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 A B S T R A C T

The current dominant approach for neural speech enhancement is based on supervised learning by using 
simulated training data. The trained models, however, often exhibit limited generalizability to real-recorded 
data. To address this, this paper investigates training enhancement models directly on real target-domain 
data. We propose to adapt mixture-to-mixture (M2M) training, originally designed for speaker separation, for 
speech enhancement, by modeling multi-source noise signals as a single, combined source. In addition, we 
propose a co-learning algorithm that improves M2M with the help of supervised algorithms. When paired 
close-talk and far-field mixtures are available for training, M2M realizes speech enhancement by training a 
deep neural network (DNN) to produce speech and noise estimates in a way such that they can be linearly 
filtered to reconstruct the close-talk and far-field mixtures. This way, the DNN can be trained directly on real 
mixtures, and can leverage close-talk and far-field mixtures as a weak supervision to enhance far-field mixtures. 
To improve M2M, we combine it with supervised approaches to co-train the DNN, where mini-batches of 
real close-talk and far-field mixture pairs and mini-batches of simulated mixture and clean speech pairs are 
alternately fed to the DNN, and the loss functions are respectively (a) the mixture reconstruction loss on the 
real close-talk and far-field mixtures and (b) the regular enhancement loss on the simulated clean speech and 
noise. We find that, this way, the DNN can learn from real and simulated data to achieve better generalization 
to real data. We name this algorithm SuperM2M (supervised and mixture-to-mixture co-learning). Evaluation 
results on the CHiME-4 dataset show its effectiveness and potential.
1. Introduction

Deep learning has dramatically advanced speech enhancement
(Wang & Chen, 2018). The current dominant approach is based on 
supervised learning, where clean speech is synthetically mixed with 
noises in simulated reverberant conditions to create paired clean speech 
and noisy-reverberant mixtures for training neural speech enhancement 
models in a supervised, discriminative way to predict the clean speech 
from its paired mixture (Wang & Chen, 2018). Although showing strong 
performance in matched simulated test conditions (Chen, Wang, Yoho, 
Wang, & Healy, 2016; Chen et al., 2020; Chetupalli & Habets, 2023; 
Ephrat et al., 2018; Kavalerov et al., 2019; Luo, Chen, & Yoshioka, 
2020; Luo & Mesgarani, 2019; Nachmani, Adi, & Wolf, 2020; Pons, Liu, 
Pascual, & Serra, 2024; Quan & Li, 2024; Saijo et al., 2023; Tan, Wang, 
& Wang, 2022; Tesch & Gerkmann, 2021; Wang et al., 2023; Wang 
& Wang, 2020; Wang, Wang, & Wang, 2020, 2021; Xu, Rao, Chng, 
& Li, 2020; Zeghidour & Grangier, 2021; Zhang, Jung, Watanabe, & 
Qian, 2024; Zhang et al., 2023; Zhang, Xu, et al., 2021; Zheng et al., 
2023; Zmolikova et al., 2023), the trained models often exhibit limited 
generalizability to real-recorded data (Cornell et al., 2023; Cox et al., 
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2023; Haeb-Umbach et al., 2019; Leglaive et al., 2023; Pandey & Wang, 
2020; Tzinis, Adi, et al., 2022; Tzinis, Wisdom, Remez, & R. Hershey, 
2022; Wang & Chen, 2018; Yang, Pandey, & Wang, 2024; Zhang 
et al., 2024, 2023; Zhang, Shi, Li, Watanabe, & Qian, 2021), largely 
due to mismatches between simulated training and real-recorded test 
conditions.

A possible way to improve the generalizability, we think, is to have 
the model see, and learn to model, real-recorded target-domain mix-
tures during training. This, however, cannot be applied in a straight-
forward way, since the clean speech at each sample of the real mix-
tures cannot be annotated or computed in an easy way. As a result, 
there lacks a good sample-level supervision for real mixtures, un-
like simulated mixtures where a sample-level supervision is readily 
available.

During data collection, multiple far-field microphones are usually 
utilized to record target speakers. In UNSSOR (Wang & Watanabe, 
2023), our recent algorithm proposed for unsupervised speaker sep-
aration, we find that the mixture signal recorded by each far-field 
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microphone can be leveraged as a weak supervision for training DNNs 
to separate speakers. The idea is that each far-field mixture can be 
utilized as a constraint to regularize speaker estimates. That is, the 
speaker estimates, produced by using the mixtures captured at a subset 
of microphones as input, should be capable of being leveraged to 
reconstruct the mixture captured by each microphone.

On the other hand, during data collection, besides using far-field 
microphones to record target speech, a close-talk microphone is often 
placed near the target speaker to collect its close-talk speech (e.g., in 
the CHiME (Barker, Watanabe, Vincent, & Trmal, 2018), AMI (Carletta 
et al., 2006), AliMeeting (Yu et al., 2022), and MISP (Wu et al., 2024) 
setup).1 Although the close-talk microphone can also pick up non-target 
signals, the recorded close-talk mixture typically has a much higher 
signal-to-noise ratio (SNR) of the target speaker than any far-field 
mixtures. In our recent mixture to mixture (M2M) algorithm (Wang, 
2024a), which builds upon UNSSOR, we find that, besides far-field mix-
tures, the close-talk mixture can also be leveraged as a weak supervision
for training DNNs to separate mixed speakers.

To leverage the weak-supervision in far-field and close-talk mix-
tures for separation, two difficulties need to be solved. First, far-field 
mixtures contain multiple sources and are not clean, and due to the 
contamination of the other sources (Barker et al., 2018; Carletta et al., 
2006; Watanabe et al., 2020), close-talk mixtures are often not clean 
enough. Second, each speaker’s image in the close-talk mixture is not 
time-aligned with its image in each far-field mixture, and each speaker’s 
images in different far-field mixtures are also not time-aligned with 
each other. As a result, close-talk and far-field mixtures cannot be 
naively used as the training targets for training speaker separation 
models. To overcome the two difficulties, we have recently proposed 
UNSSOR in a conference publication (Wang & Watanabe, 2023) and 
M2M in a letter submission (Wang, 2024a). The idea is that, at each 
training step, we can (a) feed a far-field mixture to a DNN to produce 
an estimate for each speaker; and (b) regularize the speaker estimates 
such that they can be linearly filtered via multi-frame linear filtering 
to reconstruct the close-talk and far-field mixtures. This way, the first 
difficulty is addressed by having the filtered speaker estimates to 
respectively approximate (i.e., explain) the speaker images in each 
mixture, and the second difficulty is addressed by multi-frame linear 
filtering.

Although UNSSOR and M2M are capable of being trained directly 
on real-recorded mixtures (i.e., not requiring the availability of clean 
speech), they have been only trained and evaluated on simulated 
mixtures (Wang, 2024a; Wang & Watanabe, 2023). It is yet unknown 
(a) whether they are effective on real data; and (b) whether they 
can lead to better generalization to real data, compared with the 
current dominant purely-supervised approaches, which train models 
only on simulated data. We emphasize that these two concerns are very 
reasonable, since, on real data, the physical models hypothesized in 
UNSSOR and M2M are expected to be much less satisfied. For example, 
there could be microphone synchronization errors, microphone failures, 
different frequency responses in different microphones, signal clip-
ping, slight speaker and array movement, non-linear filter relationships 
among speaker images at different microphones, distortions to target 
speech caused by real microphones, etc. These issues can potentially 
pose difficulties for UNSSOR and M2M. In addition, UNSSOR and M2M 
were designed for separating mixed speakers. It is unclear whether they 
would be effective for single-speaker speech enhancement and robust 
automatic speech recognition (ASR), where suppressing non-target sig-
nals (such as noises) is a major concern. Furthermore, UNSSOR and 
M2M assume stationary, weak Gaussian noises in their physical models. 

1 Close-talk speech is almost always recorded together with far-field speech 
in speech separation and recognition datasets, as it is much easier for humans 
to annotate word transcriptions and speaker activities based on close-talk 
recordings (where the target speech is very strong) than far-field recordings.
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It is unclear whether they can deal with strong, non-stationary noises, 
which could contain an unknown number of diffuse and directional 
sources.

In this context, we propose to extend UNSSOR (Wang & Watanabe, 
2023) and M2M (Wang, 2024a) for speech enhancement and robust 
ASR, where we train and evaluate the proposed algorithms not only 
on simulated data but also on real data.2 Our major goal is to show 
whether the resulting algorithms can yield better generalization to 
real data than purely-supervised models trained on simulated data, a 
demonstration that is missing in UNSSOR (Wang & Watanabe, 2023) 
and M2M (Wang, 2024a). Without this demonstration, the evidence 
supporting whether this un- and weakly-supervised line of research 
is worth investigating would be lacking, especially considering the 
dominance and simplicity of purely-supervised approaches based on 
simulated training data. We summarize the key contributions of this 
paper as follows:
• We are the first proposing to leverage close-talk and far-field mixtures 
as weak supervision for speech enhancement, a task different from 
speaker separation.

• Considering noise sources as a single, combined source, we formulate 
the training of speech enhancement models on real data as solving 
a blind deconvolution problem, following the formulations in UN-
SSOR (Wang & Watanabe, 2023) and M2M (Wang, 2024a) designed 
for speaker separation.

• To account for the case when close-talk mixture is not time-
synchronized with its paired far-field mixtures, we propose an on-
the-fly filter tap estimation algorithm that can deal with the time-
synchronization issue.

• We propose SuperM2M, a co-learning strategy which trains the same 
DNN model by alternating between M2M training on real data and 
supervised learning on simulated data. This way, M2M can benefit 
from massive simulated training data, especially when the real train-
ing data is scarce. In addition, we find that this strategy can help 
mitigate the weaknesses of UNSSOR and M2M on source permutation, 
frequency permutation, and source ambiguity (all of which will be 
detailed in Section 6.1).

We validate SuperM2M on the CHiME-4 dataset (Vincent, Watanabe, 
Nugraha, Barker, & Marxer, 2017), which is consisted of simulated and 
challenging real-recorded mixtures and is currently the major bench-
mark for evaluating robust ASR and speech enhancement algorithms. 
In our experiments, state-of-the-art ASR and enhancement performance 
is obtained. The evaluation results suggest that:
• SuperM2M can effectively learn from real mixtures and leverage the 
weak supervision afforded by real close-talk and far-field mixtures.

• The co-learning strategy can significantly improve the generalizabil-
ity of purely-supervised models trained on simulated data to real 
data.

The evaluation results provide an evidence supporting the strong po-
tential of our un- and weakly-supervised line of research for speech 
enhancement. A sound demo is provided in the link below.3

2. Related work

SuperM2M is related to other work in five major aspects.

2 This long-form paper is a journal expansion of our preliminary work in 
UNSSOR (Wang & Watanabe, 2023) and M2M (Wang, 2024a).

