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ABSTRACT:

The current dominant approach for neural speech enhancement is via purely supervised deep learning on simulated
pairs of far-field noisy-reverberant speech (i.e., mixtures) and clean speech. The trained models, however, often
exhibit limited generalizability to real-recorded mixtures. To deal with this, this paper investigates training enhance-
ment models directly on real mixtures. However, a major difficulty challenging this approach is that, since the clean
speech of real mixtures is unavailable, there lacks a good supervision for real mixtures. In this context, assuming that
a training set consisting of real-recorded pairs of close-talk and far-field mixtures is available, we propose to address
this difficulty via close-talk speech enhancement, where an enhancement model is first trained on simulated mixtures
to enhance real-recorded close-talk mixtures and the estimated close-talk speech can then be utilized as a supervision
(i.e., pseudo-label) for training far-field speech enhancement models directly on the paired real-recorded far-field
mixtures. We name the proposed system ctPuLSE. Evaluation results on the popular CHiME-4 dataset show that
ctPuLSE can derive high-quality pseudo-labels and yield far-field speech enhancement models with strong generaliz-
ability to real data. © 2025 Acoustical Society of America. https://doi.org/10.1121/10.0039557
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I. INTRODUCTION

Dramatic progress has been made in speech enhance-
ment (Wang and Chen, 2018), thanks to the rapid develop-
ment of deep learning. The current dominant approach is
based on supervised deep learning, where paired noisy-
reverberant speech (i.e., mixtures) and clean speech are sim-
ulated and utilized to train deep neural networks (DNN) to
predict the clean speech based on its paired mixtures in a
purely supervised, discriminative way (Wang and Chen,
2018; Zheng et al., 2023; Araki et al., 2025). The trained
models, however, often exhibit limited generalizability to
real-recorded mixtures (Wang, 2024b; Pandey and Wang,
2020; Zhang et al., 2021; Tzinis et al., 2022a; Tzinis et al.,
2022b; Cox et al., 2023; Leglaive et al., 2023; Cornell et al.,
2023; Haeb-Umbach et al., 2019; Zhang et al., 2023; Zhang
et al., 2024), mainly because the simulated training data is
typically, and in many cases inevitably, mismatched with
real test data.

To improve the generalizability, this paper investigates
training models directly on real-recorded, target-domain
mixtures. This approach, however, cannot be straightfor-
wardly realized, since the underlying clean speech is not
available for real mixtures, unlike simulated mixtures,
where the paired clean speech can be readily available
through room simulation and can serve as a fine-grained
supervision at the sample level for model training. The key
to enable successful training on real mixtures, we think, is to
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figure out a mechanism that can reliably compute a high-
quality supervision signal (i.e., pseudo-label or pseudo-tar-
get) for real-recorded mixtures.

One possible way, we propose, is to leverage close-talk
mixtures. During data collection, besides using far-field
microphones to record target speech, a close-talk micro-
phone is often placed near the target speaker to record the
close-talk speech at the same time. See Fig. 1 for an illustra-
tion. The recorded close-talk mixture, while the target
speaker is talking, usually has a much higher SNR of the tar-
get speaker than any far-field mixture, simply due to the
very short distance from the target speaker to its close-talk
microphone. Although the close-talk mixture is typically not
perfectly clean, as non-target signals (such as environmental
noises, room reverberation, and competing speech) could
also be picked up by the close-talk microphone, it usually
exhibits a very high input SNR and hence could be utilized
to compute a reliable, high-quality supervision for real-
recorded far-field mixtures.

With this understanding, this paper first investigates
close-talk speech enhancement, a task which aims at
enhancing close-talk mixtures and estimating close-talk
speech. Solving this task could enable many applications.
One of them, which is investigated in this paper, is that,
based on the estimated close-talk speech, a pseudo-label can
be derived for each real-recorded far-field mixture and used
as a supervision to train supervised models directly on real-
recorded far-field mixtures, thereby potentially realizing
better generalizability to real data. We summarize the con-
tributions of this paper as follows:
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FIG. 1. Scenario illustration. Close-talk mixture consists of close-talk
speech and noises, and far-field mixture consists of far-field speech and
noises.

e For the purpose of achieving better far-field speech
enhancement, we propose to first investigate close-talk
speech enhancement (CTSE), which aims at enhancing
close-talk mixtures to estimate close-talk speech.
Although CTSE is a particular form of speech enhance-
ment (i.e., in close-talk conditions) and has been studied
for other purposes (Jiang et al., 2013; Jiang et al., 2016;
Tan et al., 2021), we point out that it is a valuable task
that could yield high-quality pseudo-labels for real-
recorded data, and is hence worth investigating.

