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ABSTRACT

In this work we detail our submission to the Clarity ICASSP 2023
grand challenge, in which participants have to develop a strong target
speech enhancement system for hearing-aid (HA) devices in noisy-
reverberant environments. Our system builds on our previous submis-
sion at the Second Clarity Enhancement Challenge (CEC2): iNeuBe-
X, which consists in an iterative neural/conventional beamforming en-
hancement pipeline, guided by an enrollment utterance from the target
speaker. This model, which won by a large margin the CEC2, is an
extension of the state-of-the-art TF-GridNet model for multi-channel,
streamable target-speaker speech enhancement. Here, this approach
is extended and further improved by leveraging generative adversar-
ial training, which we show proves especially useful when the training
data is limited. Using only the official 6k training scenes data, our best
model achieves 0.80 hearing-aid speech perception index (HASPI)
and 0.41 hearing-aid speech quality index (HASQI) scores on the syn-
thetic evaluation set. However, our model generalized poorly on the
semi-real evaluation set. This highlights the fact that our community
should focus more on real-world evaluation and less on fully synthetic
datasets.

1. INTRODUCTION

The Clarity ICASSP 2023 (CEC2023) grand challenge inherits
largely from the previous CEC2 challenge [1]. The dataset is com-
prised of, respectively, 6k (∼ 10 h) training, 2.5k (∼ 4 h) devel-
opment multi-channel simulated mixtures. Each mixtures features a
listener wearing a 6-microphone (3+3) behind-the-ears HA, a target
speaker and up to three different interferers. These interferers could
be competing speakers or noise sources. Crucially, the listener ro-
tates their head towards the target, with an unknown random looking
direction. As in CEC2, this data is challenging, considering also
that models should be causal with a maximum algorithmic latency
of 5ms. In the development set the average mixture scale-invariant
signal-to-distortion ratio (SI-SDR) [2] computed against the anechoic
target signal is −12.3 dB. A novelty with respect to CEC2 is the fact
that a second evaluation set is provided, recorded in a real-world
environment, as well as a re-generated synthetic evaluation set. Each
of these consists of 1.5k mixtures (∼ 2.4 h), and the semi-real one
was recorded in a real room using a 1st order ambisonic microphone.
The interferers are simulated using loudspeakers and are synthetically
mixed with the clean reverberant target speaker utterance. The other
difference compared to CEC2 is that here the listener hearing loss
compensation is fixed and ran in the metric evaluation stage. Linear
equalization (NAL-R [3]) plus dynamic range compression are used.

2. INEUBE-X SYSTEM OVERVIEW

Our proposed iNeuBe-X system is depicted in Fig. 1 and it is archi-
tecturally the same as the one which won the previous CEC2 Chal-
lenge [4]. It is based on the iNeuBe (iterative neural/conventional
beamforming) [5] framework which won the L3DAS22 ehance-
ment challenge [6]. It employs two multi-microphone input single-
microphone output (MISO) DNNs [7] with a conventional beam-
forming module “sandwiched” in-between. Both DNNs use complex

spectral mapping: we feed all channels by simply stacking the input
multi-channel STFT real and imaginary (RI) components of all input
channels [5]. Then these are trained to predict the complex STFT
of the target-speaker anechoic signal Starget at the CH1 left of the
listener HA array. Thus, target-speaker extraction plus denoising and
dereverberation are performed. DNN1 produces an initial estimate
(first iteration n = 1) Ŝ

(1)
1 which is then fed to a beamforming

module. This latter, as in [4], is a causal multichannel wiener filter
(MWF) with recursive averaging strategy (forgetting factor 0.5), due
to the fact that the listener head rotates. DNN2 takes in input the
original mixture Y multi-channel complex STFT, as well as DNN1

output and MWF output and produces a refined estimate Ŝ(1)
2 . DNN2

can then be run iteratively [5] (with Ŝ
(2)
1 = Ŝ

(1)
2 ), however in our

previous work [4], we found it was not worth the additional computa-
tion. To help disambiguation between interfering and target speaker,
the same DNNspk speaker enrollment module is used as in our pre-
vious submission [4]. This module is a small TCNDenseNet [5]
with 0.6million (M) parameters, comprised of only the encoder part,
followed by mean-pooling after the temporal convolutional network
module. It is used to extract an embedding Xadapt ∈ R128 from the
enrollment utterance. Both DNNs are based on the frame-online
speaker-conditioned MISO-TF-GridNet [4] which are an extension
of TF-GridNet [8,9] to multi-channel streamable target enhancement.
To condition with Xadapt each DNN, feature-wise linear modulation
(FiLM) [10] is used at the beginning of each TF-GridNet block.

The whole pipeline uses a 32 kHz sampling rate, 16ms window,
4ms stride, and the square-root Hann window. To comply with the
latency requirements, the model is trained to predict the current plus
future 3 STFT frames as in [11], this leads to a total algorithmic la-
tency of 4ms. Note that dynamic range compression is applied only
in inference and not during training. We use the STFT-domain com-
pressor as in [4] as it led to a small improvement on development set.