3 https://zqwang7.github.io/demos/SuperM2M_demo/index.html

https://zqwang7.github.io/demos/SuperM2M_demo/index.html
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2.1. Frontend enhancement and robust ASR

Leveraging neural speech enhancement as a frontend processing to 
improve the robustness of backend ASR systems to noise, reverberation 
and competing speech has been a long-lasting research topic (Haeb-
Umbach et al., 2020, 2019). Although dramatic progress has been made 
in neural speech enhancement (Wang & Chen, 2018; Zheng et al., 
2023), directly feeding the immediate estimate produced by DNN-based 
enhancement models for ASR has had limited success, largely for two 
reasons: (a) enhancement DNNs, which can suppress non-target signals 
aggressively, often incur speech distortion detrimental to ASR; and 
(b) enhancement DNNs are often trained on simulated data, which 
inevitably mismatches real data, and this mismatch further aggravates 
the speech distortion problem. Through years of efforts, robust ASR 
approaches have gradually converged to (a) leveraging DNN estimates 
to derive linear beamforming results for ASR (Boeddecker et al., 2018; 
Heymann, Drude, Chinaev, & Haeb-Umbach, 2015; Zhang, Wang, & 
Wang, 2017); and (b) jointly training ASR models with enhancement 
models (Chang, Zhang, Qian, Le Roux, & Watanabe, 2019; Heymann, 
Drude, Boeddeker, Hanebrink, & Haeb-Umbach, 2017; Narayanan & 
Wang, 2015; Wang & Wang, 2016). These two approaches aim at im-
proving robust ASR performance. Their enhancement modules usually 
do not produce sufficiently accurate estimation of target speech. For 
example, linear beamforming is known to introduces little speech dis-
tortion but it has limited capabilities at suppressing non-target signals 
(especially when the number of microphones is limited and when the 
non-target signals are diffuse) (Gannot, Vincent, Markovich-Golan, & 
Ozerov, 2017). Another example is that jointly training enhancement 
models with ASR models often degrades the performance of the en-
hancement models on realistic mixtures (Masuyama, Chang, Zhang, 
et al., 2023).

Differently, in this paper we aim at building neural speech enhance-
ment models whose immediate estimate itself  can have low distortion 
to target speech and high reduction to non-target signals, especially on 
real test data. We find that, on the challenging real test data of CHiME-
4 (Vincent et al., 2017), the immediate output of SuperM2M bears low 
distortion to target speech and high reduction to non-target signals, and 
feeding it directly to strong ASR models for recognition yields strong 
performance.

2.2. Generalizability of supervised models to real data

Improving the generalizability of neural speech enhancement mod-
els to real data has received decade-long efforts. The current dominant 
approach (Chen et al., 2016; Wang & Chen, 2018; Zhang et al., 2024, 
2023) is to train supervised models on large-scale synthetic data, which 
is simulated in a way to cover as many variations (that could happen 
in real test data) as possible. However, the success has been limited, 
largely due to the current simulation techniques being not good enough 
at generating simulated mixtures as realistic as real mixtures. This can 
be observed from recent speech enhancement and ASR challenges. In 
the Clarity enhancement challenge (Cox et al., 2023), all the teams 
scored well on simulated data failed on real data. In CHiME-3/4 (Vin-
cent et al., 2017), in the multi-channel cases, all the top teams use 
conventional beamformers (although with signal statistics estimated 
based on DNN estimates) as the only frontend, and in the single-
channel cases, frontend enhancement often degrades ASR performance 
compared to not using any enhancement (assuming no joint frontend–
backend training) (Chang, Maekaku, Fujita, & Watanabe, 2022). In 
CHiME-{5,6,7} (Watanabe et al., 2020) and M2MeT (Yu et al., 2022), 
almost all the teams adopt guided source separation (Boeddecker et al., 
2018), a signal processing algorithm, as the only frontend.

Since the current simulation techniques are not satisfactory enough, 
a possible way to improve the generalizability to real data, we think, 
is to train enhancement models directly on real data.
3

2.3. Unsupervised speech separation

To model real data, unsupervised neural speech separation algo-
rithms (such as MixIT Wisdom et al., 2020, ReMixIT Tzinis, Adi, 
et al., 2022, NyTT Fujimura, Koizumi, Yatabe, & Miyazaki, 2021, 
Neural FCA Bando et al., 2021, RAS Aralikatti, Boeddeker, Wichern, 
Subramanian, & Le Roux, 2023, UNSSOR Wang & Watanabe, 2023 and 
USDnet Wang, 2024b), which can train separation models directly on 
mixtures or synthetic mixtures of mixtures, have been proposed. Due 
to their unsupervised nature, their performance could be limited due 
to not leveraging any supervision. Meanwhile, many algorithms in this 
stream are only evaluated on simulated data and their effectiveness on 
real data and for robust ASR is unclear. In contrast, we will show that 
SuperM2M works well on the challenging real data of CHiME-4.

2.4. Semi-supervised speech separation

A promising direction, suggested by Han, Wilson, Wisdom, and 
R. Hershey (2024), Sivaraman, Wisdom, Erdogan, and R. Hershey 
(2022) (and subsequent studies Hao, Xu, & Xie, 2023; Zhang, Zorilă, 
Doddipatla, & Barker, 2022), is to combine supervised learning on sim-
ulated data and unsupervised learning on real data for model training, 
forming a semi-supervised approach. The rationale is that supervised 
learning on massive simulated data offers an easy and feasible way for 
the model to learn to model speech patterns, and unsupervised learning 
on real data can help the model learn from real data.

SuperM2M follows this direction, but differs from Han et al. (2024), 
Sivaraman et al. (2022) in two major aspects. First, SuperM2M lever-
ages M2M (Wang, 2024a), which builds upon UNSSOR (Wang & Watan-
abe, 2023), to model real data, while (Han et al., 2024; Sivaraman 
et al., 2022) uses MixIT (Wisdom et al., 2020). As is suggested in Wang 
(2024b), Wang and Watanabe (2023), UNSSOR based methods (a) 
avoid tricky (and often unrealistic) synthesis of mixtures of mixtures, 
which, on the other hand, increases the number of sources to separate; 
(b) are more flexible at multi-channel separation; and (c) can be read-
ily configured to perform dereverberation besides separation (Wang, 
2024b), while MixIT cannot. On the other hand, when close-talk mix-
tures are available, M2M can be readily configured weakly-supervised 
to leverage the weak supervision afforded by close-talk mixtures.

2.5. Weakly-supervised speech separation

SuperM2M, building upon UNSSOR (Wang & Watanabe, 2023) and 
M2M (Wang, 2024a), can be configured to leverage close-talk mixtures 
as a weak supervision to enhance far-field mixtures. In the literature, 
there are earlier studies on weakly-supervised speech enhancement and 
source separation. In Stoller, Ewert, and Dixon (2018), Zhang, Yan, and 
Zhou (2018), discriminators, essentially source prior models trained 
in an adversarial way, are used to help separation models produce 
separation results with distributions close to clean sources. In Chang 
et al. (2019), separation models are jointly trained with ASR models 
to leverage the weak supervision of word transcriptions. In Pishda-
dian, Wichern, and Le Roux (2020), a pre-trained sound classifier is 
employed to check whether separated signals can be classified into 
target sound classes, thereby promoting separation. These approaches 
require clean sources, human annotations (e.g., word transcriptions), 
and source prior models (e.g., discriminators, ASR models, and sound 
classifiers). In comparison, M2M needs close-talk and far-field mixture 
pairs, which can be obtained during data collection by using close-talk 
in addition to far-field microphones, and it does not require source prior 
models. In addition, close-talk mixtures exploited in M2M can provide 
a sample-level supervision, offering much more fine-grained supervision 
than source prior models, word transcriptions, and segment-level sound 
class labels.
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3. Problem formulation

We start with describing the hypothesized physical models, then 
propose to formulate speech enhancement as a blind deconvolution 
problem, and at last overview the proposed algorithm for speech en-
hancement.

3.1. Physical model

In noisy-reverberant conditions with a compact far-field
𝑃 -microphone array and a single target speaker wearing a close-talk 
microphone, the physical model for each real-recorded mixture can 
be formulated, in the short-time Fourier transform (STFT) domain, as 
follows.

At a designated reference far-field microphone 𝑞 ∈ {1,… , 𝑃 }, the 
real-recorded mixture is formulated as 
𝑌𝑞(𝑡, 𝑓 ) = 𝑋𝑞(𝑡, 𝑓 ) + 𝑉𝑞(𝑡, 𝑓 ), (1)

where 𝑡 indexes 𝑇  frames, 𝑓 indexes 𝐹  frequency bins, and 𝑌𝑞(𝑡, 𝑓 ), 
𝑋𝑞(𝑡, 𝑓 ), and 𝑉𝑞(𝑡, 𝑓 ) respectively denote the STFT coefficients of the 
mixture, speaker image of the target speaker, and non-speech signals at 
time 𝑡, frequency 𝑓 and microphone 𝑞. In the rest of this paper, when 
dropping indices 𝑡 and 𝑓 , we refer to the corresponding spectrograms. 
We emphasize that 𝑉𝑞 could contain multiple strong, non-stationary 
directional as well as diffuse noises. In this paper, we model them using 
a single, combined source.

Let us denote the index of the close-talk microphone as 0, which 
is different from the set of indices {1,… , 𝑃 } used for far-field micro-
phones. This way, we can index any of the non-reference microphones4 
using 𝑝 ∈ {0, 1,… , 𝑃 }, with 𝑝 ≠ 𝑞. We then formulate the mixture 
captured at microphone 𝑝 as
𝑌𝑝(𝑡, 𝑓 ) = 𝑋𝑝(𝑡, 𝑓 ) + 𝑉𝑝(𝑡, 𝑓 )

= 𝐡𝑝(𝑓 )𝖧𝐗𝑞(𝑡, 𝑓 ; 𝑝) + 𝑉𝑝(𝑡, 𝑓 ) + 𝜀𝑝(𝑡, 𝑓 )

= 𝐡𝑝(𝑓 )𝖧𝐗𝑞(𝑡, 𝑓 ; 𝑝) + 𝐫𝑝(𝑓 )𝖧𝐕𝑞(𝑡, 𝑓 ; 𝑝) + 𝜀′𝑝(𝑡, 𝑓 ). (2)

In row 2, following narrowband approximation (Gannot et al., 2017; 
Talmon, Cohen, & Gannot, 2009), we approximate the speaker image 
captured at microphone 𝑝 (i.e., 𝑋𝑝(⋅, 𝑓 )) as a linear convolution between 
the speaker image captured at microphone 𝑞 (i.e., 𝑋𝑞(⋅, 𝑓 )) and a linear 
filter 𝐡𝑝(𝑓 ). That is, 𝑋𝑝(𝑡, 𝑓 ) ≈ 𝐡𝑝(𝑓 )𝖧𝐗𝑞(𝑡, 𝑓 ; 𝑝), where 𝐗𝑞(𝑡, 𝑓 ; 𝑝) =
[𝑋𝑞(𝑡 − 𝐼𝑝 + 1, 𝑓 ),… , 𝑋𝑞(𝑡 + 𝐽𝑝, 𝑓 )] ∈ C𝐼𝑝+𝐽𝑝  and 𝐡𝑝(𝑓 ) ∈ C𝐼𝑝+𝐽𝑝 , and 
we use 𝜀𝑝 to denote the modeling error. Notice that the past and future 
filter taps, 𝐼𝑝 and 𝐽𝑝, are dependent on the microphone index (i.e., 𝑝) of 
the speaker image 𝑋𝑝 we want to approximate. 𝐡𝑝(𝑓 ) can be interpreted 
as the relative transfer function (RTF) relating the speaker image 𝑋𝑞
(captured by the reference far-field microphone 𝑞) to the speaker image 
captured at another microphone 𝑝 (i.e., 𝑋𝑝). In row 3, we use the same 
trick to approximate non-speech signals 𝑉𝑝(𝑡, 𝑓 ) ≈ 𝐫𝑝(𝑓 )𝖧𝐕𝑞(𝑡, 𝑓 ; 𝑝), 
where 𝐕𝑞(𝑡, 𝑓 ; 𝑝) = [𝑉𝑞(𝑡 − 𝐼𝑝 + 1, 𝑓 ),… , 𝑉𝑞(𝑡 + 𝐽𝑝, 𝑓 )] ∈ C𝐼𝑝+𝐽𝑝  and 
𝐫𝑝(𝑓 ) ∈ C𝐼𝑝+𝐽𝑝 , and 𝜀′𝑝 absorbs the incurred modeling error and 𝜀𝑝.

