a gain equalization (GEQ) factor [40],
[43] that allows estimated speech to have an energy level differ-
ent from target speech.

Table XII reports the results. A single TF-GridNet (i.e.,
DNN1) already outperforms our winning solution [43] and the
rest 16 submissions (see this link8 for the challenge ranking), in-
cluding the runner-up system [85], whose monaural version [86]
won the recent DNS2022 and AEC2022 challenges.

Including beamforming and post-filtering yields further im-
provement. Here MCMFWF is computed in a way similarly
to (13), but we project the far-field B-format Ambisonic mix-
ture to the dry source signal estimated by DNN1 so that the
beamforming result can be potentially time-aligned with the
dry target, if the dry target estimated by DNN1 is reasonably
good, which is the case from the DNN1 row. In comparison,
DNN-supported convolutional beamformer cannot produce an
estimate time-aligned with the dry source, and how to modify it
to deal with B-format Ambisonic signals is unknown.

E. Computation Cost vs. Separation Performance

Although this article focuses on the separation performance
rather than computation cost, this subsection varies the computa-
tion cost of TF-GridNet and reports the separation performance
on WSJ0-2mix in Table XIII (see the notes below the table
for how we calculate the computation cost). The computation
cost can be controlled by increasing the stride size J (so that
the sequence length is reduced), reducing the overlap between
consecutive frames, and reducing the hidden dimensions of
BLSTMs, H , as well as the embedding dimension D.

In row 1, the model obtaining the 23.5 dB result (i.e., the
best result in Table IV) is very costly, requiring 231.1 GMAC/s

8See https://www.l3das.com/icassp2022/results.html

which is quite high. In row 2, we reduce the hidden units in
BLSTMs, H , from 256 to 196 and the embedding dimension
D from 64 to 48. This reduces GMAC/s to 131.1, while the
performance degrades slightly to 23.2 dB. In row 3, we decrease
the window size from 32 to 16 ms, reducing GMAC/s by almost
half to 66.0, as the number of frequencies is cut by around
half. The performance, nonetheless, remains at 23.2 dB. In
row 4–6, we increase the stride size J from 1 to 2, 3 and 4
respectively, set the kernel size I equal to J , and set D such
that D × I = H . These reduce GMAC/s from 66.0 gradually
down to 19.2, as the sequence length the BLSTMs need to
model becomes shorter. In row 7, we reduce the hidden units
in BLSTMs, H , from 192 to 128. The computation is further
reduced to 9.5 GMAC/s, and the performance is at 20.0 dB.
In row 8, we reduce the hidden units in BLSTMs, H , from
128 to 96, resulting in 6.1 GMAC/s. The model can still obtain
18.9 dB.

Table XIII provides the training speed on a modern GPU
in terms of the number of minutes taken to finish an epoch.
Although the models in the first two rows take a long time (i.e.,
119.5 and 231.1 minutes) to complete an epoch, all the other
configurations have a reasonable training time per epoch.

Table XIII compares the computation cost of several other
representative models with that of TF-GridNet. TF-GridNet
obtains competitive performance, given limited computation
cost. For example, TF-GridNet in row 9 obtains better separation
performance than TFPSNet [25] in row 13 (i.e, 22.0 vs. 21.1 dB
SI-SDRi), using similar GMAC/s (i.e., 29.8 vs. 29.6), less mem-
ory, and exhibiting faster inference speed on CPU. Compared
with a representative time-domain model, DPRNN [15], shown
in row 11, the TF-GridNets from row 4 to 9 can all obtain better
separation performance using fewer GMAC/s.

These results suggest that TF-GridNet can be configured, in
a flexible way, to use a reasonable amount of computation and
achieve a reasonable separation performance.
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VII. CONCLUSION

We have proposed TF-GridNet, a DNN architecture model-
ing complex T-F spectrograms, for single- and multi-channel
speech separation. By integrating full- and sub-band model-
ing inside TF-GridNet and outside through beamforming and
post-filtering, the proposed systems achieve state-of-the-art per-
formance for speech separation in noisy-reverberant conditions
on multiple public datasets. Our future research will extend
TF-GridNet for real-time, online speech separation, building
upon our preliminary investigations [79], [89], [90] which have
shown promising results.

TF-GridNet obtains a state-of-the-art 23.5 dB SI-SDRi on
WSJ0-2mix, and it can be configured to use a reasonable amount
of computation and achieve a reasonable separation perfor-
mance. These resulte highlights the strong performance of T-F
domain models also for anechoic speaker separation, suggesting
that T-F domain methods modeling complex representations,
which implicitly perform phase estimation by predicting target
RI components simultaneously, are not sub-optimal compared
to time-domain approaches for the task of anechoic speaker
separation. The performance differences between these two
approaches observed in earlier studies could mainly result from
their differences in DNN architectures.

In closing, we emphasize that (i) the patterns of speech spec-
trograms vary with frequency but, within each sub-band, some
patterns such as spatial and reverberation patterns are relatively
stable along time; and (ii) full-band or sub-band modeling alone
is likely not capable of sufficiently modeling such patterns. Our
proposed ways to integrate them exhibit excellent performance
in our experiments. The meta-idea of integrated full- and sub-
band modeling, we believe, would motivate the design of many
new algorithms in future research on neural speech separation.
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