2.1. Adversarial Training Fine-Tuning

A key difference with the CEC2 system is the fact that here we pro-
pose to fine-tune DNN2 with a generative adversarial (GAN) training
strategy, depicted in Figure 2 and largely borrowed from [12]. The
multi-resolution discriminator (MRD) from [12] is employed, which
consists of multiple parallel convolutional networks which process the
complex STFT of the input signal, each with different window size.
Here we use 256, 512, 1024 samples. It outputs the feature maps of
each convolutional block plus the final classification logit (a scalar
for each window size). A key difference from [12] is that here each
network in the MRD is fed Xadapt. Xadapt is used to condition each net-
work feature maps, prior each convolutional block using independent
FiLM layers. The idea is that Xadapt will help also the discrimina-
tor to disambiguate between the target and interferers, thus improving
the “usefulness” of the adversarial loss. Another difference compared
to [12] is that here we employ an l2 loss instead of the hinge loss as
the adversarial loss. We found that using l2 helped considerably and
made the training more stable. As in [12] we also use the additional
deep feature loss (DFL), it is computed as an l1 normalized distance
between the feature maps (we use all layers as in [12]) when the MRD
is fed the enhanced signal vs. when it is fed the target. The gradient
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Table 1: Results on development set of CEC2023

Approaches SI-SDRi (dB) HASPI HASQI

mixture CH1 left 0.0 0.24 0.13
oracle CH1 left ∞ 0.99 0.73

iNeuBe-X DNN1 15.34 0.71 0.38
+ DNN2 17.34 0.78 0.42
+ DNN2 + GAN 17.24 0.80 0.45
+ DNN2 + GAN + NAL-R FT 17.89 0.82 0.48

is not propagated back to DNNspk, as this will lead the generator to
“cheat” (e.g. by hiding the speaker id) and overcome the MRD.

2.2. System Configuration and Training

For both DNNs we use the same parameters as in [4] and training
procedure as well as optimizer configuration, loss functions used etc.
DNN1 is trained first, then DNN2 is trained, with DNN1 frozen. We
highlight only the differences here due to space limitations. Here we
used only the official 6k training scenes in training with no exter-
nal data for our submission. This is because in CEC2023 the rules
prohibited the use of additionally generated data for the main sub-
mission. A crucial difference is also the fact that we used the GAN
fine-tuning step described previously, prior to the NAL-R fine-tuning
step (unchanged from [4]). In the GAN fine-tuning, the adversarial
and DFL losses were given a weight of 0.01 and 0.1 respectively,
the supervised multi-resolution loss from [4] is still used in this step.
For fine-tuning, the model learning rate is 1e − 5, while the MRD’s
1e−6. We perform first GAN fine-tuning and then add also the super-
vised NAL-R aware fine-tuning loss. Both are performed for 5 epochs
each.
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Fig. 1: Overview of the iNeuBe-X framework. Compared to CEC2, here we
did not use any compensation module as it is done in the evaluation script.
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Fig. 2: Overview of the speaker-conditioned multi-resolution discriminator.

3. RESULTS

In Table 1 we report the results obtained on the development set,
in terms of SI-SDR, hearing-aid speech perception and quality in-
dexes (HASPI) [13] and (HASQI) [14] respectively. These two lat-
ter are computed taking into account the fixed compensation + dy-
namic compression provided by the organizers. We can see that the
upper bound (oracle CH1 left) for HASQI (anechoic target at HA
array CH1 left) using the pre-provided compensation is rather low.
For comparison, we also report the results with no enhancement at
all (mixture CH1 left). The largest gain, is observed when DNN2 is
added. The proposed GAN adversarial training is especially effective
towards HASQI, even if degrades a bit SI-SDR. Adding the NAL-R
fine-tuning strategy [4] further improves the results for all metrics. In
general, the results here are much worse than ones in our previous
work [4] due to the much smaller training set and the fact that we did
not use our compensation (across which we can back-propagate in
the NAL-R fine-tuning step). In particular, regarding HASQI, better

Table 2: Results on evaluation set of CEC2023.

Approaches Synth Real
HASPI HASQI HASPI HASQI

mixture CH1 Left 0.26 0.13 0.18 0.12

ours (submitted) 0.80 0.41 0.29 0.11
ours + additional 0.85 0.46 0.33 0.11

compensation strategies needs to be devised in order to improve it, as
the oracle results demonstrates.

In Table 2 we report the results, obtained on the evaluation
set, courtesy of CEC2023 organizers. We can see that our pro-
posed method performs reasonably well on the synthetic evaluation.
However it fails to reach satisfactory performance on the semi-real
evaluation (HASQI degrades with respect to no enhancement). We
ran an additional experiment (ours + additional) after CEC2023 end.
In particular, we added to the training material 2k additional scenes
simulated from the same data but with 1st ambisonic order (instead
of 6-th), to match the one of the real-world recordings. We can see
that the performance increases in both evaluation sets, but more on
the synthetic than the real-world one, on which it remains poor. This
suggest that the ambisonic order is not the main source of mismatch.

4. CONCLUSIONS

In this short paper we presented our submission to the Clarity 2023
ICASSP Grand Challenge. It builds considerably upon our previous
submission [4], but here we devised an additional adversarial train-
ing strategy that seems helpful especially regarding the HASQI score.
This model ranked in the top five with scores promising scores on the
synthetic evaluation, but the model fails to enhance on the real-world
evaluation data. Further work is needed to assess the causes and po-
tential solutions to this generalization problem.
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