To facilitate understanding, we provide several comments:
• For simplicity, we use 𝐼𝑝−1 past and 𝐽𝑝 future taps for both 𝐗𝑞(𝑡, 𝑓 ; 𝑝)
and 𝐕𝑞(𝑡, 𝑓 ; 𝑝), although it might be better to use different taps for 
different sources.

• For the filter taps 𝐼𝑝 and 𝐽𝑝, we have a subscript 𝑝 to indicate that 
we can use different number of filter taps for each non-reference 
microphone 𝑝. It may be a good idea to use different filter taps for the 
non-reference far-field microphones and the close-talk microphone, 
especially if they are placed on different devices or not synchronized 
with each other.

4 By non-reference microphones, we mean the close-talk microphone and 
𝑃 − 1 non-reference far-field microphones.
4

• 𝐫𝑝(𝑓 )𝖧𝐕𝑞(𝑡, 𝑓 ; 𝑝) could be a crude approximation of 𝑉𝑝(𝑡, 𝑓 ), as there 
could be multiple directional and diffuse noise sources in 𝑉 , rather 
than a single directional source like in 𝑋𝑞 .

• In the speaker image captured by the close-talk microphone (i.e., 𝑋0), 
the direct-path signal of the target speaker is often much stronger 
than its reverberation. Therefore, 𝑋0 can be largely viewed as the 
dry source signal. In this case, 𝐡0(𝑓 ) can be interpreted as a decon-
volutional filter that can reverse the speaker image 𝑋𝑞 back to the 
speech source signal.

3.2. Formulating speech enhancement as blind deconvolution

As is suggested by our preliminary studies, UNSSOR (Wang & 
Watanabe, 2023) and M2M (Wang, 2024a), both close-talk and far-field 
mixtures contain weak supervision for speaker separation. They (Wang, 
2024a; Wang & Watanabe, 2023) exploit the weak supervision by for-
mulating speaker separation as solving a blind deconvolution problem.

Similar to speaker separation, speech enhancement can be viewed 
as two-source separation, with one source being speech and the other 
being all non-speech sources combined. With this understanding, fol-
lowing UNSSOR (Wang & Watanabe, 2023) and M2M (Wang, 2024a), 
we can also formulate speech enhancement as solving a blind deconvo-
lution problem, and adapt UNSSOR and M2M for speech enhancement. 
In detail, the problem, formulated below, finds sources, 𝑋𝑞(⋅, ⋅) and 
𝑉𝑞(⋅, ⋅), and filters, 𝐡⋅(⋅) and 𝐫⋅(⋅), that are most consistent with the 
physical models in (1) and (2):

argmin
𝑋𝑞 (⋅,⋅),𝑉𝑞 (⋅,⋅),

𝐡⋅ (⋅),𝐫⋅ (⋅)

(

∑

𝑡,𝑓

|

|

|

𝑌𝑞(𝑡, 𝑓 ) −𝑋𝑞(𝑡, 𝑓 ) − 𝑉𝑞(𝑡, 𝑓 )
|

|

|

2
+

𝑃
∑

𝑝=0,𝑝≠𝑞

∑

𝑡,𝑓

|

|

|

𝑌𝑝(𝑡, 𝑓 ) − 𝐡𝑝(𝑓 )𝖧𝐗𝑞(𝑡, 𝑓 ; 𝑝) − 𝐫𝑝(𝑓 )𝖧𝐕𝑞(𝑡, 𝑓 ; 𝑝)
|

|

|

2)
, (3)

where | ⋅ | computes magnitude. As is suggested in UNSSOR (Wang & 
Watanabe, 2023), this problem is non-convex and difficult to be solved, 
since the speech source, noise source, and linear filters are all unknown 
and need to be estimated. It is known not solvable if no prior knowledge 
is assumed about the sources or filters (Levin, Weiss, Durand, & T. 
Freeman, 2011). In our preliminary work, UNSSOR (Wang & Watanabe, 
2023), which models source priors via unsupervised deep learning, is 
proposed to tackle this category of blind deconvolution problems. It 
is shown effective at separating reverberant multi-speaker mixtures to 
reverberant speaker images in simulated conditions.

3.3. Overview of proposed algorithms

Building upon the preliminary successes of UNSSOR (Wang & 
Watanabe, 2023) and M2M (Wang, 2024a) in speaker separation on 
simulated data, this paper adapts UNSSOR and M2M training for 
neural speech enhancement and performs training and evaluation on 
real-recorded data.

We first give UNSSOR and M2M a review in Section 4. We then 
propose to improve them by addressing potential synchronization is-
sues between close-talk and far-field microphones in Section 5. Next, 
in Section 6 we point out several weaknesses of UNSSOR and M2M, 
and propose to address them by combining UNSSOR and M2M training 
on real data with supervised learning on simulated data. 

4. M2M review, and adapting it for speech enhancement

Since we formulate speech enhancement as two-source separation, 
we can readily adapt UNSSOR and M2M (originally designed for 
speaker separation) for speech enhancement. This section reviews 
UNSSOR and M2M training, but in the context of adapting them for 
speech enhancement. 

Fig.  1(a) illustrates M2M training for speech enhancement. The DNN 
takes in far-field mixtures as input and produces an estimate 𝑋̂  for the 
𝑞
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Fig. 1. Illustration of SuperM2M, which consists of (a) M2M training on real close-talk and far-field mixture pairs (described in Section 4); and (b) supervised training on simulated 
far-field mixtures (described in Section 6). M2M trains the DNN to separate far-field mixtures to two sources that can be linearly filtered to reconstruct far-field and close-talk 
mixtures. In SuperM2M, we alternately feed in mini-batches of real mixtures and mini-batches of simulated mixtures, and train the same DNN by alternating between M2M training 
(if the input mixtures are real) and supervised learning (if the input mixtures are simulated).
target speaker and an estimate 𝑉𝑞 for non-target signals. Each estimate 
is then linearly filtered via forward convolutive prediction (Wang, 
Wichern, & Le Roux, 2021a) to optimize a so-called mixture-constraint 
loss (Wang & Watanabe, 2023), which encourages the filtered estimates 
to add up to the close-talk mixture and each far-field mixture, thereby 
exploiting the weak supervision afforded by close-talk and far-field 
mixtures for enhancement. This section describes the DNN setup, loss 
functions, and FCP filtering.

4.1. DNN configurations

The DNN is trained to perform complex spectral mapping (Tan et al., 
2022; Wang et al., 2020; Wang, Wang, & Wang, 2021), where the real 
and imaginary (RI) components of far-field mixtures are stacked as 
input features for the DNN to predict the RI components of 𝑋̂𝑞 and 𝑉𝑞 . 
The DNN setup is described later in Section 7.5, and the loss function 
next. We can optionally apply iSTFT-STFT projection to 𝑋̂𝑞 and 𝑉𝑞
before loss computation (see later Section 7.7.2 for details).

4.2. Mixture-constraint loss

Following UNSSOR (Wang & Watanabe, 2023), M2M (Wang, 2024a) 
and the objective in (3), we design the following mixture-constraint 
(MC) loss, which regularizes the DNN estimates 𝑋̂𝑞 and 𝑉𝑞 to have them 
respectively approximate 𝑋𝑞 and 𝑉𝑞 , by checking whether they can be 
utilized to reconstruct the recorded mixtures: 

MC = MC,𝑞 +
𝑃
∑

𝑝=0,𝑝≠𝑞
𝛼𝑝 × MC,𝑝, (4)

where the two loss terms respectively follow the ones in (3) and will be 
detailed next, and 𝛼𝑝, a weighting term, is set to 1.0 for the close-talk 
microphone and to 1∕(𝑃 − 1) for non-reference far-field microphones.

MC,𝑞 , following the first term in (3), is the MC loss at the reference 
far-field microphone 𝑞:
MC,𝑞 =

∑


(

𝑌𝑞(𝑡, 𝑓 ), 𝑌𝑞(𝑡, 𝑓 )
)

5

𝑡,𝑓
=
∑

𝑡,𝑓

(

𝑌𝑞(𝑡, 𝑓 ), 𝑋̂𝑞(𝑡, 𝑓 ) + 𝑉𝑞(𝑡, 𝑓 )
)

, (5)

where, in row 2, the DNN estimates 𝑋̂𝑞 and 𝑉𝑞 are utilized to recon-
struct the mixture 𝑌𝑞 via 𝑌𝑞 = 𝑋̂𝑞 + 𝑉𝑞 , and  (⋅, ⋅), to be described in 
(7), is a distance function.

Similarly, MC,𝑝, following the second term in (3), is the MC loss at 
each non-reference microphone 𝑝:
MC,𝑝 =

∑

𝑡,𝑓

(

𝑌𝑝(𝑡, 𝑓 ), 𝑌𝑝(𝑡, 𝑓 )
)

=
∑

𝑡,𝑓

(

𝑌𝑝(𝑡, 𝑓 ), 𝑋̂𝑝(𝑡, 𝑓 ) + 𝑉𝑝(𝑡, 𝑓 )
)

=
∑

𝑡,𝑓

(

𝑌𝑝(𝑡, 𝑓 ), 𝐡̂𝑝(𝑓 )𝖧𝐗̂𝑞(𝑡, 𝑓 ; 𝑝) + 𝐫̂𝑝(𝑓 )𝖧𝐕̂𝑞(𝑡, 𝑓 ; 𝑝)
)

, (6)

where 𝑋̂𝑝(𝑡, 𝑓 ) = 𝐡̂𝑝(𝑓 )𝖧𝐗̂𝑞(𝑡, 𝑓 ; 𝑝), with 𝐗̂𝑞(𝑡, 𝑓 ; 𝑝) =
[

𝑋̂𝑞(𝑡 − 𝐼𝑝 +
1, 𝑓 ),… , 𝑋̂𝑞(𝑡 + 𝐽𝑝, 𝑓 )

]𝖳 ∈ C𝐼𝑝+𝐽𝑝  and 𝐡̂𝑝(𝑓 ) ∈ C𝐼𝑝+𝐽𝑝 , and 𝑉𝑝(𝑡, 𝑓 ) =

𝐫̂𝑝(𝑓 )𝖧𝐕̂𝑞(𝑡, 𝑓 ; 𝑝), with 𝐕̂𝑞(𝑡, 𝑓 ; 𝑝) =
[

𝑉𝑞(𝑡 − 𝐼𝑝 + 1, 𝑓 ),… , 𝑉𝑞(𝑡 + 𝐽𝑝, 𝑓 )
]𝖳 ∈

C𝐼𝑝+𝐽𝑝  and 𝐫̂𝑝(𝑓 ) ∈ C𝐼𝑝+𝐽𝑝 . ̂𝐡𝑝(𝑓 ) and 𝐫̂𝑝(𝑓 ) are both estimated filters to 
be described in Section 4.3.