* We propose ctPuLSE, a pseudo-label based approach for

far-field speech enhancement, where estimated close-talk

speech is utilized to derive a supervision for training
supervised enhancement models directly based on real
far-field mixtures.

Following SuperM2M (Wang, 2024b), an earlier algo-

rithm that trains enhancement models by alternating

between supervised and unsupervised/weakly supervised
learning, we propose a co-learning algorithm that trains
the same enhancement model using both simulated and
real data, where the pseudo-label of real data is derived
based on the estimated close-talk speech. This way, the
model can also learn from massive amount of simulated
training data, which can be easily simulated and can be
very helpful when the real training data is scarce.

Compared with SuperM2M, we observe that ctPuLSE

obtains comparable robust automatic speech recognition

(ASR) performance, while much better enhancement

performance.

Although ctPuLSE is simple and straightforward, it
obtains strong robust ASR and speech enhancement perfor-
mance on the public CHiME-4 dataset (Barker et al., 2015;
Vincent et al., 2017; Barker et al., 2017), the most popular
benchmark to date in robust ASR and speech enhancement.
The evaluation results suggest that ctPuLSE can effectively
train enhancement models on real-recorded far-field mix-
tures, and can yield better generalizability to real data than
purely supervised models trained only on simulated data. A
sound demo is provided online (Wang, 2025).

Il. RELATED WORK
ctPuL.SE is related to earlier works in four key aspects.
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A. Generalizability of supervised enhancement
models

Improving the generalizability of supervised learning
based speech enhancement models (trained on simulated
data) to real-recorded data has received decade-long
research interests. The current dominant approach (Chen
and Wang, 2017; Chen et al., 2016; Wang and Chen, 2018;
Zhang et al., 2023; Zhang et al., 2024) is to simulate mas-
sive amount of training data to cover as many variations
(that could happen in real-recorded test data) as possible.
However, the generalizability is often limited by the current
simulation techniques, which usually cannot simulate mix-
tures as realistic as real-recorded mixtures. This can be
observed from recent speech enhancement/separation and
robust ASR challenges such as CHiME-{4,5,6,7} (Vincent
et al., 2017; Watanabe et al., 2020; Cornell et al., 2023),
AliMeeting (Yu et al., 2022), MISP (Wu et al., 2024), and
Clarity (Cox et al., 2023), where using the immediate out-
puts from DNN-based enhancement or separation models
trained on simulated mixtures for robust ASR and human
hearing has had limited successes (Haeb-Umbach er al.,
2019; Haeb-Umbach er al., 2021). Different from this
stream of research, this paper investigates training enhance-
ment models directly on real-recorded data to improve the
generalizability.

B. Leveraging close-talk mixtures for speech
enhancement

Leveraging real-recorded close-talk mixtures as a weak
supervision to train speech enhancement and speaker sepa-
ration models directly on real-recorded far-field mixtures
has attracted research interests recently. A representative
algorithm in this direction is SuperM2M (Wang, 2024b),
which builds upon a weakly supervised speaker separation
algorithm named mixture to mixture (M2M) (Wang, 2024a)
and an unsupervised speaker separation algorithm named
UNSSOR (Wang and Watanabe, 2023). M2M trains
enhancement models to produce a speech estimate and a
noise estimate such that the two estimates can be linearly fil-
tered to recover observed mixtures, and SuperM2M, build-
ing upon M2M, leverages supervised learning on simulated
mixtures to improve M2M. Although SuperM2M has shown
strong potential for neural speech enhancement and robust
ASR, we often observe that SuperM2M cannot sufficiently
suppress non-target signals, likely because its loss function
is defined on reconstructed mixtures (i.e., the summation of
linearly filtered source estimates), rather than directly on
source estimates. In comparison, the loss function in
ctPuLSE, which we will show, is defined based on pseudo-
labels derived from close-talk mixtures. As long as the
pseudo-labels are high-quality, we can reasonably expect
that the suppression of non-target signals by ctPuL.SE would
be more sufficient and aggressive.

