Unsupervised separation：motivations

\square Speech separation，a．k．a．cocktail party problem，aims at separating multi－speaker mixture to individual speaker signals

－Supervised separation
Use synthetic training data，exhibiting generalization problems
\square Unsupervised separation
位
Eorier studies still require synthesized mixtures（e．g．，Mixit 1 ），or rely on
Our solution：training DNNs directly on mixtures for separation

Problem formulation

U Unsupervised monaural separation is ill－posed
Assuming C speakers， 1 microphone
Aysical model：$Y_{1}(t, f)=\sum_{c=1}^{c} X_{1}(c, t, f)+\varepsilon_{1}(t, f)$
A possible solution

Turning into a well－posed problem
Assuming C speakers，P microphones
Each mixture can add a constraint to narow down the solutions

$$
\begin{aligned}
& Y_{1}(t, f)=\sum_{c=1}^{c} X_{1}(c, t, f)+反_{1}(t, f) \\
& Y_{p}(t, f)=\sum_{c=1}^{c} g_{p}(c, f)^{H} \widetilde{X}_{1}^{\prime}(c, t, f)+\varepsilon_{p}(t, f) \\
& Y_{P}(t, f)=\sum_{c=1}^{c} g_{P}(c, f)^{\mathrm{H}} \widetilde{X}_{1}(c, t, f)+\varepsilon_{P}(t, f)
\end{aligned}
$$

Well－posed problem where a solution for separation exists $\quad \begin{gathered}\text { When } P>C \text {（over－determined）and } \\ T \text { is reasonably large（enough observations）}\end{gathered}$
＇Can minimize mixture constraints at all mics
$\sum_{t, f}\left(\left|Y_{1}(t, f)-\sum_{c=1}^{c} X_{1}(c, t, f)\right|^{2}+\sum_{p=2}^{P}\left|Y_{p}(t, f)-\sum_{c=1}^{c} \boldsymbol{g}_{p}(c, f)^{\mathrm{H}} \widetilde{\boldsymbol{X}}_{1}(c, t, f)\right|^{2}\right)$

Proposed algorithm：UNSSOR
a Solve a blind deconvolution problem［Levin＋2021］

$$
\begin{aligned}
& \underset{X_{1}(;, j), g(\cdot(,)}{\operatorname{argmin}} \sum_{t, f}\left(\left|Y_{1}(t, f)-\sum_{c=1}^{c} X_{1}(c, t, f)\right|^{2}+\sum_{p=2}^{P}\left|Y_{p}(t, f)-\sum_{c=1}^{c} \boldsymbol{g}_{p}(c, f)^{\mathrm{H}} \widetilde{X}_{1}(c, t, f)\right|^{2}\right) \\
& \text { Not solvable if not assuming prior knowledge about the filter or the source } \\
& \text { Our solution: model speech patterns via unsupervised deep learning } \\
& \text { ■ UNSSOR } \\
& \text { Mixture constraint at all microphones }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[Y_{1}, \ldots, Y_{p}, \ldots, Y_{P}\right]} \\
& \text { Forward convolutive prediction (FCP) [Wang+2021] }
\end{aligned}
$$

－FCP filters \widehat{X}_{1} to approximate speaker images at other mics
When \widehat{X}_{1} is reasonably accurate
Let $Y_{p}=X_{p}(c)+V_{p}(c)$
$\left.\hat{\underline{g}}_{p}(e, f)\right)^{-1}=\underset{g_{p}(c, f)}{\arg \min } \sum_{t} \frac{\left|Y_{p}(t, f)-g_{p}(c, f)^{H} \widetilde{X}_{1}(c, t, f)\right|^{2}}{\left|Y_{p}(t, f)\right|^{2}}$
$=\underset{g_{p}(c, f)}{\arg \min } \sum_{t} \frac{\left.\mid X_{p}(c, t, f)+V_{p}(c, t, f)-g_{p}(c, f)\right)\left.^{H} \widetilde{X}_{1}(c, t, f)\right|^{2}}{\left|Y_{p}(t, f)\right|^{2}}$
$=\left.\underset{g_{p}(c, f)}{\arg \min } \sum_{t} \frac{\mid X_{p}(c, t, f)-g_{p}(c, f)}{}{ }^{H} \widetilde{X}_{1}(c, t, f)\right|^{2}+\left|V_{p}(c, t, f)\right|^{2}$
$=\underset{g_{p}(c, f)}{\arg \min } \sum_{t} \frac{\left.\mid X_{p}(c, t, f)-g_{p}(c, f)\right)\left.^{H} \widetilde{X}_{1}(c, t, f)\right|^{2}}{\left|Y_{p}(t, f)\right|^{2}}$