Following Wang, Wichern, and Le Roux (2021c),  (⋅, ⋅) computes a 
loss on the estimated RI components and their magnitude:


(

𝑌𝑟(𝑡, 𝑓 ), 𝑌𝑟(𝑡, 𝑓 )
)

= 1
∑

𝑡′ ,𝑓 ′ |𝑌𝑟(𝑡′, 𝑓 ′)|

(

𝑌𝑟(𝑡, 𝑓 ), 𝑌𝑟(𝑡, 𝑓 )
)

, (7)


(

𝑌𝑟(𝑡, 𝑓 ), 𝑌𝑟(𝑡, 𝑓 )
)

=||
|

(𝑌𝑟(𝑡, 𝑓 )) −(𝑌𝑟(𝑡, 𝑓 ))
|

|

|

+ |

|

|

(𝑌𝑟(𝑡, 𝑓 )) − (𝑌𝑟(𝑡, 𝑓 ))
|

|

|

+ |

|

|

|𝑌𝑟(𝑡, 𝑓 )| − |𝑌𝑟(𝑡, 𝑓 )|
|

|

|

, (8)

where 𝑟 ∈ {0, 1,… , 𝑃 } indexes all the close-talk and far-field micro-
phones, | ⋅ | computes magnitude, (⋅) and (⋅) respectively extract RI 
components, and the denominator in (7) balances the losses at different 
microphones and across training mixtures.

Notice that the DNN can use all or a subset of the far-field mi-
crophone signals as the input and for loss computation. For example, 
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̂

a monaural enhancement model can be trained by just using the 
reference microphone signal as the input but computing the loss on all 
the microphone signals.

4.3. FCP for filter estimation

To compute MC, we need to first compute the linear filters
(i.e., RTFs) in (6). Following UNSSOR (Wang & Watanabe, 2023), we 
leverage FCP (Wang, Wichern, & Le Roux, 2021a, 2021b) for filter 
estimation, based on the DNN estimates and observed mixtures.

Assuming that the target speaker is non-moving within each utter-
ance, we estimate, e.g., the filter ̂𝐡𝑝(𝑓 ) in (6), by solving the following 
problem: 

𝐡𝑝(𝑓 ) = argmin
𝐡𝑝(𝑓 )

∑

𝑡

|

|

|

𝑌𝑝(𝑡, 𝑓 ) − 𝐡𝑝(𝑓 )𝖧𝐗̂𝑞(𝑡, 𝑓 ; 𝑝)
|

|

|

2

𝜆̂𝑝(𝑡, 𝑓 )
, (9)

where 𝜆̂, to be described in (10), is a weighting term. The objective in 
(9) is quadratic, where a closed-form solution can be readily computed. 
We use the same method in (9) (i.e., linearly projecting DNN estimate 
to observed mixture) to compute all the other filters, and then plug the 
closed-form solutions to compute the MC loss and train the DNN.

In (9), 𝜆̂ is a weighting term balancing the importance of each 
T-F unit, as different T-F units usually have diverse energy levels. 
Following Wang, Wichern, and Le Roux (2021a), it is defined as 
𝜆̂𝑟(𝑡, 𝑓 ) = 𝜉 ×max(|𝑌𝑟|2) + |𝑌𝑟(𝑡, 𝑓 )|

2, (10)

where 𝑟 indexes all the microphones, 𝜉 (tuned to 10−2 in this study) 
floors the weighting term, and max(⋅) extracts the maximum value of 
a power spectrogram. We compute 𝜆̂ differently for different micro-
phones, as the energy level of each source can be very different at 
close-talk and far-field microphones, and deployed microphones, even 
if placed close to each other, often produce very different gain levels 
in real-world scenarios.

5. On-the-fly estimation of future taps 𝑱𝟎 for close-talk micro-
phone

The FCP filter taps used in M2M training (i.e., 𝐼𝑝 and 𝐽𝑝 for 𝑝 ∈
{0, 1,… , 𝑃 } and 𝑝 ≠ 𝑞) are hyperparameters to tune. Their ideal 
values are likely different for different utterances, while it is tricky and 
cumbersome to tune each one of them individually for each utterance. 
For simplicity, in UNSSOR (Wang & Watanabe, 2023) and M2M (Wang, 
2024a), the value of each filter tap is configured shared for all the 
training utterances.

This strategy should be improved when dealing with real-recorded 
data, such as CHiME-4 (Vincent et al., 2017). In CHiME-4, we observe 
that the far-field microphones are reasonably synchronized as they 
are placed on, and processed by, the same device, but the close-talk 
microphone, placed on a different device, is not accurately synchro-
nized with the far-field microphones. Their time-misalignment can be 
as large as 50 ms. On the other hand, the distance between the far-field 
microphone array and the close-talk microphone is unknown and can 
vary from utterance to utterance.

In this context, for simplicity, for all the training utterances, we 
set the past filter taps the same for all the non-reference microphones 
(i.e., all the 𝐼𝑝 for 𝑝 ∈ {0, 1,… , 𝑃 } and 𝑝 ≠ 𝑞 are configured the 
same) and set the future tap 𝐽𝑝 to 1 for all the non-reference far-field 
microphones, while we propose to, at each training step, estimate 𝐽0
(i.e., the future taps for the close-talk microphone) for each training 
utterance in the mini-batch by solving the problem below. The problem 
below, following the MC,0 loss in (6), enumerates a set of future taps 
and finds the one that leads to the best approximation of the close-talk 
mixture based on very short FCP filters: 

𝐽0 = argmin
′

∑


(

𝑌0(𝑡, 𝑓 ), 𝐡̂0(𝑓 )𝖧
⃗̂𝐗𝑞(𝑡, 𝑓 ; 0) + 𝐫̂0(𝑓 )𝖧

⃗̂𝐕𝑞(𝑡, 𝑓 ; 0)
)

, (11)
6

𝐽0∈𝛺 𝑡,𝑓
where ⃗̂𝐗𝑞(𝑡, 𝑓 ; 0) =
[

𝑋̂𝑞(𝑡 + 𝐽 ′
0 − 𝐾 + 1, 𝑓 ),… , 𝑋̂𝑞(𝑡 + 𝐽 ′

0, 𝑓 )
]𝖳 ∈ C𝐾 , 

⃗̂𝐕𝑞(𝑡, 𝑓 ; 0) =
[

𝑉𝑞(𝑡 + 𝐽 ′
0 −𝐾 + 1, 𝑓 ),… , 𝑉𝑞(𝑡 + 𝐽 ′

0, 𝑓 )
]𝖳 ∈ C𝐾 , 𝐾 is set to a 

small value (3 in this study) so that the filter is short and the amount 
of computation spent on solving this problem is small, 𝛺 = {0, 1,… , 𝑅}
denotes a set of future taps to enumerate (with 𝑅 tuned to 8 for CHiME-
4 to account for potentially large errors in synchronization), 𝐽 ′

0 ∈ 𝛺
denotes an enumerated candidate future tap, and 𝐡̂0(𝑓 ) and 𝐫̂0(𝑓 ) are 
computed in the same way as in (9).

Note that we run (11) at each training step to estimate 𝐽0 for 
each training utterance in the mini-batch. We stop gradients for the 
operations in (11) in the forward pass, and hence no back-propagation 
is performed for the operations in (11). The estimated 𝐽0 is then used 
for computing the MC,0 loss in (6).

6. SuperM2M

We first point out the weaknesses of M2M training, and then pro-
pose SuperM2M to address the weaknesses. Next, we discuss the neces-
sity of close-talk mixtures in SuperM2M. 

6.1. Weaknesses of M2M training

M2M is a weakly-supervised speech enhancement algorithm that 
can learn from the weak supervision afforded by close-talk and far-
field mixtures. It can also be viewed, with a grain of salt, as an 
unsupervised enhancement algorithm, where the DNN is trained to 
produce two source estimates that can be linearly filtered to best explain
(i.e., reconstruct) the close-talk and far-field mixtures. In this regard, 
the resulting enhancement system needs to deal with three tricky issues.

First, the source estimates could be permuted randomly. That is, 
they could respectively correspond to speech and noise, or the opposite, 
since the two estimates and their linearly-filtered results are only 
constrained to sum up to the mixtures.

Second, the source estimates could suffer from frequency permu-
tation (Sawada, Ono, Kameoka, Kitamura, & Saruwatari, 2019), a 
common problem that needs to be dealt with in many frequency-
domain unsupervised separation algorithms such as independent vector 
analysis, spatial clustering, and UNSSOR (Wang & Watanabe, 2023). 
Since FCP is performed in each frequency independently from the 
others, even though speech and noise sources are accurately separated 
in each frequency, the separation results of each source at different 
frequencies are not guaranteed to be grouped into the same output 
spectrogram.

Third, since, in realistic cases, the noise component 𝑉  usually 
consists of an unknown number of directional and diffuse sources, 
in unsupervised separation the model would lack an idea to produce 
one estimate exactly corresponding to target speech and the other 
exactly corresponding to all the noise sources combined. In other 
words, sources are ambiguous to the model. It is possible that, even 
if one estimate contains the target speech plus some noise sources and 
the other estimate absorbs the rest noise sources, the mixture-constraint 
loss can still be very low. The fundamental causes of this problem 
are that, in unsupervised setups, (a) the model lacks an exact concept 
about what the target source should be like; and (b) the hypothesized 
number sources (in this paper, 2) is not guaranteed to match the actual 
number of sources (i.e., speech source plus an unknown number of 
noise sources) in every training mixture.

These issues do not exist in supervised approaches, as the oracle 
simulated speech and noise signals used in supervised approaches can 
penalize the DNN estimates to naturally avoid source and frequency 
permutation, and resolve source ambiguity. This motivates us to com-
bine M2M training with supervised learning, leading to SuperM2M, 
which is described next.
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Fig. 2. Robust ASR pipeline, where enhanced speech 𝑥̂𝑞 = iSTFT(𝑋̂𝑞 ) is fed to backend ASR models for recognition. No joint training is performed. An optional speaker reinforcement 
module (Zorilă & Doddipatla, 2022), which adds a scaled version of the input mixture signal 𝑦𝑞 to 𝑥̂𝑞 , can be included.
6.2. Supervised and mixture-to-mixture co-learning

The previous subsection points out that M2M suffers from source 
and frequency permutation, and source ambiguity. On the other hand, 
although M2M training can be performed on real mixtures, there may 
not be many paired close-talk and far-field real-recorded mixtures 
available, as collecting real data is effort-consuming. In comparison, su-
pervised models can be readily trained on massive simulated mixtures, 
as one can easily simulate as many mixtures as one considers sufficient. 
In addition, they do not suffer from source and frequency permutation, 
and source ambiguity.

In this context, we propose to train the same DNN model with both 
M2M training and supervised learning to combine their strengths. We 
name the algorithm SuperM2M. See Fig.  1 for an illustration, where 
the supervised learning part is shown in Fig.  1(b). Notice that the DNN 
in M2M training is designed to directly produce target and non-target 
estimates. This makes M2M training capable of being easily integrated 
with supervised training, where the models are usually designed to 
directly produce target estimates.

