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Abstract—Deep learning based speech enhancement in the short-
time Fourier transform (STFT) domain typically uses a large win-
dow length such as 32 ms. A larger window can lead to higher
frequency resolution and potentially better enhancement. This
however incurs an algorithmic latency of 32 ms in an online
setup, because the overlap-add algorithm used in the inverse STFT
(iSTFT) is also performed using the same window size. To reduce
this inherent latency, we adapt a conventional dual-window-size
approach, where a regular input window size is used for STFT but
a shorter output window is used for overlap-add, for STFT-domain
deep learning based frame-online speech enhancement. Based on
this STFT-iSTFT configuration, we employ complex spectral map-
ping for frame-online enhancement, where a deep neural network
(DNN) is trained to predict the real and imaginary (RI) components
of target speech from the mixture RI components. In addition, we
use the DNN-predicted RI components to conduct frame-online
beamforming, the results of which are used as extra features for a
second DNN to perform frame-online postfiltering. The frequency-
domain beamformer can be easily integrated with our DNNs and is
designed to not incur any algorithmic latency. Additionally, we pro-
pose a future-frame prediction technique to further reduce the algo-
rithmic latency. Evaluation on noisy-reverberant speech enhance-
ment shows the effectiveness of the proposed algorithms. Compared
with Conv-TasNet, our STFT-domain system can achieve better en-
hancement performance for a comparable amount of computation,
or comparable performance with less computation, maintaining
strong performance at an algorithmic latency as low as 2 ms.

Index Terms—Complex spectral mapping, deep learning, frame-
online speech enhancement, microphone array processing.

I. INTRODUCTION

EEP learning has dramatically advanced speech enhance-

ment in the past decade [1]. Early studies estimated target
magnitudes via time-frequency (T-F) masking [2] or directly pre-
dicted target magnitude via spectral mapping [3], both using the
mixture phase for signal re-synthesis. Subsequent studies strove
to improve phase modelling by performing phase estimation
via magnitude-driven iterative phase reconstruction [4]. Recent
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effort focuses on complex- and time-domain approaches [5], [6],
[71, 181, [9], [10], [11], where magnitude and phase are modelled
simultaneously through end-to-end optimization.

Many application scenarios such as teleconferencing and
hearing aids require low-latency speech enhancement. Deep
learning based approaches [8], [12], [13], [14], [15], [16] han-
dle this by using causal DNN blocks, such as uni-directional
LSTMs, causal convolutions, causal attention layers, and causal
normalization layers. Although many previous studies along this
line advocate that their system with a causal DNN model is
causal, one should be aware that most of these systems are, to
be more precise, frame-online, and the amount of look-ahead
depends on the frame length. One major approach that can
potentially achieve sample-level causal processing is by using
WaveNet-like models [17]. However, their effectiveness in deal-
ing with noise and reverberation in a sample-causal setup is
unclear [18]. In addition, at run time such models need to run
a forward pass for each sample, resulting in a humongous and
likely unnecessary amount of computation. Popular STFT- and
time-domain approaches typically split signals into overlapped
frames with a reasonably large hop length before processing.
One advantage is that the forward pass then only needs to be
run every hop-length samples. The latency is however equal
to the window length due to the use of overlap-add in signal
re-synthesis, plus the running time of processing one frame (see
Fig. 1 and its caption for a detailed explanation of the latency).
In the recent Deep Noise Suppression (DNS) challenge [19], one
key requirement was that the latency of producing an estimate
for the sample at index n cannot exceed 40 ms on a standard
Intel Core 15 processor. For a typical STFT-based system with a
32 ms window and an 8 ms hop size, a frame-online DNN-based
system satisfies the requirement if the processing of each frame
can finish within 8 ms on the specified processor. We define
the latency due to algorithmic reasons (such as overlap-add) as
algorithmic latency, and the computing time needed to process
one frame as hardware latency. The overall latency is the
summation of the two and is denoted as processing latency.

Although a 40 ms processing latency can meet the demand
of many applications, for hearing aids this latency is too large
to deliver a good listening experience. In the recent Clarity
challenge, proposed for hearing aid design [20], the required
algorithmic latency was 5 ms. Such a low-latency constraint
requires new designs and significant modifications to existing
enhancement algorithms. To meet this constraint, our study aims
at an enhancement system with a window that looks ahead at
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Fig. 1. Illustration of processing latency in systems based on regular STFT
and iSTFT. Each rectangular band denotes a segment of time-domain signals.
We use 75% frame overlap as an example. Because of the overlap-add in the
iSTFT, to get the prediction at sample n (marked in the top of the figure) at
frame ¢, one has to first observe all the samples of frame ¢ + 3 and then wait
until the DNN finishes processing frame ¢ + 3. The processing delay is hence
the window length plus the running time of processing one frame.

most 4 ms of samples, and a 2 ms hop size. We assume that the
hardware latency can be within 2 ms, leading to a maximum
processing delay of 6 ms, even though this computational ca-
pability might not be available right now for a computationally
demanding DNN model on resource-constrained edge devices.
We emphasize that this study focuses on improving enhance-
ment performance and reducing algorithmic latency rather than
computational efficiency or feasibility on current hardware.

In the literature, some early STFT-domain beamforming
studies [21], [22] use small window and hop sizes to achieve
enhancement with a low algorithmic latency, and a low fre-
quency resolution is used for STFT following the short window
length. However, this low frequency resolution may limit the
enhancement performance [1], [23], [24] when phase estimates
are not performed or are not good enough [25]. There are
studies [26], [27] designing low-delay filterbanks with warped
frequencies for speech enhancement and speaker separation,
but such manually-designed filterbanks are often complicated
and modern deep learning based solutions [1], [7] tend to learn
similar filters through end-to-end training based on the complex
T-Frepresentations with uniform frequencies or based on the raw
time-domain signals. In the recent Clarity challenge, almost all
the top teams [28], [29], [30] adopt time-domain networks such
as Conv-TasNet [7], [31], which can use very short window and
hop sizes to potentially realize very low-latency enhancement.
Conv-TasNet leverages DNN-based end-to-end optimization to
learn a set of bases for a small window of samples respectively
for its encoder and decoder to replace the conventional STFT
and iSTFT operations. The number of bases is set to be much
larger than the number of samples in the window. Enhancement
is then performed in the higher-dimensional encoded space and
the decoder is used for overlap-add based signal re-synthesis.
While achieving good separation performance in monaural
anechoic speaker separation tasks, Conv-TasNet performs less

impressively in reverberant conditions and in multi-microphone
scenarios than frequency-domain approaches [11], [32], [33].
In addition, the basis learned by Conv-TasNet is not narrow-
band [7]. It is not straightforward how to combine Conv-TasNet
with conventional STFT-domain enhancement algorithms to
achieve further gains, without incurring additional algorithmic
latency. Such conventional algorithms include beamforming and
weighted prediction error (WPE), which rely on the narrow-band
assumption and can produce reliable separation through their
per-frequency processing [11], [34], [35], [36]. One way of
combining them [23], [37], [38] is by iterating Conv-TasNet,
which uses a very short window, with STFT-domain beam-
forming, which uses a regular, longer window. To use Conv-
TasNet outputs to compute signal statistics for STFT-domain
beamforming, one has to first re-synthesize time-domain signals
before extracting STFT spectra for beamforming. Similarly, to
apply Conv-TasNet on beamforming results for post-filtering,
one has to apply iSTFT to get time-domain signals before
feeding them to Conv-TasNet. Such an iterative procedure would
however gradually build up the algorithmic latency, because the
overlap-add algorithms are used multiple times in Conv-TasNet
and iSTFT.