Ideally，$V_{p}(c)$ is independent
from $X_{1}(c)$ and $X_{p}(c)$
\square Minimizing $\mathcal{L}_{\mathrm{MC}}$ promotes separation
Hypothesized separation results
$X_{1}(1)=\mu \times X_{1}(1)+v \times X_{1}(2)+\varepsilon_{1} / 2$
$X_{1}(2)=(1-\mu) \times X_{1}(1)+(1-v) \times X_{1}(2)+\varepsilon_{1} / 2$

Good separation
－$\mu \approx 0, v \approx 1$ and $\mu \approx 1, v \approx 0$
Bad separation
$\mu \approx 0, v \approx 0$ and $\mu \approx 1, v \approx 1$
μ, v both away fremen
μ, v both away from 0 and 1
\square Frequency permutation problem

Propose to addressing frequency permutation during training
－Intra－source magnitude scattering（ISMS）loss
$\mathcal{L}_{\text {ISMS }}=\sum_{p=1}^{P} \frac{\sum_{t} \frac{1}{C} \sum_{c=1}^{c} \operatorname{var}\left(\log \left|\hat{X}_{p}^{\mathrm{FCP}}(c, t, \cdot)\right|\right)}{\sum_{t} \operatorname{var}\left(\log \left|Y_{p}(t, \cdot)\right|\right)}$

UNSSOR for under－determined separation
\square Monaural input，but loss on multiple microphones

$\mathcal{L}_{\mathrm{MC}}=\sum_{t, f}\left(\mid Y_{1}(t, f)-\sum_{c=1}^{c}\right.$	$\left.\left.(c, t, f)\right\|^{2}+\sum_{p=2}^{P}\left\|Y_{p}(t, f)-\sum_{c=1}^{c} \widehat{\mathfrak{g}}_{p}(c, f)^{\mathrm{H}} \widetilde{\mathbb{X}}_{1}(c, t, f)\right\|^{2}\right)$
$\underbrace{\hat{X}_{1}(1) \ldots \hat{X}_{1}^{\prime \prime}(c) \ldots \hat{X}_{1}(c)}$	－Require over－determined training mixtures －At run time，perform under－determined
TF－GridNet［Wang＋2023］ （multi－channel complex spectral mappin	－Was considered ill－posed if training mixtures
	are monaural

Evaluation results

－SMS－WSJ dataset［Drude＋19］：reverb 2－speaker mixture with weak noise
Results on 2－speaker separation（6－channel input and loss）

Results on 2－speaker separation（1－channel input，6－channel loss）

References
Sound demo
Levin et al．（2011），＂Understanding Blind Deconvolution Algorithms，＂ IEEE Transactions on Pattern Analysis and Machine Inteligence，vol． no．12，pp．2354－2367．
Wang et al．（2021），＂Convolutive Prediction for Monaural Speech Dereverberation and Noisy－Reverberant Speaker Separation，＂In IEEE／ACM Transactions on Audio，Speech，and Language Processing vol．29，pp．3476－3490
Wang et al．（2023），＂TF－GridNet：Integrating Full－and Sub－Band Modeling
for Speech Separation，＂In：IEEE／ACM Transactions on Audio，Speech，
Drude etal（2019）＂ Cl ．wol．31，pp．3221－3236．
Drude et al．（2019），＂SMS－WSJ：Database，Performance Measures，and
Baseline Recipe for Multi－Channa In：arXiv preprint arXiv：1910．13934．