In detail, at each training step, we sample either a mini-batch of 
real close-talk and far-field mixture pairs or a mini-batch of simulated 
far-field mixtures for DNN training. The loss for the mini-batch of real 
data is MC in (4), and the loss for the mini-batch of simulated data is

SIMU,𝑞 = Target,𝑞 + Non-target,𝑞 , (12)

Target,𝑞 =
1

∑

𝑡,𝑓 |𝑌𝑞(𝑡, 𝑓 )|

∑

𝑡,𝑓

(

𝑋𝑞(𝑡, 𝑓 ), 𝑋̂𝑞(𝑡, 𝑓 )
)

, (13)

Non-target,𝑞 =
1

∑

𝑡,𝑓 |𝑌𝑞(𝑡, 𝑓 )|

∑

𝑡,𝑓

(

𝑉𝑞(𝑡, 𝑓 ), 𝑉𝑞(𝑡, 𝑓 )
)

, (14)

where (⋅, ⋅) is defined in (8), 𝑋𝑞 and 𝑉𝑞 are obtained through simu-
lation, and the denominator balances the loss values with the ones in 
M2M training.

6.3. Necessity of close-talk mixtures

So far, we hypothesize that, during training, a paired close-talk 
mixture is always available for far-field mixtures. It is leveraged as a 
weak supervision for training by optimizing a mixture-constraint loss 
(i.e., MC,0 in (6)) defined on it.

When close-talk mixtures are not available, we find that we can 
still train enhancement models successfully via SuperM2M, where, in 
the M2M part, the DNN is trained to only recover far-field mixtures, 
meaning that M2M training is unsupervised.5 This is a desirable prop-
erty, as this means that we only need a set of real-recorded far-field 
multi-channel mixtures (which are easier to record than paired far-
field and close-talk mixtures), and together with a set of simulated 
mixtures, we can train an enhancement system via SuperM2M, which 
could generalize better to real mixtures than purely-supervised models 
trained only on the simulated mixtures.

5 When close-talk mixtures are not available, M2M (Wang, 2024a) regresses 
to UNSSOR (Wang & Watanabe, 2023). In our paper, we prefer to still call our 
algorithms SuperM2M, rather than SuperUNSSOR, just to avoid creating too 
many new names.
7

7. Experimental setup

Our main goal is to show that SuperM2M can generalize better to 
real data than purely supervised models trained on simulated data. We 
follow the robust ASR pipeline in Fig.  2 for evaluation, not using any 
joint frontend–backend training.

We do not use 𝑋̂𝑞 to derive linear beamforming results for ASR
(Haeb-Umbach et al., 2020, 2019; Wang & Chen, 2018), although this 
has been extremely popular, as we would like to validate whether the 
enhanced speech 𝑋̂𝑞 itself is close to target speech and whether 𝑋̂𝑞 itself 
can yield better ASR performance. We do not jointly train enhancement 
models with ASR models, as this requires knowledge of ASR models 
and would not accurately reflect the accuracy of 𝑋̂𝑞 itself. We aim at 
building enhancement models that can produce enhanced speech with 
low distortion and high reduction to non-target signals. This way, the 
enhancement models could improve the robustness of many subsequent 
applications not limited to ASR.

In a nutshell, our main goal is to show, through SuperM2M, whether 
𝑋̂𝑞 itself would be better on real test data. We validate SuperM2M on 
CHiME-4 (Vincent et al., 2017), a dataset consisting of simulated mix-
tures and real-recorded close-talk and far-field mixture pairs. To further 
show the effectiveness and potential of SuperM2M, a minor goal is to 
show whether SuperM2M can lead to state-of-the-art ASR performance 
on CHiME-4. The rest of this section describes the CHiME-4 dataset, 
miscellaneous system configurations, comparison systems, evaluation 
metrics, and several tricks to improve robust ASR performance.

7.1. CHiME-4 dataset

CHiME-4 (Vincent et al., 2017) is a major corpus for evaluating 
robust ASR and speech enhancement algorithms. It is recorded by using 
a tablet mounted with 6 microphones, with the second microphone on 
the rear and the others facing front. The signals are recorded in four 
representative environments (including cafeteria, buses, pedestrian ar-
eas, and streets), where reverberation and directional, diffuse, transient 
and non-stationary noises naturally exist. During data collection, the 
target speaker hand-holds the tablet in a designated environment, and 
reads text prompts shown on the screen of the tablet. The target speaker 
wears a close-talk microphone so that the close-talk mixture can be 
recorded at the same time along with far-field mixtures recorded by the 
microphones on the tablet. The number of simulated and real-recorded 
utterances is listed in Table  1. It should be noted that, in CHiME-4, 
the room reverberation is weak, and the major challenge is in how to 
remove the multi-source non-stationary noise signals.

In the real data of CHiME-4, we observe synchronization errors 
between the close-talk microphone and far-field microphone array. 
Other issues, such as microphone failures, signal clipping, speaker and 
array movement, and diverse gain levels even if microphones are placed 
close to each other, happen frequently. In real-world products, these are 
typical problems, which increase the difficulties of speech enhancement 
and ASR. They need to be robustly dealt with by frontend enhancement 
systems.

Depending on the number of microphones that can be used for 
recognition, there are three official ASR tasks in CHiME-4, including 
1-, 2- and 6-channel tasks. In the 1-channel task, only one of the front 
microphones can be used for testing; in the 2-channel task, only two 
of the front microphones can be used; and in the 6-channel task, all 
the six microphones can be used. For the 1- and 2-channel tasks, the 
microphones that can be used for ASR for each utterance are selected 
by the challenge organizers to avoid microphone failures. The selected 
microphones can vary from utterance to utterance.
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Table 1
Number of utterances in CHiME-4 (all are six-channel).
 Type Training Set Validation Set Test Set  
 SIMU 7,138 (∼ 15.1 h) 1,640 (∼ 2.9 h) 1,320 (∼ 2.3 h)  
 (410 in each environ.) (330 in each environ.) 
 REAL 1,600 (∼ 2.9 h) 1,640 (∼ 2.7 h) 1,320 (∼ 2.2 h)  
 (410 in each environ.) (330 in each environ.) 

7.2. Evaluation setup — robust ASR

We check whether SuperM2M can improve ASR performance by 
feeding its enhanced speech to ASR models for decoding, following the 
pipeline in Fig.  2. We consider two ASR models.
• The first one is Whisper Large v26 (Radford et al., 2023), pre-trained 
on massive data. We use its text normalizer to normalize hypothesis 
and reference text before computing WER.

• The second one is trained on the official CHiME-4 mixtures plus the 
clean signals in WSJ0 by using the public recipe (Chang et al., 2022)7 
in ESPnet. It is an encoder–decoder transformer-based model, trained 
on WavLM features (Chen et al., 2022) and using a transformer 
language model in decoding. It is the current strongest ASR model 
on CHiME-4. It is a representative model in leveraging self-supervised 
learning based representations for ASR and robust ASR (Chang et al., 
2022; Du, Zhang, Fang, Wu, & Yang, 2023; Zhu, Zhang, Zhang, & Dai, 
2023; Zhu et al., 2022).

Note that the WERs computed by ESPnet should not be directly com-
pared with the ones by Whisper due to different text normalization. As 
a side result, to compare the ASR model in ESPnet with the Whisper 
model, we retrained an ESPnet model by using the same text normal-
ization as the Whisper ASR model. We will report the evaluation results 
of using this ASR model later in Section 8.9.

7.3. Evaluation setup — speech enhancement

We evaluate the enhancement performance of SuperM2M on the 
simulated test data of CHiME-4. We consider 1- and 6-channel enhance-
ment. In the 1-channel case, SuperM2M uses the fifth microphone (CH5) 
signal as input, and the target direct-path signal at CH5 is used as the 
reference for evaluation. In the 6-channel case, SuperM2M uses all the 
microphone signals as input to predict the target speech at CH5.

The evaluation metrics include wide-band perceptual evaluation of 
speech quality (WB-PESQ) (Rix, Beerends, Hollier, & Hekstra, 2001), 
short-time objective intelligibility (STOI) (H. Taal, C. Hendriks, Heus-
dens, & Jensen, 2011), signal-to-distortion ratio (SDR) (Vincent, Gri-
bonval, & Févotte, 2006), and scale-invariant SDR (SISDR) (Le Roux, 
Wisdom, Erdogan, & Hershey, 2019). They are widely-adopted metrics 
in speech enhancement, which can evaluate the quality, intelligibility, 
and accuracy of the magnitude and phase of enhanced speech.

7.4. Training setup

For monaural enhancement, we train SuperM2M using all the 
(7, 138+1, 600)×6 monaural signals. For 2-channel enhancement, at each 
training step we sample 2 microphones from the front microphones as 
input, and train the DNN to predict the target speech at the first of the 
selected microphones. For 6-channel enhancement, we train SuperM2M 
using the 7, 138 + 1, 600 six-channel signals. The DNN stacks all the six 
microphones as input to predict the target speech at CH5.

6 https://huggingface.co/openai/whisper-large-v2
7 https://github.com/espnet/espnet/blob/master/egs2/chime4/asr1/

conf/tuning/train_asr_transformer_wavlm_lr1e-3_specaug_accum1_preenc128_
warmup20k.yaml
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For simplicity, we do not filter out microphone signals with any 
microphone failures in the DNN input and loss. We would expect 
SuperM2M to learn to deal with the failures, as it can be trained on 
real mixtures.

7.5. Miscellaneous configurations

For STFT, the window size is 32 ms, hop size 8 ms, the square root 
of Hann window is used as the analysis window, and the synthesis 
window is designed based on the analysis window to achieve perfect 
reconstruction.

TF-GridNet (Wang et al., 2023), which has shown strong separation 
performance in major benchmarks in supervised speech separation, 
is used as the DNN architecture. We consider two setups. Using the 
symbols defined in Table I of Wang et al. (2023), the first one (denoted 
as TFGridNetv1) sets its hyper-parameters to 𝐷 = 100, 𝐵 = 4, 𝐼 = 2, 
𝐽 = 2, 𝐻 = 200, 𝐿 = 4 and 𝐸 = 2, and the second one (denoted as 
TFGridNetv2) to 𝐷 = 128, 𝐵 = 4, 𝐼 = 1, 𝐽 = 1, 𝐻 = 200, 𝐿 = 4 and 
𝐸 = 4. Please do not confuse these symbols with the ones in this paper. 
The models have ∼6.3 and ∼5.4 million parameters respectively. The v1 
model uses approximately half of the computation and memory of v2,8 
and is utilized for faster experimentation.

We train all the enhancement models on 8-second segments using a 
mini-batch size of 1. At each training step, if the sampled utterance is 
simulated, we use supervised learning, and if it is real-recorded, we use 
M2M training. Adam is employed for optimization. The learning rate 
starts from 0.001 and is halved if the validation loss is not improved in 
2 epochs.

7.6. Comparison systems

We consider the same DNN model trained only on the simulated 
data of CHiME-4 via supervised learning as the major baseline for com-
parison. We use exactly the same configurations as that in SuperM2M 
for training. We denote this baseline as Supervised, to differentiate it 
with SuperM2M. Since CHiME-4 is a public and popular dataset, many 
existing models can be used directly for comparison.

7.7. Tricks to improve robust ASR performance

To show the effectiveness of SuperM2M, we also check whether 
it can lead to state-of-the-art ASR performance on CHiME-4. This 
subsection describes several tricks that are known to improve robust 
ASR performance and are commonly used in existing studies.

7.7.1. SNR augmentation for simulated training mixtures
At each training step, we optionally modify the SNR of the target 

speech in the CHiME-4 simulated training mixture, on the fly, by 𝑢
dB, with 𝑢 uniformly sampled from the range [−10,+5] dB. In our 
experiments, we find this technique often producing slightly better 
enhancement and ASR, but not critical. Note that we do not change 
the combinations of speech and noise files to create new mixtures, and 
we just change the SNR of the existing mixtures in CHiME-4. No other 
data augmentation is used for enhancement.