It is commonly perceived that regular STFT-based systems,
which suffer from a large algorithmic latency equal to the STFT’s
typically long window length, are not ideal for very low-latency
speech enhancement, and time-domain models such as Conv-
TasNet, which can achieve strong performance using very short
windows, appear a more appropriate choice [7]. In this study, we
show that our STFT-based system can also produce a comparable
or better enhancement performance at an algorithmic latency
as low as 4 or 2 ms. This is partially achieved by combining
STFT-domain, deep learning based speech enhancement with
a conventional dual window approach [39], [40], which uses a
regularly long window length for STFT and a shorter window
length for overlap-add. This approach is illustrated in Fig. 2(a).
More specifically, assuming a hop size (HS) of 2 ms, we use a
16 ms input window size (iWS) for STFT, and an output window
size (0WS) of 4 ms for the overlap-add in iSTFT. The 16 ms input
window looks 4 ms ahead and 12 ms in the past in this case.
After obtaining the predicted signal at each frame, i.e., after
performing inverse discrete Fourier transform (iDFT), we throw
away the first 12 ms of waveforms, apply a synthesis window,
and perform overlap-add based on the last 4 ms of signals at
each frame. The DNN module is designed to be frame-online.
Therefore the entire system has an algorithmic latency of 4 ms.
Later in Section V-B, we will introduce a future-frame prediction
technique to further reduce the algorithmic latency to 2 ms.

When used with DNNS, this dual window size approach has
several advantages. First, using a long window for STFT leads
to higher frequency resolution, meaning that we could have
more estimated filters (or mask values) per frame to obtain
more fine-grained enhancement. In addition, higher frequency
resolution could better leverage the speech sparsity property
in the T-F domain for enhancement [1], [24]. Second, using
a longer input window can capture more reverberation at each
frame, potentially leading to better dereverberation. In addition,
it could lead to better spatial processing, as the inter-channel
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Fig. 2. Illustration of overlap-add with dual window sizes. This example uses
a 16 ms input window size for STFT, a 4 ms output window size for overlap-add,
and a 2 ms hop size. At each frame, DNN is trained to predict (a) current frame;
(b) one frame ahead.

phase patterns could be more stable and salient for longer
signals. Third, STFT bases are narrowband in nature, meaning
that we can readily use our DNN outputs (in this study, the
estimated target real and imaginary components) to compute a
conventional frequency-domain beamformer, whose results can
be used as extra features for another DNN to better predict the
target speech.

The major contributions of this paper are provided below,
together with our justifications:

First, we adapt a conventional dual window size ap-
proach [39], [40] to reduce the algorithmic latency of STFT-
domain deep learning based speech enhancement. Although
using a synthesis window shorter than the analysis window
has been proposed in conventional non-deep-learning speech
enhancement studies [39], [40], it is seldomly employed
(or investigated) in modern deep learning based speech en-
hancement. TasNet-style time-domain DNN models [7], [9],

which learn encoders (i.e., filterbanks) and decoders based on
very short windows of signals through end-to-end training, have
become the dominant approach to achieve very low-latency
enhancement. This can be observed from the top solutions [28],
[29], [30] in the recent Clarity challenge [20]. Such success casts
doubt on whether STFT-domain approaches are inherently sub-
optimal compared with time-domain approaches, and whether
the go-to approach for very low-latency speech enhancement
should be time-domain approaches. In our experiments, we find
that the proposed STFT-domain system can achieve compa-
rably good or better performance than popular Conv-TasNet
systems [7], [28], [31], using a similar amount of computation
and at an algorithmic latency as low as 4 or 2 ms. To the best
of our knowledge, to date there is only one deep learning based
study exploring the dual window size idea [24]. However, that
work focuses on a speaker separation task rather than speech
enhancement, only tackles the monaural condition, performs
real-valued masking based on a weak LSTM model, only re-
duces the algorithmic latency to 8 ms, and does not perform a
comparison with time-domain models. Therefore, whether one
should embrace STFT-domain approaches for very low-latency
speech enhancement remains unclear. In contrast, our study
includes both single- and multi-channel conditions, considers
both magnitude and phase estimation through complex spectral
mapping based on modern DNN architectures, reduces the algo-
rithmic latency to as low as 2 ms (where our models still show
competitive performance), and, most importantly, we perform
a thorough comparison with the representative time-domain
model, Conv-TasNet.

Second, we utilize the outputs from the first DNN
for frequency-domain frame-online beamforming, and the
beamforming result is fed to a second DNN for better en-
hancement (i.e., post-filtering). This beamforming followed by
post-filtering approach produces clear improvements in our ex-
periments over just using one DNN (i.e., not using any beam-
forming and post-filtering). Although this approach has been
studied in non-causal neural speech enhancement [11], [41],
[42], [43], one important advantage we will demonstrate in
this paper is that, since the two DNNs and the beamformer all
operate in the complex T-F domain, this approach does not incur
additional algorithmic latency. In contrast, time-domain models
cannot be straightforwardly combined with frequency-domain
beamforming without incurring extra algorithmic latency. This
comparison demonstrates that one advantage of performing very
low-latency enhancement in the STFT domain is the integration
with frequency-domain beamforming.

Third, we propose a future-frame prediction technique that
can further reduce the algorithmic latency caused by the output
window size. We show that predicting one frame ahead only
slightly degrades the performance. This is a significant contri-
bution, because it suggests a good way to reduce the algorithmic
latency using the same amount of computation, or maintain the
same algorithmic latency but use less computation. In addi-
tion, we analyze the effects of the shape of analysis windows
on future-frame prediction, and present preliminary results of
predicting multiple frames ahead, which can potentially re-
duce the algorithmic as well as processing latency to zero.
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Furthermore, this future-frame prediction technique is partic-
ularly helpful to the two-DNN system with an intermediate
beamformer. We point out that one inherent weakness of the
two-DNN system is that, since it stacks two DNNs, the amount
of computation would at least be doubled if the same DNN
architecture is used in both networks. Supposing the overlap
between output windows is 50% (for example by using 2 ms
oWS and 1 ms hop), we propose to cut the doubled amount of
computation by approximately half via doubling the hop size
and predicting one frame ahead, at the same time maintaining
the same algorithmic latency. The resulting system still shows
competitive performance to Conv-TasNet.

It should be noted that conventional signal-processing-based
acoustic echo control and active noise control studies have
shown that low-delay time-domain filtering can be achieved
by T-F domain processing [26], and the idea of predicting
future samples (via for example multi-step linear prediction)
to reduce processing latency has been studied in active noise
control [44]. They are however seldom studied in the context of
machine-learning-based speech processing.

The following section gives an overview of our system.

II. SYSTEM OVERVIEW

Given an utterance of a speaker recorded in noisy-reverberant
conditions by a P-microphone array, the physical model in the
STFT domain can be formulated as

Y(t, f) =Xt )+ V()
=S(t, ) +H({E )+ V(T f), (1

where Y (t, f), V(t, f), X(t, f), S(t, f) and H(t, f) € CF
respectively denote the STFT vectors of the mixure, reverber-
ant noise, reverberant target speech, direct-path and non-direct
signals of the target speaker at time ¢ and frequency f. In the
rest of this paper, when dropping ¢ and f from the notation,
we refer to the corresponding spectrogram. In our experiments,
the default iWS, oWS, and HS for STFT are respectively set to
16, 4, and 2 ms, and the sampling rate is 16 kHz. A 256-point
DFT is applied to extract 129-dimensional STFT coefficients at
each frame. The analysis window and synthesis window will be
described in Section V-A.

Based on the input Y, we aim at recovering the target
speaker’s direct-path signal captured at a reference microphone
q,1i.e., Sq;. We use the corresponding time-domain signal of S,
denoted as s, as the reference signal for metric computation.
Note that early reflections are not considered as part of target
speech. In multi-microphone cases, we assume that the same
array geometry is used for training and testing, following [41],
[43]. This is a valid assumption as real-world products such as
smart speakers have a fixed array configuration.

Our best performing system, illustrated in Fig. 3, has two
DNNs. Using the real and imaginary (RI) components of multi-
ple input signals as input features, the DNNs are trained sequen-
tially based on single- or multi-microphone complex spectral
mapping [5], [41], [43] to predict the RI components of S,.
The estimated speech by DNN; is used to compute, at each
frequency, a multi-channel Wiener filter (MCWF) [23] for the

A 4
' o )58

Fig. 3.  DNN overview. Our system contains two frame-online DNNs with a
frame-online multi-channel Wiener filter (MCWF) in between.

