
UNSSOR: Unsupervised Neural Speech Separation by Leveraging
Over-determined Training Mixtures

Unsupervised separation: motivations
q Speech separation, a.k.a. cocktail party problem, aims at 

separating multi-speaker mixture to individual speaker signals

Proposed algorithm: UNSSOR
q Solve a blind deconvolution problem [Levin+2021]

• Not solvable if not assuming prior knowledge about the filter or the source
• Our solution: model speech patterns via unsupervised deep learning

q UNSSOR

q FCP filters !𝑋! to approximate speaker images at other mics
• When !𝑋! is reasonably accurate

q Minimizing ℒ"# promotes separation
• Hypothesized separation results

• Good separation 
o 𝜇 ≈ 0, 𝜈 ≈ 1 and 𝜇 ≈ 1, 𝜈 ≈ 0

• Bad separation 
o 𝜇 ≈ 0, 𝜈 ≈ 0 and 𝜇 ≈ 1, 𝜈 ≈ 1
o 𝜇, 𝜈 both away from 0 and 1

q Frequency permutation problem
• Happens as FCP is performed at each frequency independently from the others

• Propose to addressing frequency permutation during training
• Intra-source magnitude scattering (ISMS) loss

o Source magnitudes are more scattered when frequency permutation happens
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• Combine ℒ"# and ℒ$%"% for training

Problem formulation
q Unsupervised monaural separation is ill-posed

• Assuming 𝐶 speakers, 1 microphone
• Physical model: 𝑌! 𝑡, 𝑓 = ∑&'!( 𝑋! 𝑐, 𝑡, 𝑓 + 𝜀! 𝑡, 𝑓
• A possible solution
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q Supervised separation
• Use synthetic training data, exhibiting generalization problems

q Unsupervised separation
• Leverage unlabeled data for training, alleviating generalization issues
• Earlier studies still require synthesized mixtures (e.g., MixIT), or rely on 

conventional spatial processing (e.g., unsupervised deep clustering)

q Our solution: training DNNs directly on mixtures for separation
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ill-posed problem with infinite solutions
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q Turning into a well-posed problem
• Assuming 𝐶 speakers, 𝑃 microphones
• Each mixture can add a constraint to narrow down the solutions
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When 𝑃 > 𝐶 (over-determined) and
𝑇 is reasonably large (enough observations)
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Well-posed problem
where a solution for separation exists
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Can minimize mixture constraints at all mics
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TF-GridNet [Wang+2023]
(multi-channel complex spectral mapping)
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• ℒ#, determines whether -𝑋& is good, providing
sample-level supervision

• How to compute 4𝒈$(𝑐, 𝑓)?
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Forward convolutive prediction (FCP) [Wang+2021]

Mixture constraint at all microphones

9𝑋) 1 = 𝜇 × 𝑋) 1 + 𝜈 × 𝑋) 2 + 𝜀)/2
9𝑋) 2 = 1 − 𝜇 × 𝑋) 1 + 1 − 𝜈 × 𝑋) 2 + 𝜀)/2

where 0 ≤ 𝜇 ≤ 1, 0 ≤ 𝜈 ≤ 1, and 2 speakers 

𝜇 ≈ 0, 𝜈 ≈ 1

𝜇 ≈ 1, 𝜈 ≈ 0

Permutation alignment  across frequency

UNSSOR for under-determined separation
q Monaural input, but loss on multiple microphones
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TF-GridNet [Wang+2023]
(multi-channel complex spectral mapping)
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• Require over-determined training mixtures
• At run time, perform under-determined 

separation (i.e., 𝑃 < 𝐶)
• Was considered ill-posed if training mixtures

are monaural

Mixture constraint at all microphones

Evaluation results
q SMS-WSJ dataset [Drude+19]: reverb 2-speaker mixture with 

weak noise
q Results on 2-speaker separation (6-channel input and loss)

q Results on 2-speaker separation (1-channel input, 6-channel loss)
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