8  This is because in v1, setting 𝐼 = 2 and 𝐽 = 2 cuts the sequence 
length to be modeled by the BLSTMs in TFGridNet by 50%, compared with 
setting 𝐼 = 1 and 𝐽 = 1 in v2. In this case, v1 would approximately use 
half of the computation and memory of v2 for the following reasons. First, 
in TFGridNet, the cross-frame self-attention module is much less costly than 
the sub-band temporal module and the intra-frame full-band module, both of 
which use BLSTMs, the most computationally-expensive block in each of the 
two modules. Second, although the input dimension to the BLSTMs is 200 in 
v1 while 128 in v2, the hidden dimensions of the BLSTMs in v1 and v2 are 
both set to 200 and most computation inside BLSTMs is not spent between the 
input tensor and the hidden tensor. We highlight that this approximation is 
rough and is verified only empirically.

https://huggingface.co/openai/whisper-large-v2
https://github.com/espnet/espnet/blob/master/egs2/chime4/asr1/conf/tuning/train_asr_transformer_wavlm_lr1e-3_specaug_accum1_preenc128_warmup20k.yaml
https://github.com/espnet/espnet/blob/master/egs2/chime4/asr1/conf/tuning/train_asr_transformer_wavlm_lr1e-3_specaug_accum1_preenc128_warmup20k.yaml
https://github.com/espnet/espnet/blob/master/egs2/chime4/asr1/conf/tuning/train_asr_transformer_wavlm_lr1e-3_specaug_accum1_preenc128_warmup20k.yaml
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Table 2
SuperM2M vs. purely-supervised models on CHiME-4 (#input mics: 6; ASR model: Whisper Large v2).

#mics
in
MC

iSTFT-
STFT
proj.?

Spk.
reinf.
𝛾 (dB)

SIMU Test Set (CH5) Official CHiME-4 Test Utterances
Training
data

SNR
aug.

SISDR
(dB)↑

SDR
(dB)↑

WB-
PESQ↑

Val. WER (%)↓ Test WER (%)↓
System Approach DNN arch. 𝐽0 STOI↑ SIMU REAL SIMU REAL
0 Mixture – – – – – – – 7.5 7.5 1.27 0.870 7.43 4.96 10.97 7.69

1a Supervised S TFGridNetv1 – – 7 7 – 22.2 22.6 3.08 0.984 3.55 28.90 3.93 53.23
1b Supervised S TFGridNetv2 – – 3 3 – 𝟐𝟐.𝟖 𝟐𝟑.𝟐 𝟑.𝟑𝟔 𝟎.𝟗𝟖𝟖 3.43 58.15 3.79 79.08

2a Supervised S iNeuBe Wang et al. (2020) – – – – – 22.0 22.4 – 0.986 – – – –
2b Supervised S SpatialNet Quan and Li (2024) – – – – – 22.1 22.3 2.88 0.983 – – – –
2c Supervised S USES Zhang et al. (2023) – – – – – – 20.6 3.16 0.983 – – 4.20 78.10
2d Supervised S USES2 Zhang et al. (2024) – – – – – – 18.8 2.94 0.979 – – 4.60 12.10

3 SuperM2M S+R TFGridNetv1 – 6 7 7 – 22.3 22.6 3.12 0.984 3.52 3.93 3.93 4.46

4a SuperM2M S+R TFGridNetv1 1 6+1 7 7 – 22.3 22.5 3.06 0.984 3.57 3.89 3.97 4.04
4b SuperM2M S+R TFGridNetv1 2 6+1 7 7 – 22.2 22.6 3.11 0.984 3.51 3.84 4.12 4.16
4c SuperM2M S+R TFGridNetv1 3 6+1 7 7 – 22.2 22.5 3.07 0.984 3.56 3.88 4.05 4.09
4d SuperM2M S+R TFGridNetv1 4 6+1 7 7 – 22.4 22.7 3.11 0.985 3.48 3.97 3.98 4.07
4e SuperM2M S+R TFGridNetv1 5 6+1 7 7 – 22.3 22.6 3.07 0.985 3.52 3.97 4.05 4.16
4f SuperM2M S+R TFGridNetv1 6 6+1 7 7 – 22.3 22.7 3.10 0.985 3.61 3.94 3.98 4.21
4g SuperM2M S+R TFGridNetv1 7 6+1 7 7 – 22.2 22.5 3.10 0.984 3.53 3.99 4.01 4.24
4h SuperM2M S+R TFGridNetv1 8 6+1 7 7 – 22.4 22.7 3.14 0.985 3.51 3.93 3.97 4.19

5 SuperM2M S+R TFGridNetv1 est. 6+1 7 7 – 22.3 22.6 3.07 0.985 3.59 3.92 4.08 𝟑.𝟗𝟕
6a UNSSOR 

Wang and 
Watanabe 
(2023)

R TFGridNetv1 – 6 7 7 – 7.7 8.1 1.30 0.870 4.82 4.16 6.20 4.84

6b UNSSOR 
Wang and 
Watanabe 
(2023)

S+R TFGridNetv1 – 6 7 7 – 4.5 4.6 1.32 0.881 4.81 4.14 5.42 4.88

6c M2M Wang 
(2024a)

R TFGridNetv1 est. 6+1 7 7 – 9.8 10.3 1.50 0.902 4.94 3.95 6.76 4.32

6d M2M Wang 
(2024a)

S+R TFGridNetv1 est. 6+1 7 7 – 4.5 4.6 1.33 0.882 4.63 3.95 5.38 4.32

7a SuperM2M S+R TFGridNetv2 est. 6+1 7 7 – 22.5 22.9 3.15 0.985 3.51 3.90 3.87 4.14
7b SuperM2M S+R TFGridNetv2 est. 6+1 7 3 – 22.7 23.2 3.24 0.986 3.43 3.84 3.87 3.98
7c SuperM2M S+R TFGridNetv2 est. 6+1 3 3 – 𝟐𝟐.𝟖 𝟐𝟑.𝟐 3.22 0.987 𝟑.𝟑𝟖 𝟑.𝟖𝟏 3.77 4.04

8a SuperM2M S+R TFGridNetv2 est. 6+1 3 3 10 – – – – 3.61 3.85 3.84 4.24
8b SuperM2M S+R TFGridNetv2 est. 6+1 3 3 15 – – – – 3.59 3.87 𝟑.𝟕𝟒 4.11
8c SuperM2M S+R TFGridNetv2 est. 6+1 3 3 20 – – – – 3.54 3.86 𝟑.𝟕𝟒 4.10

9 Close-talk
Mixture

– – – – – – – – – – – – 3.76 – 3.91
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7.7.2. iSTFT-STFT projection
We apply inverse STFT (iSTFT) followed by STFT operations to 

the DNN estimates 𝑋̂𝑞 and 𝑉𝑞 before loss computation, i.e., 𝑋̂𝑞 ∶=
STFT(iSTFT(𝑋̂𝑞)) and 𝑉𝑞 ∶= STFT(iSTFT(𝑉𝑞)). See Fig.  1 for an illustra-
tion. This often yields slight improvement, as the losses now penalize 
the RI components and magnitudes extracted from re-synthesized sig-
nals, which are the final system output used for human hearing and 
downstream tasks (Pandey & Wang, 2019; Wang, Wichern, & Le Roux, 
2021c; Wisdom et al., 2019). Notice that, in Fig.  2, ASR features are 
extracted from re-synthesized signals.

7.7.3. Run-time speaker reinforcement for robust ASR
At run time, in default we feed 𝑥̂𝑞 for ASR. Alternatively, we employ 

a technique named speaker reinforcement (Zorilă & Doddipatla, 2022), 
where 𝑥̂𝑞 is re-mixed with the input mixture 𝑦𝑞 at an energy level of 𝛾
dB before recognition. See Fig.  2 for an illustration. That is, 𝑥̂𝑞 + 𝜂 × 𝑦𝑞 , 
where 𝜂 ∈ R>0 and 𝛾 = 10 × log10(‖𝑥̂𝑞‖2∕‖𝜂 × 𝑦𝑞‖2). We find this 
technique usually effective for ASR, as the re-mixed input mixture can 
alleviate distortion to target speech.

8. Evaluation results

This section reports our evaluations results on CHiME-4. Following 
earlier studies (Wang, 2024a; Wang & Watanabe, 2023), we set 𝐼𝑝 to 
20 for all the non-reference far-field microphones and the close-talk 
microphone, and 𝐽𝑝 to 1 for all the non-reference far-field microphones. 
𝐽0, the future filter tap for the close-talk microphone, can be tuned 
to a value shared by all the training mixtures, or it can be estimated, 
on the fly, for each training mixture by using the method described in 
Section 5. All the six far-field microphones are used for computing MC
in (4). We emphasize that we spent minimal amount of effort on hyper-
parameter tuning. Other hyper-parameter setup could lead to better 
performance.

8.1. SuperM2M vs. Purely-supervised models

Tables  2 and 3 respectively report 6- and 1-channel enhancement 
performance on the fifth microphone of the CHiME-4 simulated test 
data, and robust ASR performance on the official CHiME-4 test utter-
ances (by using the Whisper Large v2 model for recognition). The two 
tables consist of exactly the same set of experiments, and differ only in 
the number of input microphones to the enhancement models.

On the simulated test data, purely supervised models (in system 
1a-1b) trained on the official simulated training data (denoted as S
in the ‘‘Training data’’ column) produce large improvement over un-
processed mixtures (e.g., in system 1a of Table  2, 22.2 vs. 7.5 dB 
SISDR, and in 1a of Table  3, 17.1 vs. 7.5 dB SISDR), and achieve 
enhancement performance better than existing supervised models such 
as iNeuBe (based on TCN-DenseUNet) (Lu et al., 2022; Wang et al., 
2020), SpatialNet (Quan & Li, 2024), USES (Zhang et al., 2023) and 
USES2 (Zhang et al., 2024) in both 1- and 6-channel cases. However, 
the ASR performance is much worse than directly using unprocessed 
mixtures for ASR, especially in multi-channel cases (e.g., in system 1a 
and 0 of Table  2, 53.23% vs. 7.69% WER on REAL test data, and in 
system 1a and 0 of Table  3, 10.20% vs. 7.69% WER on REAL test data). 
This degradation has been widely observed by existing studies (Haeb-
Umbach et al., 2020, 2019), largely due to the mismatches between 
simulated training and real-recorded test conditions, and the speech 
distortion incurred by enhancement.

In system 7c of Table  2 and 7b of Table  3, we respectively show the 
results of our best performing SuperM2M models (without employing 
the speaker reinforcement technique described in Section 7.7.3) for 6- 
and 1-channel cases. By training on the official simulated and real data 
combined (denoted as S+R), SuperM2M obtains clearly better ASR re-
sults on the real test data than the purely-supervised models (in system 
1a-1b) and unprocessed mixtures (in system 0), and the enhancement 
10
performance on the simulated test data remains strong. These results 
indicate that SuperM2M can effectively learn from real data, has better 
generalizability to real data, and can perform enhancement with low 
distortion to target speech and high reduction to non-target signals.

Next, we present some ablations results of SuperM2M.