SMCWF
Sq

target speaker. DNN, concatenates the RI components of the
beamforming results, the outputs of DNN;, and Y as features to
further estimate the RI components of S,. The DNN;, DNN>,
and MCWF modules are all designed to be frame-online, so
that we can readily plug our two-DNN system into Fig. 2 to
achieve enhancement with very low algorithmic latency. Note
that such two-DNN systems with a beamformer in between have
been explored in our previous studies [11], [41], [42], [43], but
their target was offline processing. This paper extends them for
frame-online processing with a very low algorithmic latency.

The rest of this paper is organized as follows. Section III
details the DNN configurations, Section IV describes the DNN-
supported beamforming, and Section V presents the proposed
enhancement system with low algorithmic latency. Experimen-
tal setup and evaluation results are presented in Sections VI and
VII. Section VIII concludes this paper.

III. DNN CONFIGURATIONS

Our DNNs are trained to do complex spectral mapping [5],
where the real and imaginary (RI) components of multiple
signals are concatenated as input for DNNs to predict the target
RIcomponents at a reference microphone. This section describes
the loss functions and the DNN architectures. The key differ-
ences from our earlier studies [11], [41], [42], [43] include the
facts that (1) we train through the dual window size approach
and define the loss function on the re-synthesized signals; and
(2) we dramatically reduce the per-frame amount of computation
of the DNN models used in our earlier studies.

A. Loss Functions

The two DNNs in Fig. 3 are trained using different loss
functions. For DNN;, following [41], [43], [45] the loss is
defined on the predicted RI components and their magnitude:

Lrinvag = [|RSY — Real () |1 + |15 — Imag(S,)|x

+ |[VED + 1 sy

where IA%((IU and I él) are the predicted RI components by DNN1,
Real(-) and Imag(-) extract Rl components, and || - ||; computes
the L; norm. The estimated target spectrogram at the reference

@)

)
1

microphone q is Sé” = R,(Il) "y (1), where j denotes the imag-
1nary unit.

Given the predicted RI components Réz) and I, (52) by DNNg,
we denote 5’52) = 1%22) + 4, 52) and compute the re-synthesized
signal §52) = iSTFT(S'éQ)), where iSTFT(+) uses a shorter out-
put window for overlap-add to reduce the algorithmic latency
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(see Fig. 2)(a). The loss function is then defined on the re-
synthesized time-domain signal and its STFT magnitude:

»CWaV+Mag = ||§¢(12) - 5q||1

+ H|STFTL(§((]2))| - |STFTE(sq)|’

)
1

where STFT,(-) extracts a complex spectrogram. The loss on
magnitude is found to consistently improve objective metrics
such as PESQ and STOI [45]. Note that STFT,(-) here can
use any window types and window and hop sizes, and can be
different from the ones we use to extract Y and .S, since it is
only used for loss computation. In our experiments, we use the
square-root Hann window, a 32 ms window size and an 8 ms
hop size to compute this magnitude loss. Please do not confuse
these STFT parameters with the STFT parameters we used to
extract Y and S,.

In our experiments, we will compare the two-DNN system
with a single-DNN system (i.e., without the beamforming mod-
ule and the second DNN). In the single-DNN case, DNN; can be
trained using either (2) or (3). Differently, in the two-DNN case,
DNN; is trained only using (2). This is because the beamformer
we will derive later in (4) is based on a DNN-estimated target
in the complex domain.

B. Network Architecture

Our DNN architecture, denoted as LSTM-ResUNet, is il-
lustrated in Fig. 4. It is a long short-term memory (LSTM)
network clamped by a U-Net [46]. Residual blocks are inserted
at multiple frequency scales in the encoder and decoder of the
U-Net. The motivation of this network design is that U-Net can
maintain fine-grained local structure via its skip connections and
model contextual information along frequency through down-
and up-sampling, LSTM can leverage long-range information,
and residual blocks can improve discriminability. We stack the
RI components of different input and output signals as features
maps in the network input and output. DNN; and DNNj, differ
only in their network input. DNN; uses the RI components of Y
to predict the RI components of .S, and DNN,, additionally uses

as input the RI components of 5’,51) and a beamforming result
S’g’[CWF, which will be described later in Section IV. The encoder
contains one two-dimensional (2D) convolution followed by
causal layer normalization (cauLN) for each input signal, and
six convolutional blocks, each with 2D convolution, parametric
ReLU (PReLU) non-linearity, and batch normalization (BN),
for down-sampling. The LSTM contains three layers, each with
300 units. The decoder includes six blocks of 2D deconvolution,
PReLU, and BN, and one 2D deconvolution, for up-sampling.
Each residual block in the encoder and decoder contains five
depth-wise separable 2D convolution (denoted as dsConv2D)
blocks, where the dilation rate along time are respectively 1, 2,
4,8 and 16. Linear activation is used in the output layer to obtain
the predicted RI components.

All the convolution and normalization layers are causal (i.e.,
frame-online) at run time. We use 1 x 3 or 1 x 4 kernels along
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Fig. 4. Network architecture of DNNs. Each one of Conv2D, Deconv2D,
Conv2D+PReLU+BN, dsConv2D+PReLU+BN, and Deconv2D+PReLU+BN
blocks is specified in the format: kernelTime x kernelFreq, (strideTime, stride-
Freq), (padTime, padFrequency), (dilationTime, dilationFreq), featureMaps.
During training, the tensor shape after each block in the encoder and decoder is
denoted in the format: featureMaps x timeSteps x freqChannels. Best viewed in
color.

time and frequency for the down- and up-sampling convolu-
tions, following [16]. Causal 2 x 3 convolutions are used in the
residual blocks, following [16].

Note that this architecture is similar to the earlier TCN-
DenseUNet architecture [11], [41], [42], [43]. Major changes
include replacing the DenseNet blocks with residual blocks and
replacing regular 2D convolutions with depthwise separable 2D
convolutions. These changes dramatically reduce the amount
of computation and the number of trainable parameters. The
network contains around 2.3 million parameters, compared with
the 6.9 million parameters in TCN-DenseUNet. It uses similar
amount of computation compared with the Conv-TasNet used
in our experiments.

IV. FREQUENCY-DOMAIN BEAMFORMING

Based on the DNN-estimated target RI components, we com-
pute an online multi-channel Wiener filter (MCWF) [36] to
enhance target speech (see Fig. 3). The MCWF is computed
per frequency, leveraging the narrow-band property of STFT.
Although the beamforming result of such a filter usually does
not show better scores in terms of enhancement metrics than the
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immediate DNN outputs, it can provide complementary infor-
mation to help DNN, obtain better enhancement results [11],
[43], [47]. Our main contribution here is to show that frame-
online frequency-domain beamforming can be easily integrated
with our STFT-domain DNNs to improve enhancement, while
notincurring any algorithmic latency. We can use more advanced
beamformers, or dereverberation algorithms such as WPE [11],
[34], [35], to achieve even better enhancement than MCWE.
They are however out of the scope of this study. This section
will first describe the offline time-invariant implementation of
the MCWF beamformer and then extend it to frame-online.

