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Mixture to Mixture: Leveraging Close-Talk Mixtures
as Weak-Supervision for Speech Separation

Zhong-Qiu Wang

Abstract—We propose mixture to mixture (M2M) training, a
weakly-supervised neural speech separation algorithm that lever-
ages close-talk mixtures as a weak supervision for training dis-
criminative models to separate far-field mixtures. Our idea is that,
for a target speaker, its close-talk mixture has a much higher
signal-to-noise ratio (SNR) of the target speaker than any far-field
mixtures, and hence could be utilized to design a weak supervision
for separation. To realize this, at each training step we feed a
far-field mixture to a deep neural network (DNN) to produce an
intermediate estimate for each speaker, and, for each of considered
close-talk and far-field microphones, we linearly filter the DNN
estimates and optimize a loss so that the filtered estimates of all
the speakers can sum up to the mixture captured by each of the
considered microphones. Evaluation results on a 2-speaker sepa-
ration task in simulated reverberant conditions show that M2M
can effectively leverage close-talk mixtures as a weak supervision
for separating far-field mixtures.

Index Terms—Weakly-supervised neural speech separation.

I. INTRODUCTION

D EEP learning has significantly elevated the performance of
speech separation [1] thanks to its strong modeling capabilities

on human speech, especially since deep clustering [2] and permutation
invariant training (PIT) [3] solved the label permutation problem.
Modern neural speech separation models [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23] are usually trained on simulated data in a supervised way,
where clean speech is synthetically mixed with noise and competing
speech in simulated reverberant rooms to generate paired clean and
corrupted speech for supervised learning, where the clean speech can
provide a sample-level supervision for DNN training. The trained
models, however, often suffer from mismatches between simulated and
real-recorded data, and are known to have severe generalization issues
on real-recorded data [24], [25], [26], [27], [28], [29].

One way to address the problem is training models directly on
real-recorded mixtures. This however cannot be applied for supervised
approaches since it is not possible to annotate the clean speech at each
sample. Another way is training unsupervised models on real-recorded
mixtures, which usually makes strong assumptions on signal charac-
teristics [27], [28], [29], [30], [31]. However, the performance could be
fundamentally limited due to not leveraging any supervision and when
the assumptions are not sufficiently satisfied in reality.
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Fig. 1. Illustration of task setup. Each close-talk mixture contains close- and
cross-talk speech, and weak noises. Best viewed in color.

While far-field mixtures are recorded in multi-speaker conditions,
the close-talk mixture of each speaker is often recorded at the same
time by using a close-talk microphone (e.g., in the AMI [32] and
CHiME [33] setup). See Fig. 1 for an illustration. The close-talk mixture
of each speaker usually has a much higher SNR of the speaker than any
far-field mixture. Intuitively, it can be leveraged to train a model to
increase the SNR of the speaker in far-field mixtures. In this context,
we propose to leverage close-talk mixtures as a weak supervision for
separating far-field mixtures. To realize this, we need to solve two major
difficulties: (a) close-talk mixtures are often not sufficiently clean, due
to the contamination by cross-talk speech [32], [33], [34], [35]; and (b)
close-talk mixtures are not time-aligned with far-field mixtures. As a
result, close-talk mixtures cannot be naively used as the training targets,
and previous studies seldomly exploit them to build separation systems.

To overcome the two difficulties, we propose mixture to mixture
(M2M) training, where a DNN, taking in far-field mixtures as input, is
discriminatively trained to produce an intermediate estimate for each
target speaker in a way such that the intermediate estimates for all the
speakers can be linearly filtered to recover the close-talk as well as
far-field mixtures. Following [29], the linear filters are computed via a
neural forward filtering algorithm named forward convolutive predic-
tion (FCP) [36] based on the mixtures and intermediate DNN estimates.
We find that this linear filtering procedure can effectively address the
above two difficulties. This paper makes two major contributions:
� We are the first seeking a way to leverage close-talk mixtures as

a weak supervision for speech separation;
� We propose a novel algorithm named M2M to exploit this weak

supervision.
As an initial step, this paper evaluates M2M on a 2-speaker sep-

aration task in simulated, reverberant conditions with weak noises.
The evaluation results show that M2M can effectively leverage the
weak-supervision afforded by close-talk mixtures.