8.2. Effects of including loss on close-talk mixture in MC

First, in system 3, we report the results of not including close-talk 
microphone in the loss function. That is, in (4) we do not include the 
MC,0 loss, when training SuperM2M. We observe clear improvement in 
ASR performance on the real test data over the purely-supervised model 
in system 1a (i.e., 4.46% vs. 53.23% in Table  2 and 7.02% vs. 10.20% 
in Table  3), indicating that close-talk mixtures are not must-have for 
our system.

Next, we include close-talk mixtures for training. In system 4a-4h, 
the number of future taps for the close-talk microphone, 𝐽0, is tuned to 
a value shared by all the training utterances, and we enumerate 𝐽0 from 
1 all the way up to 8. In system 5, we instead estimate 𝐽0, on the fly, for 
each training mixture during training, using the technique described 
in Section 5. Compared with system 4a-4h, system 5 obtains better 
ASR performance on the real test data, indicating the effectiveness of 
estimating 𝐽0.

In both Tables  2 and 3, comparing system 5 and 3, we observe that 
including close-talk mixtures for training SuperM2M produces better 
ASR performance on the real test data of CHiME-4 (e.g., 3.97% vs. 
4.46% in Table  2 and 6.51% vs. 7.02% in Table  3).

8.3. SuperM2M vs. UNSSOR and M2M

In system 6a-6d of Tables  2 and 3, we respectively report the results 
of UNSSOR (Wang & Watanabe, 2023) and M2M (Wang, 2024a). UN-
SSOR is trained in an unsupervised way directly on far-field mixtures 
by using the MC loss in (4) but without including MC,0 (i.e., the loss 
on close-talk mixture). M2M is the same as SuperM2M but without the 
supervised learning branch. We can train UNSSOR and M2M on the real 
data alone (denoted as R), or on the simulated and real data combined 
(i.e., S+R) considering that SuperM2M is trained on S+R. When M2M 
is trained on S+R, the loss function on the simulated data does not 
include the loss on close-talk mixture, since CHiME-4 does not provide 
simulated close-talk mixtures.

Since the source estimates produced by UNSSOR and M2M could 
suffer from frequency permutation, we employ an existing algorithm
(Sawada, Araki, & Makino, 2007; Vu & Haeb-Umbach, 2010)9 for fre-
quency alignment. The algorithm exploits inter-frequency correlation 
of estimated source posteriors, and we compute the source posteriors 
based on the DNN estimates 𝑆̂𝑞 and 𝑉𝑞 respectively via |𝑆̂𝑞|∕

(

|𝑆̂𝑞|+|𝑉𝑞|
)

and |𝑉𝑞|∕
(

|𝑆̂𝑞|+|𝑉𝑞|
)

. In addition, since the source estimates of UNSSOR 
and M2M exhibit source permutation, for each evaluation metric we 
compute a score for each estimate and select the better score.

Comparing system 6a-6d and 5, we can see that SuperM2M obtains 
much better performance than UNSSOR and M2M, suggesting the effec-
tiveness of the proposed co-learning mechanism. The low performance 
of M2M and UNSSOR is possibly because the noise in CHiME-4 typically 
consists of an unknown number of diffuse and directional sources. In 
this case, unsupervised algorithms with two hypothesized directional 
sources tend to get confused about which source should be the target 
speech source. This problem is naturally avoided by the supervised 
learning mechanism in SuperM2M, which models noise sources as a 
single, combined source.

9 See https://github.com/fgnt/pb_bss/blob/master/pb_bss/permutation_
alignment.py

https://github.com/fgnt/pb_bss/blob/master/pb_bss/permutation_alignment.py
https://github.com/fgnt/pb_bss/blob/master/pb_bss/permutation_alignment.py
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Table 3
SuperM2M vs. purely-supervised models on CHiME-4 (#input mics: 1; ASR model: Whisper Large v2).

#mics
in
MC

iSTFT-
STFT
proj.?

Spk.
reinf.
𝛾 (dB)

SIMU Test Set (CH5) Official CHiME-4 Test Utterances
Training
data

SNR
aug.

SISDR
(dB)↑

SDR
(dB)↑

WB-
PESQ↑

Val. WER (%)↓ Test WER (%)↓
System Approach DNN arch. 𝐽0 STOI↑ SIMU REAL SIMU REAL
0 Mixture – – – – – – – 7.5 7.5 1.27 0.870 7.43 4.96 10.97 7.69

1a Supervised S TFGridNetv1 – – 7 7 – 17.1 17.5 2.44 0.960 7.14 5.33 13.16 10.20
1b Supervised S TFGridNetv2 – – 3 3 – 17.1 17.5 2.44 0.961 7.58 5.19 12.44 9.03

2 Supervised S iNeuBe Wang et al. (2020) – – – – – 15.1 – – 0.954 – – – –
3 SuperM2M S+R TFGridNetv1 – 6 7 7 – 16.8 17.3 2.40 0.960 7.13 5.17 11.80 7.02

4a SuperM2M S+R TFGridNetv1 1 6+1 7 7 – 16.8 17.4 2.38 0.961 7.10 5.05 11.87 6.93
4b SuperM2M S+R TFGridNetv1 2 6+1 7 7 – 16.9 17.5 2.45 0.962 6.99 5.19 11.67 6.87
4c SuperM2M S+R TFGridNetv1 3 6+1 7 7 – 16.6 17.5 2.47 0.961 7.02 4.86 12.26 6.86
4d SuperM2M S+R TFGridNetv1 4 6+1 7 7 – 16.8 17.5 2.48 𝟎.𝟗𝟔𝟑 7.10 4.97 11.75 6.87
4e SuperM2M S+R TFGridNetv1 5 6+1 7 7 – 16.9 17.4 2.36 0.959 7.34 5.29 12.23 7.51
4f SuperM2M S+R TFGridNetv1 6 6+1 7 7 – 16.9 17.4 2.41 0.962 7.34 5.29 12.23 7.51
4g SuperM2M S+R TFGridNetv1 7 6+1 7 7 – 17.0 17.4 2.42 0.961 7.23 5.02 12.19 6.90
4h SuperM2M S+R TFGridNetv1 8 6+1 7 7 – 16.6 17.4 2.41 0.961 7.26 5.03 12.05 6.95

5 SuperM2M S+R TFGridNetv1 est. 6+1 7 7 – 16.4 17.4 𝟐.𝟓𝟔 0.962 7.01 4.87 11.69 6.51

6a UNSSOR 
Wang and 
Watanabe 
(2023)

R TFGridNetv1 – 6 7 7 – 10.3 11.0 1.42 0.898 11.02 6.24 15.04 10.42

6b UNSSOR 
Wang and 
Watanabe 
(2023)

S+R TFGridNetv1 – 6 7 7 – 11.6 11.7 1.70 0.937 7.71 5.24 11.85 8.12

6c M2M Wang 
(2024a)

R TFGridNetv1 est. 6+1 7 7 – 11.6 12.3 1.77 0.924 10.72 5.95 14.98 8.61

6d M2M Wang 
(2024a)

S+R TFGridNetv1 est. 6+1 7 7 – 10.3 10.4 1.77 0.942 7.70 5.66 11.94 8.00

7a SuperM2M S+R TFGridNetv2 est. 6+1 7 7 – 𝟏𝟕.𝟑 𝟏𝟕.𝟕 2.44 𝟎.𝟗𝟔𝟑 6.78 4.93 11.42 6.31
7b SuperM2M S+R TFGridNetv2 est. 6+1 7 3 – 17.1 17.5 2.43 0.962 7.02 4.74 11.24 6.23
7c SuperM2M S+R TFGridNetv2 est. 6+1 3 3 – 16.6 17.4 2.51 𝟎.𝟗𝟔𝟑 7.05 4.78 11.34 6.02

8a SuperM2M S+R TFGridNetv2 est. 6+1 3 3 10 – – – – 𝟓.𝟗𝟎 𝟒.𝟒𝟐 𝟖.𝟖𝟎 𝟓.𝟖𝟎
8b SuperM2M S+R TFGridNetv2 est. 6+1 3 3 15 – – – – 6.22 4.47 9.34 5.76
8c SuperM2M S+R TFGridNetv2 est. 6+1 3 3 20 – – – – 6.40 4.60 9.87 5.86

9 Close-talk
Mixture

– – – – – – – – – – – – 3.76 – 3.91
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Table 4
SuperM2M vs. USES (Zhang et al., 2023) and USES2 (Zhang et al., 2024) on CHiME-4 (ASR model: Whisper Large v2).

SIMU Test (CH5) CH5 of CHiME-4 Test Utterances
Cross
reference

Training
data

SISDR
(dB)↑

SDR
(dB)↑

WB-
PESQ↑

Val. WER (%)↓ Test WER (%)↓
System Approach Task STOI↑ SIMU REAL SIMU REAL
0 – Mixture – 1-channel 7.5 7.5 1.27 0.870 5.49 5.09 5.82 6.69

1a – USES Zhang et al. (2023) S 1-channel – – – – – – – 11.00
1b – USES Zhang et al. (2023) S+extra 1-channel – – – – – – – 7.10

2 7c of Table  3 SuperM2M S+R 1-channel 16.6 17.4 2.51 0.963 5.37 4.84 6.14 5.73

3a – USES Zhang et al. (2023) S 6-channel – 20.6 3.16 0.983 – – 4.20 78.10
3b – USES Zhang et al. (2023) S+extra 6-channel – 19.1 2.95 0.979 – – 4.10 85.90
3c – USES2 Zhang et al. (2024) S 6-channel – 18.8 2.94 0.979 – – 4.60 12.10
3d – USES2 Zhang et al. (2024) S+extra 6-channel – – – – – – – 10.30

4 7c of Table  2 SuperM2M S+R 6-channel 22.8 23.2 3.22 0.987 3.38 3.81 3.77 4.04

Notes: (a) The ‘‘extra’’ in ‘‘SIMU+extra’’ means extra ∼ 230 hours of simulated training data (see Zhang et al. (2024, 2023) for details).
 (b) The ‘‘cross reference’’ entry means that the other setups are the same as the ones in the referred row.
8.4. Miscellaneous results

In system 7a, 7b, and 7c of Tables  2 and 3, we switch TF-GridNet 
from v1 to v2, perform iSTFT-STFT projection, and apply SNR aug-
mentation. Comparing system 7a with 7b, we observe that applying 
iSTFT-STFT projection can improve ASR performance in most cases. 
From system 5 to 7c, although the ASR performance on the real test 
data gets better in Table  3 while worse in Table  2, in both tables better 
ASR performance is observed on the real validation set. We therefore 
use system 7c as our default system for the rest experiments of this 
paper.

8.5. SuperM2M vs. Purely large-scale supervised training

Table  4 compares SuperM2M with a representative line of research 
(USES Zhang et al., 2023 and USES2 Zhang et al., 2024), which trains 
enhancement models in a purely-supervised way on a much larger-
scale simulated data of ∼245 hours, which is ∼14 times the size of the 
CHiME-4 SIMU+REAL data (i.e., 245∕(15.1 + 2.9)).

USES and USES2 have shown that, by increasing the diversity of 
simulated training mixtures to cover as many conditions (that could 
happen in real data) as possible, better enhancement can be achieved 
on real data. However, on CHiME-4, compared with using unprocessed 
mixtures directly for recognition, they do not obtain better ASR perfor-
mance, likely because the simulated training data is not representative 
of the real data in CHiME-4.