The MCWF [36] computes a linear filter per T-F unit or per
frequency to project the mixture to target speech. Assuming
the target speaker does not move within each utterance and
based on the DNN-estimated target speech S (1), we compute
a time-invariant MCWF per frequency through the following
minimization problem:

min) Zt |‘§(§1)(t7 £ =w(f;a)"Y(t, f)

2
w(fiq ’

“

where g denotes the reference microphone and w( f; q) € CT is
a P-dimensional filter. Since the objective is quadratic, a closed-
form solution is available:

wirig = (") ", 6
" (1) =3 YNV, (©)
&7 (1) =3 Y (. HSV(E N, ™

where ‘il'(yy) (f) denotes the observed mixture spatial covariance

matrix, 'i’(ys)( f) the estimated covariance matrix between the

mixture and the target speaker, and u, is a one-hot vector with
element ¢ equal to one. Notice that we do not need to first fully

compute the matrix A (f) and then take its ¢™ column by
multiplying it with u,, because

" (fuy = 32, Y00, ) (500.1)

where (-)* computes complex conjugate. The beamforming
result is computed as

SMWVEE £) =W (f; 0P Y (1, ). 9)

We point out that, in (4), the DNN-estimated magnitude and
phase can both be used for computing the MCWF beamformer,
while previous studies use DNN-estimated real-valued magni-
tude masks to compute spatial covariance matrices and then
derive MCWF beamformers [23]. In addition, we only need
to have DNN; to estimate the target speech at the reference
microphone g to compute the MCWE. Differently, earlier studies
perform minimum variance distortionless response (MVDR)
beamforming in this two-DNN approach [42], [43], [48], and,
to leverage both DNN-estimated magnitude and phase to com-
pute the MVDR beamformer, they estimate the target speech
at all the microphones by training a multi-channel input and
multi-channel output network that can predict the target speech

*
)

®)

at all the microphones at once [15], [41], or by running a well-
trained multi-channel input and single-channel output network
P times at inference time [33], [43], where each microphone is
considered as the reference microphone in turn. However, the
former approach produces worse separation at each microphone
than the latter, probably because there are many more signals
to predict [41], and the latter dramatically increases the amount
of computation [43]. By using the MCWF in (4) instead of an
MVDR beamformer, we can simplify the beamforming module,
as (4) just performs a linear projection and does not require an
estimated steering vector, and, in addition, we only need DNN;
to estimate the target speech at a reference microphone in order to
use both DNN-estimated magnitude and phase for beamformer
computation.

Differently from (5)—(7), in a frame-online setup the statistics
are accumulated online, similarly to [49], and the beamformer
at each time step is computed as

wi fig) = (87 0) @0y, o)

8"t ) ="t -1, H+YEHYEHY, (D

", ="t -1, + Yt HSOE Y, (12)

with & (0, f) and ) (0, f) initialized to be all-zero. Note
that here we do not use the typical recursive averaging tech-
nique [36], as the target speaker and non-target sources are
assumed not to be moving within each utterance. We will explore
the idea of recursive averaging in future work.

Based on the online time-varying filter w(¢, f; ¢), the beam-
forming result is obtained as

GMCWE @ . \H
Sq (t7f) *W(tmf,Q) Y(tvf) (13)
Similarly to [49], in a frame-online setup ™ (t)~!in (10)
can be computed iteratively according to the Woodbury formula,
ie.,
= (wy) o1 (&) g\
")t = (q> (t—1)+ YR Y () )

_ é(yy) (t N 1)71

R R e 0L (O S e
L+ Y ()R (1 - 1)1 (1)

(14)

where the frequency index f is dropped to make the equation
less cluttered. This way, expensive matrix inversion at each T-F
unit is avoided in the frame-online case.

V. ENHANCEMENT WITH LOW ALGORITHMIC LATENCY

In Fig. 3, there are two DNNs and an MCWF in between.
Since the DNNs and beamformer all operate in the complex T-F
domain, without going back and forth to the time domain, we can
use the same STFT resolution for all of them to obtain a two-
DNN system with a low algorithmic latency. This is different
from earlier studies [23], [37], [38] that combine time-domain
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Fig. 5. TIllustration of analysis windows (assuming a window size of 16 ms
and a sampling rate of 16 kHz).

models with beamforming and have to switch back and forth
to the time domain. Given a small hop size (say 2 ms), we can
use a regular, large iWS (for example 16 ms) for STFT to have
a reasonably high frequency resolution for frequency-domain
beamforming. To re-synthesize 5’32) to a time-domain signal,
we use the last 4 ms of the 16 ms signals produced by iDFT at
each frame for overlap-add, following the procedure illustrated
in Fig. 2(a). The resulting system has an algorithmic latency of
4 ms, even though the STFT spectrograms are extracted using
a window size of 16 ms. The rest of this section describes the
analysis and synthesis windows, and a future-frame prediction
technique that can further reduce the 4 ms algorithmic latency
to 2 ms.

A. Analysis and Synthesis Window Design

In our experiments, we will investigate various analysis win-
dows such as the square-root Hann (sqrtHann) window, rectan-
gular (Rect) window, asymmetric sqrtHann (AsqrtHann) win-
dow [24], [39], [40], and Tukey window [50]. See Fig. 5 for an
illustration of the windows. Our consideration for this investiga-
tion is that for windows such as the sqrtHann window, where all
the last4 ms are in the tapering range, the tapering could make the
extracted frequency components in the STFT spectrograms less
representative of the last 4 ms of signals, where we aim to make
predictions. One solution is to use a rectangular analysis window,
which does not taper samples. However, it is well-known that
rectangular windows lead to more spectral leakage due to their
higher sidelobes than windows with a tapering shape [50], [51].
Such leakage could degrade per-frequency beamforming as well
as the performance of DNNs. On the other hand, the rectangular
window does not taper any samples in the right end and hence
the signal in that region is not modified by the window. This
could be helpful for very low-latency processing, as we need to
make predictions for these samples. Our study also considers
the Tukey window [50], defined as

™
=0.5—-0. — if0<n<aN;

g[n] =0.5 OScos(aN), if 0 <n < ahj;
= g[N —n], if N —aN <n < N,
=1, otherwise; (15)

where 0 < n < N and tapering only happens at the first and the
last /N samples. Given a 16 ms analysis window, we set « to
Tle’ meaning 1 ms of tapering on both ends. We also consider the
AsqgrtHann window proposed in [24], [39], [40], and construct a
16 ms long AsqrtHann window by combining the first half of a
30 ms sqrtHann window and the second half of a 2 ms sqrtHann
window.

We compute a synthesis window that can achieve perfect
reconstruction when used with an analysis window g, follow-
ing [52]. Suppose that the run-time oWS in samples is A and
the hop size in samples is B, and that A is a multiple of B, we
obtain the synthesis window [ € R4 based on the last A samples

of the analysis window:
gIN — A+n]

fnl = g[N — A+ (nmod B) + kB>’

A7BT (16)
k=0

where 0 < n < A.

B. Future-Frame Prediction

We can further reduce the algorithmic latency by training the
DNN to predict, say, one frame ahead. That is, at time ¢, the
DNN predicts the target RI components at frame ¢ + 1. This can
reduce the algorithmic latency from 4 to 2 ms. We use Fig. 2(b)
to explain the idea. To get the prediction at sample n (see the
top of Fig. 2(b)), we need to overlap-add the last 4 ms of frame
t and ¢t + 1. If the DNN only predicts the current frame, we
can only do the overlap-add after we fully observe frame ¢ + 1
and finish feed-forwarding frame ¢ 4 1. In contrast, if the DNN
predicts frame ¢ + 1 at frame ¢, we can do the overlap-add after
we observe and finish feed-forwarding frame ¢. The algorithmic
latency is hence reduced by 2 ms. We can predict more frames
ahead to reduce the algorithmic latency to O ms or negative, but
this comes with a degradation in performance as predicting the
future is often a difficult task.

In our experiments, we find that predicting one frame ahead
does not dramatically degrade the performance. This is possibly
because when predicting one frame ahead and using a loss
function like (3) which requires training through iSTFT, at frame
t we essentially use the input signals up to frame ¢ to predict the
sub-frame (marked in the top of Fig. 2(b)) at frame ¢ so that a
2 ms algorithmic latency (i.e., the length of the sub-frame) can be
achieved.! We find that it is then important to use the rectangular
window as the analysis window and that using tapering-shaped
windows produces noticeable artifacts near the boundary of each
frame. If we use an analysis window which significantly tapers
the right end of the input signal, such as the Tukey or sqrtHann
window, the DNN model would have difficulty predicting the
signals at the right boundary of the sub-frame at frame ¢, because
the input information especially near the right boundary would
be lost due to the tapering.