II. RELATED WORK

There are several earlier studies on weakly-supervised separation.
In [37], [38], adversarially trained discriminators (in essence, source
prior models) are used to encourage separation models to produce
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separation results with distributions similar to clean sources. In [39],
separation frontends are jointly trained with backend ASR models
so that word transcriptions can be used to help frontends learn to
separate. In [40], a sound classifier is used to guide separation, by
checking whether separated signals can be classified as target sound
classes. These approaches need clean sources, human annotations, and
other models (e.g., discriminators, ASR models and sound classifiers).
Differently, M2M requires paired close-talk and far-field mixtures,
which can be readily obtained during data collection by additionally
using close-talk microphones, and it does not require other models.
On the other hand, close-talk mixtures exploited in M2M can provide a
sample-level supervision, which is much more fine-grained than source
prior models, word transcriptions, and segment-level class labels.

III. PHYSICAL MODEL AND OBJECTIVES

In a reverberant environment with C speakers (each wearing a
close-talk microphone) and a far-fieldP -microphone array (see Fig. 1),
each recorded far-field and closed-talk mixture can be respectively
formulated in the short-time Fourier transform (STFT) domain as
follows:

Yp(t, f) =
∑C

c=1
Xp(c, t, f) + εp(t, f), (1)

Yd(t, f) =
∑C

c=1
Xd(c, t, f) + εd(t, f), (2)

where t indexes T frames, f indexes F frequencies, c indexes C
speakers, d indexesC close-talk microphones, and p indexesP far-field
microphones. At time t and frequency f , Yp(t, f), Xp(c, t, f) and
εp(t, f) in (1) respectively denote the far-field mixture, reverberant
image of speaker c, and non-speech signals captured at far-field micro-
phone p. Yd(t, f), Xd(c, t, f) and εd(t, f) in (2) respectively denote
the STFT coefficients of the close-talk mixture, reverberant image of
speaker c, and non-speech signals captured at close-talk microphone
d at time t and frequency f . In the rest of this paper, we refer to the
corresponding spectrograms when dropping indices p, c, d, t or f . In
this study, ε is assumed a weak noise.

While speaker c is talking, its close-talk speech Xd(c), with d =
c, in the close-talk mixture Yd is typically much stronger than cross-
talk speech Xd(c

′) by any other speaker c′ ( �= c). By using close-talk
mixtures as a weak supervision, we aim at training a DNN that can
learn to estimate the reverberant speaker images (i.e., Xp(c) for each
speaker c at a reference far-field microphone p), using only far-field
mixtures as input.

IV. M2M

Fig. 2 illustrates M2M. The DNN takes in far-field mixtures as input
and produces an intermediate estimate Ẑ(c) for each speaker c. Each
estimate Ẑ(c) is then linearly filtered via FCP such that the filtered
estimates can be summated to recover each of the close-talk and far-field
mixtures. This section describes the DNN setup, loss functions, and FCP
filtering.

A. DNN Setup

The DNN is trained to perform complex spectral mapping [10],
[11], [12], where the real and imaginary (RI) components of far-field
mixtures are stacked as input features for the DNN to predict the RI
components of Ẑ(c) for each speaker c. The DNN setup is described
in Section V and the loss function in Section IV-B.

Fig. 2. Illustration of M2M (described in first paragraph of IV).

B. Mixture-Constraint Loss

We propose a mixture-constraint (MC) loss to encourage the DNN to
produce an intermediate estimate Ẑ that can be utilized to reconstruct
the close-talk and far-field mixtures:

LMC =
∑C

d=1
LMC,d + α×

∑P

p=1
LMC,p, (3)

where LMC,d is the loss at close-talk microphone d, LMC,p at far-field
microphone p, and α ∈ R>0 a weighting term.

LMC,d is defined, following the physical model in (2), as

LMC,d =
∑

t,f
F
(
Yd(t, f), Ŷd(t, f)

)

=
∑

t,f
F
(
Yd(t, f),

∑C

c=1
X̂FCP

d (c, t, f)
)

=
∑

t,f
F
(
Yd(t, f),

∑C

c=1
ĝd(c, f)

H ˜̂
Z(c, t, f)