On the other hand, there are studies (Wu et al., 2024)
using oracle speaker-activity timestamps and pre-trained
models [e.g., DNSMOS (Reddy et al., 2021)] to select
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segments of close-talk mixtures that are almost clean, and
then using the selected segments of mixtures to synthesize
far-field mixtures for training supervised learning based
models. However, the training data is still simulated, and the
models are not trained on real data.

C. Pseudo-label based speech enhancement

There have been studies adapting pre-trained speech
enhancement models to target domains via pseudo-labeling.
RemixIT (Tzinis et al., 2022a), a representative algorithm in
this direction, first uses a pre-trained enhancement model
(named feacher) to enhance target-domain real-recorded mix-
tures (and generate pseudo-labels), and then another enhance-
ment model (named student) is trained in a supervised way to
estimate the generated pseudo-labels. The teacher and student
models are designed to update continuously and iteratively to
gradually improve each other. Another recent study in this
direction is SSST (Frenkel et al., 2024), which, building upon
RemixIT, introduces an adversarial training algorithm to learn
domain-invariant hidden representations and proposes a data-
selection mechanism to pick a subset of target-domain mix-
tures whose pseudo-labels are sufficiently reliable for
RemixIT-style training.

Similarly to those studies, ctPuLSE leverages pseudo-
labeling as well, but it has a very different problem setup,
where paired close-talk and far-field mixtures are assumed
available for model training. In this setup, much better
pseudo-labels could potentially be computed for far-field
mixtures, simply due to the innate high input SNR of close-
talk mixtures. This potential could make ctPuLSE a more
attractive solution for practical product development, as
long as the paired close-talk mixtures can be recorded while
collecting far-field mixtures for training.

D. Relations to DAPS dataset

A dataset named DAPS (Mysore, 2015) is proposed for
the task of transforming speech recorded on common con-
sumer (and possibly band limited) devices in real-world
noisy-reverberant environments into professional production
quality speech. A loudspeaker is used to play back clean
speech in real-world environments, and the speech is then
recorded by consumer devices to create pairs of clean and
degraded speech signals for model training. Although the
DAPS paper proposes a task similar to the one in this study,
it proposes a new dataset only rather than an actual algo-
rithm. On the other hand, in our study the close-talk mixture
is recorded by attaching a close-talk microphone to the tar-
get talker and hence would inevitably capture some interfer-
ence signals, and the pseudo-label is then derived based on
the close-talk mixture. Differently, DAPS uses played-back
clean speech, which is used to derive pseudo-labels.

E. Close-talk speech enhancement

Our study leverages close-talk speech enhancement to
derive high-quality pseudo-labels for far-field speech
enhancement. There are existing studies (Jiang et al., 2013;
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Jiang et al., 2016; Tan et al., 2021) on close-talk speech
enhancement, but for different purposes. For example, in
Jiang et al. (2013) and Jiang et al. (2016), the task is to
enhance the target speech captured by a close-talk micro-
phone with the help of an ear-mounted microphone, and in
Tan et al. (2021), the task is to enhance close-talk speech
when users talk to dual-microphone mobile phones at a very
short distance. Their purpose is not on training speech
enhancement models on real data and improving the gener-
alizability to real data.

Ill. PHYSICAL MODEL AND APPROACH OVERVIEW

In a noisy-reverberant environment with a P-micro-
phone far-field microphone array and a single target speaker
wearing a close-talk microphone (see Fig. 1 for an illustra-
tion), the physical model of the recorded close-talk mixture
and each far-field mixture can be respectively formulated, in
the short-time Fourier transform (STFT) domain, as follows:

YO(taf) :XO(taf)+V0(taf)7 (1)
Y, (t,f) = X, (t,f) + Vu(t.f), 2)

where the subscript p € {1,...,P} indexes the P far-field
microphones, subscript 0 indexes the close-talk microphone,
t €{0,...,T — 1} indexes T frames, and f € {0,...,F — 1}
indexes F frequency bins. In Eq. (1), Yo(¢,f), Xo(z,f), and
Vo(t,f), respectively, denote the STFT coefficients of the
close-talk mixture, close-talk speech, and non-speech sig-
nals (such as environmental noises) captured by the close-
talk microphone at time ¢ and frequency f. Similarly, in
Eq. ), Y,(t,f), X,(t.f), and V,(t,f) are, respectively, the
STFT coefficients of the far-field mixture, far-field speech,
and non-speech signals captured by far-field microphone p
at time ¢ and frequency f. In the rest of this paper, when
dropping the indices p, ¢, and f, we refer to the correspond-
ing spectrograms. In this paper, V is assumed to contain an
unknown number of strong, non-stationary diffuse and
directional noises sources.