Tn other words, our DNN model in this case can fully observe the mixture
signals of the sub-frame at frame ¢, and it has the opportunity to correct at
frame ¢ the errors made when predicting at frame ¢ — 1 the (then in the future)
sub-frame at frame ¢. This could be the key reason why predicting one frame
ahead performs reasonably well in our experiments.
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Performance degradation is however significant when predict-
ing two frames ahead (i.e., 4 ms in the future), and even more so
when predicting three, possibly because the model now has to
fully predict part of the future signal. If performance could be
improved to the point that three (the value of oWS/HS + 1 in
our setup) frames ahead can be accurately predicted, for example
via a more powerful DNN architecture, the algorithmic latency
could be reduced to —2 ms. In this case, the enhancement system
could potentially achieve 0 ms processing latency if the hardware
latency of processing each frame can be less than the 2 ms
hop size (which is necessary to maintain real-time processing
anyway).

Note that the typical approach to reduce algorithmic latency
is to use smaller window and hop sizes, but this increases the
computation due to the increased number of frames, and it cannot
deal with unavoidable latency due to, for example, analog-to-
digital and digital-to-analog conversions. Future-frame predic-
tion could deal with both issues by using a larger hop size,
predicting future frames, and using a strong DNN.

In our two-DNN system in Fig. 3, only DNN, can choose
to predict future frames and DNN; always predicts the current
frame.

VI. EXPERIMENTAL SETUP

We evaluate the proposed algorithm on a noisy-reverberant
speech enhancement task, using a single microphone or an array
of microphones. This section describes the dataset, benchmark
systems, and miscellaneous configurations.

A. Dataset for Noisy-Reverberant Speech Enhancement

Due to the lack of a widely adopted benchmark for multi-
channel noisy-reverberant speech enhancement, we build a cus-
tom dataset based on the WSICAMO [53] and FSD50k [54]
corpora. The clean signals in WSJCAMO are used as the speech
sources. The corpus contains 7,861, 742, and 1,088 utterances
respectively in its training, validation, and test sets. Using the
same split of clean signals as in WSJICAMO, we simulate 39,245
(~77.7 hours), 2,965 (~5.6 hours), and 3,260 (~8.5 hours)
noisy-reverberant mixtures as our training, validation, and test
sets, respectively. The noise sources are from the FSD50 k
dataset, which contains around 50,000 Freesound clips with
human-labeled sound events distributed in 200 classes drawn
from the AudioSet ontology [55]. We sample the clips in the de-
velopment set of FSD50 k to simulate the noises for training and
validation, and those in the evaluation set to simulate the noises
for testing. Since our task is single-speaker speech enhancement,
following [56] we filter out clips containing any sounds produced
by humans, based on the provided sound event annotation of
each clip. Such clips have annotations such as Human_voice,
Male_speech_and_man_speaking, Chuckle_and_chortle, Yell,
etc.? To generate multi-microphone noise signals, for each mix-
ture we randomly sample up to seven noise clips. We treat each
sampled clip as a point source, and its RIR is simulated by

2See https://github.com/etzinis/fedenhance/blob/master/fedenhance/
dataset_maker/make_librifsd50k.py for the full list.

using the image method implemented in the Pyroomacoustics
software [57]. More specifically, for each mixture, we generate
a room with its length drawn from the range [5, 10] m, width
from [5,10] m, and height from [3,4] m, place a simulated
six-microphone uniform circular array with a 20 cm diameter
in a position randomly drawn in the room, and place each point
source with a direction to the array center randomly sampled
from the range [0, 2], with a height randomly drawn from
[0.5,2.5] m, and with the distance between each source and the
array center drawn from [0.75,2.5] m. The reverberation time
(T60) is drawn from the range [0.2,1.0] s. We then convolve
each source with its simulated RIR, and summate the convolved
signals to create the mixture. Following the setup in the FUSS
dataset [58], which is designed for universal sound separation,
we consider noise clips as background noises if they are more
than 10 seconds long, and as foreground noises otherwise. Each
simulated mixed noise file has one background noise and the
rest are foreground noises. The energy level between the dry
background noise and each dry foreground noise is drawn from
the range [—3,9] dB. Considering that some FSD50 k clips
contain silence or digital zeros, the energy level is computed
by first removing silent segments in each clip, next computing a
sample variance from the remaining samples, and then scaling
the clips to an energy level based on the sample variances. After
summing up all the spatialized noises, we scale the summated re-
verberant noise such that the SNR between the target direct-path
speech and the summated reverberant noise is equal to a value
sampled from the range [—8, 3] dB. Besides the FSD50 k clips,
in each mixture we always include a weak, diffuse, stationary
air-conditioning noise drawn from the REVERB corpus, where
the SNR between the target direct-path speech and the noise is
equal to a value sampled from the range [10, 30] dB.
The sampling rate is 16 kHz.

B. Benchmark Systems

‘We consider the frame-online Conv-TasNet [7] as the monau-
ral benchmark system. Conv-TasNet is an excellent model. It
can achieve enhancement with very low algorithmic latency
through its very short window length, using a very small amount
of computation. We considered other monaural time-domain
approaches such as [13], which uses window sizes as large as
typical STFT window sizes and also leverages overlap-add for
signal re-synthesis. It has the same algorithmic latency as reg-
ular STFT-based systems due to the overlap-add. The proposed
dual window size approach can be straightforwardly applied to
reduce its latency, but the model itself requires drastically more
computation than Conv-TasNet, mainly due to its DenseNet
modules. Another recent study [59] proposes to use low-overlap
window for Wave-U-Net. However, a large window is used and
their algorithmic latency is at least 38.4 ms. We therefore only
consider Conv-TasNet as the monaural baseline. We also consid-
ered other frame-online T-F domain models such as the winning
solutions in the DNS challenges [19]. However, they are targeted
at teleconferencing scenarios, where a processing latency as
large as 40 ms is allowed. For example, DCCRN [14] has an
algorithmic latency of 62.5 ms and TSCN-PP [60] 20 ms. In
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TABLE I
#PARAMS (M), FLOPs (G), SI-SDR(DB), PESQ, AND ESTOI (%) RESULTS FOR MONAURAL ENHANCEMENT

DNN;  Window Last DNN predicts Algorithmic
Entry Systems Loss type  #DFT iWS oWS HS  #frames ahead latency (ms) #params FLOPs SI-SDR PESQ eSTOI
0 Unprocessed - - - - - - - - —6.2 1.44 41.1
la  DNN; RI+Mag  Tukey 256 16 4 2 0 4 232 27.8 2.8 1.85 67.0
1b DNN; Wav+Mag Tukey 256 16 4 2 0 4 2.32 278 29 191 684
Ic  DNN; Wav+Mag Tukey 256 16 4 2 1 2 232 27.8 2.2 1.79 64.9
2a  DNN; Wav+Mag  Rect 256 16 4 2 0 4 2.32 278 2.8 1.90 68.2
2b  DNN; Wav+Mag  Rect 256 16 4 2 1 2 232 27.8 2.5 1.85 66.6
2¢  DNN; Wav+Mag  Rect 256 16 4 2 2 0 2.32 278 —-3.6 1.71 622
2d  DNN; Wav+Mag  Rect 256 16 4 2 3 —2 2.32 278 —5.5 1.63 58.7
3a  Conv-TasNet [7] ‘Wav - 4 4 2 0 4 6.18 294 2.3 1.58 61.7
3b  Conv-TasNet [7] Wav+Mag - 4 4 2 0 4 6.18 29.4 2.2 1.78 65.7
3¢ Conv-TasNet [7] Wav+Mag - 4 4 1 0 4 6.18 54.5 2.4 1.83 66.7
3d  Conv-TasNet [7] Wav+Mag - 2 2 1 0 2 6.14 52.2 2.2 1.77 65.1
4a  Conv-TasNet [7] SI-SDR - - 4 4 2 0 4 6.18 294 2.2 1.70 61.6
4b  Conv-TasNet [7] SI-SDR - - 4 4 1 0 4 6.18 54.5 2.2 1.67 60.8
4c  Conv-TasNet [7] SI-SDR - - 2 2 1 0 2 6.14 52.2 2.0 1.65 59.5
5a  DNN; Wav+Mag  Rect 256 4 4 2 0 4 2.32 277 2.6 1.87 67.3
5b DNN; Wav+Mag  Rect 64 4 4 2 0 4 2.43 28.3 2.5 1.85 66.7
TABLE II