)
, (4)

where ˜̂
Z(c, t, f) = [Ẑ(c, t− I, f), . . . , Ẑ(c, t+ J, f)]T ∈ C

I+1+J

stacks a window of T-F units, ĝd(c, f) ∈ C
I+1+J is a time-invariant

FCP filter which will be detailed in Section IV-C, and F(·, ·) is a
distance measure to be described later. In (4), the intermediate estimate
Ẑ(c) of each speaker c is linearly filtered such that (a) the filtering

result, X̂FCP
d (c, t, f) = ĝd(c, f)

H ˜̂
Z(c, t, f), can approximate Xd(c),

the cross-talk speech of speaker c captured by close-talk microphone
d; and (b) the filtering results of all the speakers can add up to the
close-talk mixture Yd (i.e., Ŷd =

∑C
c=1 X̂

FCP
d (c)). This way, we can

leverage close-talk mixtures as a weak supervision for model training,
and the linear filtering procedure can account for the mismatched
time-alignment between close-talk and far-field mixtures. Since the
model is trained to reconstruct close-talk mixtures based on far-field
mixtures, we name the algorithm mixture to mixture.

F(·, ·) in (4) computes a loss between the mixture Yd and recon-
structed mixture Ŷd based on the estimated RI components and their
magnitude [29]:

F
(
Yd(t, f), Ŷd(t, f)

)
=

∑
O∈Ω

∣∣O(Yd(t, f))−O(Ŷd(t, f))
∣∣∑

t′,f ′
∣∣Yd(t′, f ′)

∣∣ ,

(5)

where Ω = {R, I,A} denotes a set of functions with R(·) extracting
the real part, I(·) the imaginary part and A(·) the magnitude of a com-
plex number, | · | computes magnitude, and the denominator balances
the losses at different microphones and across training mixtures.
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Following (1), LMC,p is similarly defined as follows:

LMC,p =
∑

t,f
F
(
Yp(t, f), Ŷp(t, f)

)

=
∑

t,f
F
(
Yp(t, f),

∑C

c=1
X̂FCP

p (c, t, f)
)

=
∑

t,f
F
(
Yp(t, f),

∑C

c=1
ĝp(c, f)

H ˜̂
Z(c, t, f)

)
, (6)

where ˜̂
Z(c, t, f) = [Ẑ(c, t−M,f), . . . , Ẑ(c, t+N, f)]T ∈

C
M+1+N stacks a window of T-F units and ĝp(c, f) ∈ C

M+1+N is a
time-invariant FCP filter to be described later.

We can configure the filter taps, I, J,M andN , differently for close-
talk and far-field microphones, considering that the microphones form
a distributed rather than compact array.

C. FCP for Relative RIR Estimation

To compute LMC, the linear filters need to be first computed. Each
filter can be interpreted as the relative transfer function (RTF) relating
the intermediate DNN estimate of a speaker to its reverberant image
captured by another microphone. Following [29], we employ FCP [36]
to estimate the RTFs.

Assuming that speakers do not move within each utterance, we
estimate RTFs by solving the following problem:

ĝr(c, f) = argmin
gr(c,f)

∑
t

∣∣∣Yr(t, f)− gr(c, f)
H ˜̂
Z(c, t, f)

∣∣∣2
λ̂r(c, t, f)

, (7)

where the subscript r indexes the P far-field and C close-talk micro-

phones, and gr(c, f) and ˜̂
Z(c, t, f) are defined in the text below (4)

and (6). λ̂ is a weighting term balancing the importance of each T-F
unit. For each close-talk microphone d and speaker c, it is defined,
following [36], as

λ̂d(c, t, f) = ξ × max(|Yd|2) + |Yd(t, f)|2, (8)

where ξ (set to 10−4) floors the weighting term and max(·) extracts
the maximum value of a power spectrogram; and for each far-field
microphone p and speaker c, it is defined as

λ̂p(c, t, f) = ξ × max(Q) +Q(t, f), (9)

where Q = 1
P

∑P
p=1 |Yp|2 averages the power spectrograms of far-

field mixtures. Notice that λ̂ is computed differently for different mi-
crophones, as the energy level of each speaker is different at close-talk
and far-field microphones. Notice that (7) is a quadratic problem, where
a closed-form solution can be readily computed. We then plug ĝr(c, f)
into (4) and (6) to compute the loss, and train the DNN.