In comparison, SuperM2M, although trained only on the official 
small-scale CHiME-4 simulated and real mixtures, obtains much better 
ASR performance on the real data of CHiME-4 in both single- and multi-
channel cases than USES, USES2, and the unprocessed mixtures. This 
comparison does not suggest that purely supervised learning on large-
scale simulated data is a bad idea, as it can offer an easy and feasible 
way for training DNNs to model speech patterns for enhancement, and 
building upon this strength, SuperM2M can very likely produce even 
better enhancement on real data. Rather, it sounds an alarm that purely 
large-scale supervised learning on simulated data has a fundamental 
limitation incurred by using the current simulation techniques, which 
usually cannot simulate mixtures in a sufficiently realistic way. In 
addition, it suggests the benefits of co-training the DNN on real data via 
M2M. This way, the DNN, during training, can see and learn from the 
signal characteristics of real-recorded data, and could hence generalize 
better to real-recorded data.

8.6. Breaking out to new highs on CHiME-4 ASR tasks

Table  5 reports the ASR performance of SuperM2M based on the 
official ASR setup of CHiME-4, using the ASR model proposed in Chang 
et al. (2022) and still following the evaluation pipeline in Fig.  2. 
Comparing system 0b with 0a, we observe that we have successfully 
reproduced the ASR system proposed in Chang et al. (2022).
12
SuperM2M, despite not jointly trained with the ASR model, achieves 
a new state-of-the-art on the REAL test set in each of the 1-, 2- and 
6-channel tasks, significantly outperforming the previous best obtained 
by IRIS (Chang et al., 2022) and MultiIRIS (Masuyama, Chang, Cornell, 
et al., 2023) (e.g., in the 1-channel case 3.04% vs. 3.92% WER in 2a and 
1b, in the 2-channel case 1.94% vs. 2.65% WER in 4a and 3b, and in the 
6-channel case 1.61% vs. 1.77% WER in 6a and 5b). IRIS jointly trains 
a Conv-TasNet based monaural enhancement model, a WavLM based 
ASR feature extractor, and an encoder–decoder transformer based ASR 
model. MultiIRIS, building upon IRIS, replaces the Conv-TasNet module 
with a DNN based weighted power minimization distortionless response 
(WPD) beamformer. From system 1a vs. 1b, 3a vs. 3b, and 5a vs. 5b, we 
observe that, without joint training, IRIS and MultiIRIS often obtain 
clearly worse ASR performance, especially in the 1- and 2-channel 
cases. These results further indicate the effectiveness and potential of 
SuperM2M on real data, as it decouples enhancement and ASR and does 
not employ joint training.

8.7. Effects of speaker reinforcement

In system 8a-8c of Tables  2 and 3, where the Whisper ASR model is 
used for recognition, we apply speaker reinforcement with the energy 
level 𝛾 between the enhancement output and input mixture tuned based 
on the set of {10, 15, 20} dB. Better ASR performance is observed in 
the 1-channel case but not in the 6-channel case, possibly because the 
enhanced speech is already reliable in the 6-channel case, rendering 
speaker reinforcement not necessary.

In Table  5, where the ASR system proposed in Chang et al. (2022) is 
used for recognition, applying speaker reinforcement in system 2b, 4b 
and 6b respectively outperforms 2a, 4a and 6a, pushing down the WER 
on the real test set to 2.40%, 1.84% and 1.58%.

8.8. Comparison with using close-talk mixtures for ASR

In system 7 of Table  5 and system 9 of Tables  2 and 3, we provide the 
ASR results of using close-talk mixtures for decoding. We observe that 
our proposed 6-channel system obtains ASR results comparable to using 
close-talk mixtures for decoding. This further indicates the effectiveness 
of SuperM2M and our robust ASR system.

8.9. Whisper vs. ESPnet ASR model under same text norm

In previous tables, the WER results of using the Whisper ASR model 
and using the ESPnet ASR model cannot be directly compared, due to 
the use of different text normalization. As a side result, we compare 
the ESPnet ASR model with the Whisper Large v2 model, by training 
and evaluating the ESPnet ASR model using the same text normalizer 
as Whisper. Table  6 reports the results. We observe that the ESPnet 
ASR model obtains clearly better WERs than Whisper on the CHiME-4 
dataset. 
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Table 5
ASR results in official CHiME-4 setup (ASR model: WavLM features + encoder–decoder model (Chang et al., 2022) in ESPnet).

Spk.
reinf.
𝛾 (dB)

Official CHiME-4 Test Utterances
Cross
reference

Joint
training

Input
#mics

Val. WER (%)↓ Test WER (%)↓
System Approach Frontend SIMU REAL SIMU REAL
0a – Mixture Chang et al. (2022) – – 1 – 5.93 4.03 8.25 4.47

0b – Mixture(reproduced) – – 1 – 5.93 4.07 8.29 4.47

1a – IRIS Chang et al. (2022) Conv-TasNet 7 1 – 5.96 4.37 13.52 12.11
1b – IRIS Chang et al. (2022) Conv-TasNet 3 1 – 3.16 2.03 6.12 3.92

2a 7c of Table  3 SuperM2M TFGridNetv2 7 1 – 3.39 1.84 6.57 3.04
2b 7c of Table  3 SuperM2M TFGridNetv2 7 1 10 𝟐.𝟒𝟎 𝟏.𝟔𝟒 𝟒.𝟓𝟒 𝟐.𝟒𝟎
3a – MultiIRIS Masuyama, Chang, Cornell, Watanabe, and Ono (2023) Neural WPD 7 2 – 2.28 2.06 2.30 3.63
3b – MultiIRIS Masuyama, Chang, Cornell, et al. (2023) Neural WPD 3 2 – 2.04 1.66 2.04 2.65

4a 7c of Table  2 SuperM2M TFGridNetv2 7 2 – 1.50 1.40 2.08 1.94
4b 7c of Table  2 SuperM2M TFGridNetv2 7 2 10 𝟏.𝟐𝟖 𝟏.𝟑𝟑 𝟏.𝟖𝟖 𝟏.𝟖𝟒
5a – MultiIRIS Masuyama, Chang, Cornell, et al. (2023) Neural WPD 7 6 – 1.19 1.32 1.29 1.85
5b – MultiIRIS Masuyama, Chang, Cornell, et al. (2023) Neural WPD 3 6 – 1.22 1.33 𝟏.𝟐𝟒 1.77

6a 7c of Table  2 SuperM2M TFGridNetv2 7 6 – 𝟎.𝟖𝟑 1.26 1.37 1.61
6b 7c of Table  2 SuperM2M TFGridNetv2 7 6 10 𝟎.𝟖𝟑 𝟏.𝟐𝟑 1.37 𝟏.𝟓𝟖
7 – Close-talk Mixture – – – – – 1.14 – 1.49

Notes: The best scores are highlighted in bold in the 1-, 2- and 6-channel cases separately.
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Table 6
ASR results on CHiME-4 obtained by using Whisper Large v2 vs. ESPnet ASR model (Chang et al., 2022) under same Whisper text normalization.

Official CHiME-4 Test Utterances
Cross
reference

ASR model
(same Whisper text norm.)

Input
#mics

Val. WER (%)↓ Test WER (%)↓
System Approach SIMU REAL SIMU REAL
1a – Mixture Whisper Large v2 1 7.43 4.96 10.97 7.69
1b – Mixture ESPnet ASR Model Chang et al. (2022) 1 𝟔.𝟗𝟒 𝟒.𝟗𝟒 𝟗.𝟔𝟎 𝟓.𝟒𝟐
2a 7c of Table  3 SuperM2M Whisper Large v2 1 7.05 4.78 11.34 6.02
2b 7c of Table  3 SuperM2M ESPnet ASR Model Chang et al. (2022) 1 𝟑.𝟗𝟔 𝟐.𝟑𝟎 𝟕.𝟖𝟒 𝟑.𝟔𝟓
3a 7c of Table  2 SuperM2M Whisper Large v2 6 3.38 3.81 3.77 4.04
3b 7c of Table  2 SuperM2M ESPnet ASR Model Chang et al. (2022) 6 𝟏.𝟏𝟗 𝟏.𝟔𝟑 𝟏.𝟒𝟓 𝟏.𝟗𝟎
9. Conclusion

We have proposed to adapt UNSSOR and M2M training for neural 
speech enhancement, where the models can be trained on real-recorded 
far-field mixtures in an unsupervised way, and on real-recorded close-
talk and far-field mixture pairs in a weakly-supervised way. To improve 
UNSSOR and M2M training, we have proposed SuperM2M, a novel 
co-learning algorithm that trains neural speech enhancement models 
by alternating between supervised training on simulated data and UN-
SSOR/M2M training on real data. Evaluation results on the challenging 
CHiME-4 benchmark show the effectiveness of SuperM2M for speech 
enhancement and robust ASR. Future research will modify and evaluate 
SuperM2M on conversational speech separation and recognition.

Our study, we think, provides illuminating findings towards improv-
ing the generalizability of modern neural speech enhancement models 
to real-recorded data, since it, for the first time since the introduction 
of the challenging and representative CHiME-4 benchmark nearly a 
decade ago, shows that, on the real mixtures of CHiME-4, feeding 
in the immediate outputs of neural speech enhancement models for 
ASR decoding can produce remarkable improvement over feeding in 
unprocessed mixtures and neural beamforming results, breaking out to 
new highs in ASR performance even though joint frontend–backend 
training is not employed and even if the ASR backend, which lever-
ages strong self-supervised learning representations, is a very strong 
one. This success is realized by SuperM2M, which trains enhancement 
models not only on simulated data but also on real data, and through 
our accumulative efforts on complex spectral mapping (Tan et al., 
2022; Wang et al., 2020; Wang, Wang, & Wang, 2021), loss functions 
dealing with implicit magnitude-phase compensation (Wang, Wichern, 
& Le Roux, 2021c), FCP (Wang, Wichern, & Le Roux, 2021a, 2021b), 
TF-GridNet (Wang et al., 2023), UNSSOR (Wang & Watanabe, 2023), 
USDnet (Wang, 2024b), and M2M (Wang, 2024a), which have firmly 
built up the foundation of SuperM2M.

We point out that nearly all the current supervised neural speech 
enhancement algorithms can be seamlessly integrated with SuperM2M 
to improve their generalization abilities, by including real-recorded 
close-talk and far-field mixture pairs, or far-field mixtures alone if 
close-talk mixtures are unavailable, for M2M training. This indicates 
that SuperM2M can ride on the development of large-scale supervised 
neural speech enhancement models trained on simulated data, and has 
strong potential to grow into a representative algorithm for training 
speech enhancement models directly on real-recorded data.

In closing, we would like to highlight the learning-based methodol-
ogy for solving blind deconvolution problems, which has been devel-
oped along our line of research on FCP (Wang, Wichern, & Le Roux, 
2021a, 2021b), UNSSOR (Wang & Watanabe, 2023), M2M (Wang, 
2024a), and SuperM2M. By training DNNs in an un-, weakly- or semi-
supervised way to estimate sources, filter estimation becomes differen-
tiable so that the DNNs can be trained to optimize mixture-constraint 
losses to realize separation. Based on the challenging real-recorded mix-
tures in CHiME-4 and through the integration with supervised learning, 
this paper, for the first time, has demonstrated that this methodology 
is effective for real-recorded data, and is also effective at neural speech 
enhancement. Considering that blind deconvolution broadly exists in 
many application domains, we expect the methodology to be also 
effective in similar applications and generate broader impact beyond 
speech enhancement.
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