SI-SDR (DB), PESQ, AND ESTOI (%) RESULTS USING VARIOUS ANALYSIS WINDOWS FOR SIX-MICROPHONE ENHANCEMENT

DNN; Window Last DNN predicts Algorithmic
Entry Systems Loss type #DFT iWS oWS HS  #frames ahead  latency (ms) #params FLOPs SI-SDR PESQ eSTOI
0 Unprocessed - - - - - - - - - —6.2 144 41.1
la DNN; RI+Mag sqrtHann 256 16 4 2 0 4 2.33  28.3 5.9 217 75.7
Ib  DNN; RI+Mag AsqrtHann 256 16 4 2 0 4 2.33  28.3 6.0 213 75.9
Ic  DNN; RI+Mag Rect 256 16 4 2 0 4 2.33 28.3 6.0 213 75.1
1d DNN; RI+Mag Tukey 256 16 4 2 0 4 2.33 28.3 6.0 216 76.0
2a  DNN; Wav+Mag sqrtHann 256 16 4 2 0 4 2.33 28.3 6.4 225 773
2b  DNN; Wav+Mag AsqrtHann 256 16 4 2 0 4 2.33 28.3 6.3 225 772
2¢  DNN; Wav+Mag Rect 256 16 4 2 0 4 2.33 283 6.2 2.23 76.7
2d DNN; Wav+Mag  Tukey 256 16 4 2 0 4 2.33  28.3 6.4 226 773

addition, these models share many similarities with our complex
T-F domain DNN models and can straightforwardly leverage
our proposed techniques to reduce their algorithmic latency. We
therefore do not include them as baselines.

We consider the frame-online multi-channel Conv-
TasNet [28], [31], denoted as MC-Conv-TasNet, as the main
multi-channel baseline. Compared with monaural Conv-TasNet,
MC-Conv-TasNet introduces a spatial encoder in addition to
the spectral encoder in the original Conv-TasNet to exploit
spatial information. The spatial embedding produced by the
spatial encoder is used as extra features for the network to
better mask the spectral embedding. Following [28], [31], we
set the spatial embedding dimension to 60 for two-channel
processing and to 360 for six-channel processing. Note that
MC-Conv-TasNet is also the enhancement component within
the winning system [28] of the recent Clarity challenge, a major
effort in advancing very low-latency speech enhancement.

The Conv-TasNet models can be trained by

7)

Lway = [|8q — sqll1,

where 5, denotes the predicted signal, or by (3). The magni-
tude loss in (3) can significantly improve speech intelligibil-
ity and quality metrics [45]. We can also train Conv-TasNet
with the original SI-SDR loss [7], [61]. Using the notations
of Conv-TasNet (in Table I of [7]), the hyper-parameters are

setto N =512, B =158,5. =158, H =512, P =3, X =8,
and R = 3 for the single- and multi-channel Conv-TasNets. B
and S, here are slightly larger than the default 128 in [7], since
in multi-channel processing there are additional spatial embed-
dings concatenated to the 512-dimensional spectral embedding
as the input to the TCN module of Conv-TasNet.

Besides reporting the results of the configuration using 16 ms
iWS and 4 ms oWS, we also provide the results of the con-
figurations using 4 ms iWS and 4 ms oWS with or without
zero padding. When using zero padding, we pad each 4 ms
windowed signal to 16 ms, use 256-point DFT to extract a
129-dimensional complex spectrum at each frame, and use the
same architecture as shown in Fig. 4 for enhancement. When not
using zero padding, we perform 64-point (i.e., 0.004 x 16, 000)
DFT to extract a 33-dimensional complex spectrum at each
frame. Since the input dimension is then lower, we cannot
re-use the architecture in Fig. 4 for enhancement. To deal
with this, we design a slightly different architecture shown in
Fig. 6, which uses a similar number of parameters, a similar
amount of computation, and the same size of receptive field,
compared with Fig. 4. The only difference from Fig. 4 is
that we use more input and output channels in the convolu-
tional blocks in the first several layers of the encoder and in
the last several layers of the decoder, since there are fewer
frequencies.
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Fig. 6. Network architecture of DNNo when using 4 ms iWS without zero
padding. We highlight the differences from Fig. 4 in red. Best viewed in color.

C. Miscellaneous Configurations

The MCWF beamforming filter is updated at each frame. We
pad (iWS — HS) ms of zero samples at the beginning of each
mixture. Without the padding, the algorithmic latency for the
starting samples would be higher.

For metric computation, we always use the target direct-path
signal as the reference. It is obtained by setting the T60 parameter
to zero when generating RIRs. Our main evaluation metric is
the scale-invariant signal-to-distortion ratio (SI-SDR) in decibel
(dB) [61], which measures the quality of time-domain sample-
level predictions. We also report extended short-time objective
intelligibility (eSTOI) [62] and perceptual evaluation of speech
quality (PESQ) scores. For PESQ, narrow-band MOS-LQO
scores based on the ITU P.862.1 standard [63] are reported using
the python-pesq toolkit.?

For the DNN models, we use the ptflops toolkit* to count
the number of floating-point operations (FLOPs) to process a
4-second mixture. When reporting the FLOPs of an STFT-based
system, we summate the DNN FLOPs and the FLOPs of beam-
forming, STFT, and iSTFT. Note that two FLOPs is roughly
equivalent to one multiply—accumulate operation.

The number of parameters in each model is reported in mil-
lions (M), and the FLOPs in giga-operations (G).

3[Online]. Available: https://github.com/ludlows/python-pesq, v0.0.2
4[Online]. Available: https://github.com/sovrasov/flops-counter.pytorch

VII. EVALUATION RESULTS

Tables I, III, and IV report the results of one-, six- and
two-microphone enhancement, respectively. In each table, we
provide the algorithmic latency of each model, along with
the number of model parameters and FLOPs. When comparing
the results, we always take into account the algorithmic latency,
the amount of computation, and the model size.

A. Comparison of Loss Functions

We observe that training through the proposed overlap-add
procedure using the Wav+Mag loss function in (3) leads to clear
improvement over using the RI+Mag loss in (2), which does
not train through the signal re-synthesis procedure. This can be
observed from entries la vs. 1b in Table I, 1a-1 d vs. 2a-2 d in
Table I, and 1a vs. 1b in Tables III and I'V. Using the Wav+Mag
loss in (3) rather than the Wav loss in (17) dramatically improves
Conv-TasNet’s scores on PESQ and STOI (see 3a vs. 3b in
Table I, and 5a vs. Sbin IIT and I'V). This aligns with our findings
in [45], which only deals with offline enhancement.

B. Comparison of Analysis Windows

We first look at the case where, at each frame, the DNNs are
trained to predict the current frame. When using the Wav+Mag
loss and training through the re-synthesis procedure, from 2a-2 d
in Table IT we find that using different window functions includ-
ing sqrtHann, AsqrtHann, rectangular, and Tukey windows does
not produce notable differences in performance. This is likely
because, via the training-through procedure, the DNNs could
learn to deal with the slight differences in the synthesis windows.
Among all the considered windows, the Tukey window appears
slightly better than the others. This can also be observed from
la-1 d in Table II.