Although, in (7), Ẑ(c) is linearly filtered to approximate Yr ,
previous studies [29], [36] have suggested that the filtering result

ĝr(c, f)
H ˜̂Z(c, t, f) would approximate the speaker image Xr(c, t, f),

when Ẑ(c) gets sufficiently accurate during training so that Ẑ(c)
becomes little correlated with sources other than c (see detailed deriva-
tions in Appendix C of [29]). The estimated speaker image is named
FCP-estimated image:

X̂FCP
r (c, t, f) = ĝr(c, f)

H ˜̂
Z(c, t, f). (10)

The FCP-estimated images of all the speakers can be hence summated
to reconstruct Yr in (4) and (6).

At run time, we use the FCP-estimated image X̂FCP
p (c) as the

prediction for each speaker c at a reference far-field microphone p.
We use the time-domain signal of the clean far-field image, Xp(c), as
the reference signal for evaluation.

TABLE I
QUALITY OF CLOSE-TALK MIXTURES (REF: CLOSE-TALK SPEECH)

D. Relations to, and Differences From, UNSSOR

M2M is motivated by a recent algorithm named UNSSOR [29], an
unsupervised neural speech separation algorithm designed for separat-
ing far-field mixtures. UNSSOR is trained to optimize a loss similar to
(6), by leveraging the mixture signal at each microphone as a constraint
to regularize DNN-estimated speaker images, and it can be successfully
trained if the mixtures for training are over-determined (i.e., more
microphones than sources) [29]. The major novelty of M2M is adapting
UNSSOR for weakly-supervised separation by defining the MC loss not
only on far-field microphones, but also on close-talk microphones to
leverage the weak supervision afforded by close-talk mixtures to obtain
better separation than UNSSOR, which is unsupervised. In M2M, there
are C speakers, and P far-field and C close-talk microphones for loss
computation. The over-determined condition is hence naturally satisfied
(i.e., P + C > C). With that being said, only using the MC loss on
close-talk mixtures (i.e., the first term in (3)) for training M2M would
not lead to separation of speakers. This is because, as is suggested
in UNSSOR [29], the number of close-talk mixtures used for loss
computation is not larger than the number of sources, and there would be
an infinite number of DNN-estimated speaker images that can minimize
the MC loss. The second term in (3) can help narrow down the infinite
solutions to target speaker images.

V. EXPERIMENTAL SETUP

Since there are no earlier studies leveraging close-talk mixtures as a
weak supervision for separation, to validate M2M we propose a simu-
lated dataset so that clean reference signals can be used for evaluation.
Building upon the SMS-WSJ corpus [41], which only has far-field (FF)
mixtures, we simulate SMS-WSJ-FF-CT, by adding close-talk (CT)
mixtures.

SMS-WSJ [41] is a popular corpus for 2-speaker separation in
reverberant conditions. It has 33,561 (∼87.4 h), 982 (∼2.5 h) and 1,332
(∼3.4 h) 2-speaker mixtures respectively for training, validation and
testing. The clean speech is sampled from the WSJ0 and WSJ1 corpus.
The simulated far-field array has 6 microphones uniformly placed on a
circle with a diameter of 20 cm. For each mixture, the speaker-to-array
distance is drawn from the range [1.0, 2.0] m, and the reverberation
time (T60) from [0.2, 0.5] s. A white noise is added, at an energy
level between the summation of the reverberant speech and the noise,
sampled from the range [20, 30] dB. SMS-WSJ-FF-CT is created by
adding a close-talk microphone for each speaker in each SMS-WSJ
mixture. The distance from each speaker to its close-talk microphone
is uniformly sampled from the range [10, 30] cm. All the other setup for
simulation remains the same. This way, we can simulate the close-talk
mixture of each speaker, and the far-field mixtures are exactly the same
as the existing ones in SMS-WSJ. The sampling rate is 8 kHz.

For STFT, the window size is 32 ms and hop size 8 ms. TF-
GridNet [18], which has shown strong performance in major supervised
speech separation benchmarks, is used as the DNN architecture. Using
the symbols defined in Table I of [18], we set its hyper-parameters to
D = 96, B = 4, I = 2, J = 2, H = 192, L = 4 and E = 4 (please
do not confuse these symbols with the ones in this paper). We train it on
4-second segments using a batch size of 4. The first far-field microphone
is designated as the reference microphone. We consider 6-channel
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TABLE II
SEPARATION RESULTS ON SMS-WSJ-FF-CT (P = 6) (REFERENCE: SPEAKER

IMAGES AT FAR-FIELD REFERENCE MIC)

separation, where all the 6 far-field microphones are used as input to
M2M, and 1-channel separation, where only the reference microphone
signal can be used as input. The evaluation metrics include signal-
to-distortion ratio (SDR) [42], scale-invariant SDR (SI-SDR) [43],
perceptual evaluation of speech quality (PESQ) [44], and extended
short-time objective intelligibility (eSTOI) [45].

