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Unsupervised separation: motivations

1 Speech separation, a.k.a. cocktail party problem, aims at
separating multi-speaker mixture to individual speaker signals
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J Supervised separation
« Use synthetic training data, exhibiting generalization problems

d Unsupervised separation

* Leverage unlabeled data for training, alleviating generalization issues
« Earlier studies still require synthesized mixtures (e.g., MixIT), or rely on
conventional spatial processing (e.g., unsupervised deep clustering)

 Our solution: training DNNs directly on mixtures for separation

Problem formulation

J Unsupervised monaural separation is ill-posed
« Assuming C speakers, 1 microphone

 Physical model: Y;(t, f) = X X, (e, t, ) + &.(t, )
* A possible solution

Mixture-constraint loss:
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 Turning into a well-posed problem C Xet-AD,
« Assuming C speakers, P microphones Xi(c,t, f)
« Each mixture can add a constraint to narrow down the solutions Utt+ & —a-1),7)
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Well-posed problem When P > C (over-determined) and
where a solution for separation exists T is reasonably large (enough observations)
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Proposed algorithm: UNSSOR

1 Solve a blind deconvolution problem [Levin+2021]
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* Not solvable if not assuming prior knowledge about the filter or the source
« Our solution: model speech patterns via unsupervised deep learning

J UNSSOR

Mixture constraint at all microphones
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* How to compute g, (¢, f)?
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] Forward convolutive prediction (FCP) [Wang+2021]
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 FCP filters X, to approximate speaker images at other mics
»  When X, is reasonably accurate
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UNSSOR for under-determined separation
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d Minimizing Ly promotes separation
 Hypothesized separation results

X (D) =puxX{(D)+vxX2)+¢e/2
X1(2) = (1 — ) x X1(1) + (1 = v)X X;(2) + &1/2
where0 < u<1,0<v<1,and2 speakers

« Good separation
o u=0v=landu=1,v=0
 Bad separation
o u=0v=0andu=1lv=1
o u,v both away from 0 and 1

 Frequency permutation problem
. Happens as FCP IS performed at each frequency independently from the others
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* Propose to addressing frequency permutation during training
* |ntra-source magnitude scattering (ISMS) loss
o Source magnitudes are more scattered when frequency permutation happens
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ISMS = Y., var(log|Y, (t,")|)
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* Combine Lyic and Ligvs for training

J Monaural input, but loss on multiple microphones

Mixture constraint at all microphones
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/ * Require over-determined training mixtures
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Was considered ill-posed if training mixtures

TF-GridNet [Wang+2023]
(multi-channel complex spectral mapping)

} separation (i.e., P < C)
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Evaluation results

d SMS-WSJ dataset [Drude+19]. reverb 2-speaker mixture with

weak noise
1 Results on 2-speaker separation (6-channel input and loss)
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1 Results on 2-speaker separation (1-channel input, 6-channel loss)
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