We then look at the results when using the DNNs to predict
one frame ahead, which can reduce the algorithmic latency from
4 to 2 ms. We observe that using the Tukey window leads to
more degradation (see 1b vs. lc in Tables I, III, and IV and
check the “Last DNN predicts #frames ahead” column) than
the rectangular window (see 2a vs. 2b in Table I, 3a vs. 3b
in Tables III and 1V). In the end, the Tukey window leads to
worse performance than the rectangular window (see lc vs. 2b
in Table I, 1c vs. 3b in Tables IIT and IV). Predicting two frames
ahead, which can reduce the algorithmic latency to 0 ms, does
not work very well (see 2a and 2b vs. 2c in Table I, and 3a and
3b vs. 3c in Tables III and IV), especially in terms of SI-SDR.

C. Effectiveness of Beamforming

Comparing 1b and 2a, and 3a and 4a of Table III, we
can see that with a beamformer and a post-filtering network,
DNN;+MCWF+DNN;, leads to clear improvements especially
on PESQ and eSTOI over using DNNj . Similar trend is observed
from 1b and 2a, as well as 3a and 4a of Table IV.
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TABLE III
#PARAMS (M), FLOPs (G), SI-SDR (DB), PESQ, AND ESTOI (%) RESULTS ON S1X-MICROPHONE ENHANCEMENT

DNN; DNN;  Window

Last DNN predicts Algorithmic

Entry Systems Loss Loss type  #DFT iWS oWS HS  #frames ahead latency (ms) #params FLOPs SI-SDR PESQ eSTOI
0 Unprocessed - - - - - - - - —6.2 144 41.1
la DNN; RI+Mag - Tukey 256 16 4 2 0 4 2.33 283 6.0 2.16 76.0
1Ib  DNN; Wav+Mag - Tukey 256 16 4 2 0 4 2.33 283 6.4 2.26 77.3
lc  DNN; Wav+Mag - Tukey 256 16 4 2 1 2 2.33  28.3 5.2 2.10 74.0
" 2a° DNN;+MCWF+DNN; =~ RI+Mag Wav+Mag Tukey 256 16 4 2~~~ 0 4~ = 467 57.1 7.0 270  84.0°
2b  DNN;+MCWF+DNNy RI+Mag Wav+Mag Tukey 256 16 4 2 1 2 4.67 57.1 6.8  2.47 80.7
2c  DNN;+MCWF RI+Mag - Tukey 256 16 4 2 0 4 2.33 286 3.4 1.81 62.7
3a DNN; Wav+Mag - Rect 256 16 4 2 0 4 2.33 283 6.2  2.23 76.7
3b DNN; Wav+Mag - Rect 256 16 4 2 1 2 2.33 283 5.9 2.20 76.2
3¢ DNN; Wav+Mag - Rect 256 16 4 2 2 0 2.33 283 —21 194 70.0
" 4a” DNN;+MCWF+DNN; =~ RI+Mag Wav+Mag Rect 256 16 4 2~~~ 0 4~ = 467 57.1 ~ 7.8 268 836
4b  DNN;+MCWF+DNNy RI+Mag Wav+Mag  Rect 256 16 4 2 1 2 4.67 57.1 7.1 2.50 81.0
4c  DNN;+MCWF+DNN, RI+Mag Wav+Mag  Rect 256 16 4 2 2 0 4.67 57.1 —-1.1 224 76.7
4d  DNN;+MCWF+DNNo RI+Mag Wav+Mag  Rect 256 16 4 2 3 -2 4.67 57.1 —2.8 212 73.5
4e  DNN;+MCWF RI+Mag - Rect 256 16 4 2 0 4 2.33 28.6 2.9 1.75 59.9
S5a  MC-Conv-TasNet [26], [29] Wav - - - 4 4 2 0 4 6.37 30.1 5.5 1.96 73.2
5b MC-Conv-TasNet [26], [29] Wav+Mag - - - 4 4 2 0 4 6.37 30.1 5.2 2.24 76.4
S5c¢ MC-Conv-TasNet [26], [29] Wav+Mag - - - 4 4 1 0 4 6.37 56.1 5.7 2.33 7.9
5d  MC-Conv-TasNet [26], [29] Wav+Mag - - - 2 2 1 0 2 6.27 53.2 5.7 2.29 77.3
6a  MC-Conv-TasNet [26], [29] SI-SDR - - - 4 4 2 0 4 6.37 30.1 5.5 2.06 72.9
6b  MC-Conv-TasNet [26], [29] SI-SDR - - - 4 4 1 0 4 6.37 56.1 6.0 2.13 74.5
6¢c  MC-Conv-TasNet [26], [29] SI-SDR - - - 2 2 1 0 2 6.27  53.2 6.2 213 74.4
7a  DNN; Wav+Mag - Rect 256 4 4 2 0 4 2.33  28.2 6.0 2.20 76.1
7b  DNN;+MCWF+DNNy RI+Mag Wav+Mag  Rect 256 4 4 2 0 4 4.67  57.0 7.3 2.58 82.3
7c  DNN;+MCWF RI+Mag - Rect 256 4 4 2 0 4 2.33 284 2.1 1.77 59.1
"8 DNN; T T Wav+Mag =~ -~ Rect 64 4 4 20 T T 0~ T4~ T T 243 285 6.2 219 759
8b  DNN; +MCWF+DNN» RI+Mag Wav+Mag  Rect 64 4 4 2 0 4 4.87 57.2 7.4 259 82.2
8 DNN;+MCWF RI+Mag - Rect 64 4 4 2 0 4 2.43 285 1.9 1.71 56.8
TABLE IV
#PARAMS (M), FLOPs (G), SI-SDR (DB), PESQ, AND ESTOI (%) RESULTS ON TWO-MICROPHONE ENHANCEMENT
DNN; DNN>  Window Last DNN predicts Algorithmic
Entry Systems Loss Loss type  #DFT iWS oWS HS  #frames ahead  latency (ms) #params FLOPs SI-SDR PESQ eSTOI
0 Unprocessed - - - - - - - - - - —6.2 1.44 41.1
la  DNN; RI+Mag - Tukey 256 16 4 2 0 4 2.32 279 4.0 1.97 70.8
1b  DNN; Wav+Mag - Tukey 256 16 4 2 0 4 2.32 279 4.2 205 721
lc  DNN; Wav+Mag - Tukey 256 16 4 2 1 2 2.32 279 3.3 1.92 68.7
" 2a DNN;+MCWF+DNN, =~ RI+Mag Wav+Mag Tukey 256 16 4 2~ 0 4 = 466 56.1 48 217 745
2b  DNN; +MCWF+DNNy RI+Mag Wav+Mag Tukey 256 16 4 2 1 2 4.66 56.1 4.1 2.06 722
2¢  DNN;+MCWF RI+Mag - Tukey 256 16 4 2 0 4 2.33 279 —1.1 1.58 484
3a DNN; Wav+Mag - Rect 256 16 4 2 0 4 2.33 279 4.3 206 72.6
3b  DNN; Wav+Mag - Rect 256 16 4 2 1 2 2.33 279 3.7 1.97 70.1
3c  DNN; Wav+Mag - Rect 256 16 4 2 2 0 233 279 —-3.2 181 655
" 4a DNN;+MCWF+DNN, =~ RI+Mag Wav+Mag Rect 256 16 4 2~ 0 4 466 56.1 48 218 748
4b  DNN; +MCWF+DNNy RI+Mag Wav+Mag  Rect 256 16 4 2 1 2 4.66 56.1 4.3 2.09 725
4c DNN;+MCWF+DNNy RI+Mag Wav+Mag  Rect 256 16 4 2 2 0 4.66 56.1 —2.5 1.89 68.3
4d  DNN;+MCWF+DNNy RI+Mag Wav+Mag  Rect 256 16 4 2 3 -2 4.66 56.1 —4.1 1.81 65.8
4e DNN;+MCWF RI+Mag - Rect 256 16 4 2 0 4 233 279 —1.2 1.55 47.3
S5a  MC-Conv-TasNet [26], [29] Wav - - - 4 4 2 0 4 6.19 29.4 3.6 1.73 67.0
5b  MC-Conv-TasNet [26], [29] Wav+Mag - - - 4 4 2 0 4 6.19 294 3.6 2.00 T71.1
Sc MC-Conv-TasNet [26], [29] Wav+Mag - - - 4 4 1 0 4 6.19 54.6 3.8 2.04 720
5d  MC-Conv-TasNet [26], [29] Wav+Mag - - - 2 2 1 0 2 6.15 52.3 3.8 2.02 714
6a  MC-Conv-TasNet [26], [29] SI-SDR - - - 4 4 2 0 4 6.19 29.4 3.6 185 66.9
6b  MC-Conv-TasNet [26], [29] SI-SDR - - - 4 4 1 0 4 6.19 54.6 3.7 181 66.4
6¢  MC-Conv-TasNet [26], [29] SI-SDR - - - 2 2 1 0 2 6.15  52.3 3.6 1.79 65.6
7a  DNN; Wav+Mag - Rect 256 4 4 2 0 4 2.32  27.8 3.9 200 71.0
7b  DNN;+MCWF+DNNy RI+Mag Wav+Mag  Rect 256 4 4 2 0 4 4.66  56.1 4.3 212 735
7c  DNN;+MCWF RI+Mag - Rect 256 4 4 2 0 4 232 278 —1.6 1.56 47.2
"8 DNN; T T Wav+Mag ~ - = Rect 64 4 4 "2 0 4~ 243 283 4.0 201 715
8b  DNN;+MCWF+DNNy RI+Mag Wav+Mag  Rect 64 4 4 2 0 4 4.87 56.8 4.5 210 733
8¢ DNN;+MCWF RI+Mag - Rect 64 4 4 2 0 4 2.43 283 —1.6 1.54 46.0