For comparison, we consider an unsupervised neural speech sepa-
ration algorithm named UNSSOR [29], which is trained on far-field
mixtures without using any supervision but also by optimizing a
loss defined between linearly-filtered DNN estimates and observed
mixtures. In addition, we provide the results of PIT [3], trained in a
supervised way assuming the availability of clean speaker images at
far-field microphones, by using a loss defined, similarly to (5), on the
predicted real, imaginary and magnitude components. Both baselines
use the same TF-GridNet architecture and training setup as M2M,
and their performance can be respectively viewed as the lower- and
upper-bound performance of M2M.

VI. EVALUATION RESULTS

Table I presents the scores of close-talk mixtures, which are com-
puted by using the close-talk speech of each speaker as reference and
close-talk mixture as estimate. We can see that the close-talk mixtures
are not sufficiently clean (e.g., only 14.7 dB in SI-SDR), due to the
contamination by cross-talk speech, but the SNR of the target speaker
is reasonably high.

Table II reports the results of M2M when there are P = 6 far-field
microphones. The reference signals for metric computation are the
speaker images captured by the far-field reference microphone. In row
1a-1e and 2a-2c, we tune the filter taps I , J , M and N , and observe
that the setup in 1a leads to the best separation. Only one future tap
(i.e., J = 1 and N = 1) is used in row 1a, and using more future taps
are not helpful, likely because sound would travel 2.72 = 340× 0.008
meters in 8 ms (equal to the hop size of our system) if its speed in
air is 340 m/s, and this distance is already larger than the aperture
size formed by the simulated close-talk and far-field microphones.
Compared to unsupervised UNSSOR in 4a, M2M in 1a produces clearly
better separation; and compared with fully-supervised PIT in 4b, M2M
in 1a shows competitive performance. These results indicate that M2M
can effectively leverage the weak supervision afforded by close-talk
mixtures

Table III reports the results when P = 1, where M2M only takes in
the far-field mixture signal at the reference microphone as input and is
trained to reconstruct the input mixture and close-talk mixtures. When
the weightα in (3) is 1.0, the DNN could just copy its input as the output

TABLE III
SEPARATION RESULTS ON SMS-WSJ-FF-CT (P = 1) (REFERENCE: SPEAKER

IMAGES AT FAR-FIELD REFERENCE MIC)

(e.g., Ẑ(c) = Y1) to optimize the loss on the far-field mixture (i.e., the
second term in (3)) to zero, causing the loss on close-talk mixtures not
optimized well. To avoid this, we apply a smaller weight α to the loss
on the far-field mixture so that the DNN can focus on reconstructing
close-talk mixtures. From row 1 and 2a-2 d of Table III, we can see that
this strategy works, and M2M obtains competitive results compared to
monaural supervised PIT in row 3.

In our experiments, we observe that, even if FCP is performed in
each frequency independently from the others, M2M does not suffer
from the frequency permutation problem [46], [47], which needs to be
carefully dealt with in UNSSOR [29] and in many frequency-domain
blind source separation algorithms [47]. This is possibly because each
close-talk mixture has a high SNR of the target speaker, which can
give a hint to M2M regarding what the target source is across all the
frequencies of each output spectrogram.

A sound demo based on the experiments is provided in this link
https://zqwang7.github.io/demos/M2M_demo/index.html.

VII. CONCLUSION

We have proposed M2M, which leverages close-talk mixtures as
a weak supervision for training neural speech separation models to
separate far-field mixtures. Evaluation results on 2-speaker separation
in simulated conditions show the effectiveness of M2M. Future research
will modify and evaluate M2M on real-recorded far-field and close-talk
mixtures.

In closing, the key scientific contribution of this paper, we emphasize,
is a novel methodology that directly trains neural source separation
models based on paired mixtures, where the higher-SNR mixture can
serve as a weak supervision for separating the lower-SNR mixture. This
concept of mixture-to-mixture training, we believe, would motivate
the design of many algorithms in future research in neural source
separation.
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