D. Comparison With Conv-TasNet

In Tables I, III, and IV, we provide the results obtained by
single- or multi-channel Conv-TasNet [7], [28]. We experiment
with 4/2, 4/1, and 2/1 ms window/hop sizes. Their algorithmic
latencies are respectively 4, 4, and 2 ms, and the latter two
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approximately double the amount of computation used by the
first one due to their reduced hop size. When using the Wav+Mag
loss, we found in all the tables that using 4/1 ms window/hop
sizes yields consistently better enhancement scores than the
other two, possibly because of its higher frame overlap. By
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comparing 3a-3 d with 4a-4c of Table I, and 5a-5 d with 6a-6¢
of Tables III and IV, we observe that training Conv-TasNet
using the original SI-SDR loss (1) does not always improve
the performance over using Wav, (2) does not always surpass
the SI-SDR performance of using Wav+Mag, and (3) does not
produce better PESQ and eSTOI scores than Wav+Mag. We
therefore choose Wav+Mag as the default loss for Conv-TasNet
for subsequent experiments.

Let us first look at Table I, the monaural results. Our models
use fewer parameters than Conv-TasNet (i.e., 2.32 vs. 6.18 M).
When the algorithmic latency is restrained to 4 ms, our system
1b (and 2a) produces better enhancement performance not only
than 3b, using a similar number of FLOPs, but also than the
best Conv-TasNet model 3c, using around half of the FLOPs.
When the algorithmic latency is limited to 2 ms, the proposed
2b, which predicts one frame ahead, shows better scores than
3 d, using around half of the FLOPs.

We now look at Table IIl. At 4 ms algorithmic latency,
1b and 3a show slightly better (or comparable in some met-
rics) results than 5b, using a similar number of FLOPs. The
DNN;+MCWF+DNN> model contains two DNNs and hence
at least doubles the amount of computation of DNN;. At 4 ms
algorithmic latency, our systems in 2a and 4a show clearly better
enhancement scores than 5c, using a comparable number of
FLOPs. In 4b, DNNy predicts one frame ahead and reduces
the algorithmic latency to 2 ms. The enhancement scores are
clearly better than those in 5 d, which also have an algorithmic
latency of 2 ms, again using a similar number of FLOPs. Indeed,
4b uses two DNNs, each operating at a hop size of 2 ms, and
5 d only uses one DNN but the DNN operates at a hop size
of 1 ms. The comparison between 4b and 5 d suggests a new
and promising way of achieving speech enhancement with a
very low algorithmic latency. Earlier studies like time-domain
methods [7], [9] tend to use very small window and hop sizes
to reduce the algorithmic latency and improve the performance,
but this significantly increases the amount of computation due
to an increased number of frames. Differently, we could use
larger window and hop sizes (and hence fewer frames) to-
gether with more powerful DNN models (such as the proposed
two-DNN system with a beamformer in between, which uses
more computation at each frame), and at the same time use
the proposed future-frame prediction technique to reduce the
algorithmic latency.

Similar trends as in Table III can be observed in Table IV for
two-microphone enhancement.

These comparisons suggest that we can achieve reasonably
good enhancement with an algorithmic latency as low as 2 ms
in the STFT domain, and that operating in the STFT domain
may rival or even outperform processing in the time domain for
speech enhancement with very low algorithmic latency.

E. Towards Zero Processing Latency

In systems 2c¢ and 2d of Table I and 4c and 4d of Tables III
and IV, we train our DNNSs to predict two or three frames ahead.
This further reduces the algorithmic latency at the cost of a
degradation in performance, compared with the case when we

predict one frame ahead. The degradation is particularly large for
SI-SDR, likely because predicting the phase of future frames is
difficult. PESQ and eSTOI, which are less influenced by phase,
maintain a decent level of performance, even rivaling at O ms al-
gorithmic latency in the six-microphone case with a single-DNN
system or an MC-Conv-TasNet system with 4 ms algorithmic
latency (see 4c vs. 1b and Sc in Table III). One notable advantage
of predicting three frames ahead is that the enhancement system
could potentially have a zero processing latency, if the hardware
is powerful enough such that the hardware latency can be less
than the 2 ms hop size.

E. Comparison With Using Equal iWS and oWS

In Tables I, III, and IV, we provide the results of the con-
figuration using 4 ms iWS and 4 ms oWS with and without
zero padding (see the last paragraph of Section VI-B for a
description of the setup of this comparison). When using the
DNN; approach, by comparing 2a, 5a, and 5b in Table I, and by
comparing 3a, 7a, and 8a in Tables III and IV, we observe that
using 16 ms iWS produces slight but consistent improvements.
When using the DNN; +MCWF+DNNj, approach, 4a also shows
slightly but consistently better performance than 7b and 8b in
Tables IIT and IV.

VIII. CONCLUSION

We have adapted a dual window size approach for deep
learning based speech enhancement with very low algorith-
mic latency in the STFT domain. Our approach can easily
integrate complex T-F domain DNNs with frequency-domain
beamforming to achieve better enhancement, without introduc-
ing additional algorithmic latency. A future-frame prediction
technique is proposed to further reduce the algorithmic latency.
Evaluation results on a simulated speech enhancement task in
noisy-reverberant conditions demonstrate the effectiveness of
our algorithms, and show that our STFT-based system can work
well at an algorithmic latency as low as 2 ms. The proposed
algorithms can be straightforwardly utilized by, or modified for,
many T-F domain or time-domain speech separation systems to
reduce their algorithmic latency.

The major limitation of our current study comes from the
assumption that each frame can be processed within the hop
time by hardware in an online streaming setup. This assumption
may not be realistic for edge devices, such as standalone hearing
aids with limited computing capability, or even for modern
GPUs, unless there is careful design that can enable the system
to achieve frame-by-frame online processing, especially for
heavy-duty DNN models. An ideal speech enhancement system
would have a small number of trainable parameters and require a
small amount of run-time memory and computation, at the same
time achieving high enhancement performance with very low
processing latency. A practical system will likely have to strike
a trade-off among these goals, and requires good engineering
skills. Our current study focuses on improving enhancement
performance and achieving very low algorithmic latency. Mov-
ing forward, we will consider (a) reducing the DNN complexity
and using lightweight DNN blocks [64]; (b) pruning DNN
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connections [16] or quantizing DNN weights [65]; (c) reducing
frequency resolution by using a shorter analysis window; and
(d) performing less frequent updates of the beamforming filters.
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