Figure 2 illustrates the proposed ctPuLSE algorithm.
Given a set of simulated pairs of clean speech and mixtures
as well as a set of real-recorded pairs of close-talk and far-
field mixtures for training, the proposed system consists of
three steps: (a) we train a speech enhancement model
(denoted as CTSEnet) based on the simulated training mix-
tures for close-talk speech enhancement, (b) we apply the
trained CTSEnet to enhance each real-recorded close-talk
mixture and obtain an estimated close-talk speech, and (c)
we leverage the estimated close-talk speech as pseudo-
labels to train a far-field speech enhancement model
(denoted as ctPuLSEnet) on the paired real-recorded far-
field mixtures.

Next, we detail CTSEnet and ctPuLSEnet.

IV. CTSEnet

Based on a set of simulated training mixtures, we train
CTSEnet via single-microphone complex spectral mapping
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FIG. 2. ctPuLSE illustration. A CTSEnet is first trained on simulated mix-
tures for close-talk speech enhancement. It is then used to enhance real-
recorded close-talk mixtures and obtain estimated close-talk speech. Next, a
ctPuLSEnet is trained for far-field speech enhancement, based on the esti-
mated close-talk speech and its paired real-recorded far-field mixtures.

(Tan and Wang, 2020; Wang et al., 2020) to predict the real
and imaginary (RI) components of target speech X, based
on the RI components of the input mixture Y,, where,
depending on the application scenarios, the microphone
index a can index all or a subset of the simulated micro-
phones in the training data. Following Wang et al. (2021c),
we define the loss function on the RI components and mag-
nitude of the DNN estimate X ,,

> FXa(t.), Xa(11)
‘C;(lfcn,u _ tf ’ (3)
P AN
rf
f(Xa(t7f>7Xa(tvf)) = |R(Xﬂ(tvf)) _R(Xﬂ(t’f))|
HIZ(X () = T(Xa(t1)))]

+IXa ()] = Xa (0], 4)

where | - | computes the magnitude or absolute value, R(-)
and Z(-), respectively, extract the RI components, and the
denominator in Eq. (3) balances the loss values across dif-
ferent training mixtures. Other configurations of CTSEnet
are detailed later in Secs. VIC and VID.

V. CTPULSENET

Once a CTSEnet has been trained, we apply it to enhance
each monaural real-recorded close-talk mixtu{eC Tté)E obtain an
estimate of the close-talk speech, denoted as X, , which is
then leveraged as a pseudo-label to train ctPuL.SEnet on real-
recorded far-field mixtures. This section describes the DNN
configurations, loss functions, and a co-learning algorithm that
trains ctPuLSEnet on both simulated and real mixtures.

A. DNN configurations

ctPuLSEnet is trained via single- or multi-microphone
complex spectral mapping (Wang and Wang, 2020; Wang
et al., 2021a; Tan et al., 2022) to predict the RI components
of target speech at a designated reference microphone
g €{1,...,P} based on the RI components of stacked input
mixtures. In monaural cases, the DNN is trained to predict the
target speech X, based on input mixture Y,, and in multi-
channel cases, it is trained to predict X, based on all the input
mixtures stacked in a fixed microphone order. We denote the
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DNN estimate as X ¢~ In addition to predicting X,, the DNN
can also be trained to additionally predict non-speech signals
V4. We observe that this form of multi-task learning can
improve enhancement and robust ASR in our experiments.
Next, we describe the loss functions for the speech esti-
mate }?q in Sec. VB and for the noise estimate Vq in V D.
Other DNN setups are detailed in Secs. VIC and VID.

B. Loss functions based on estimated close-talk
speech

Assuming that the close-talk microphone and far-field
microphones are approximately time-synchronized, we
directly leverage X ETSE as the pseudo-label for each far-field

. . SCTSE . . S
mixture Y,. Since X, is time- and gain-aligned to close-
talk speech X, rather than to far-field speech X, in far-field
mixture Y, special care is needed to account for the time

delay and gain differences between X g F and Xp.
In this context, we propose to first linearly filter the

. 5 . 5 CTSE
DNN estimate X, at each frequency to align it to X
before loss computation,

S FEpoltf) Ko (f)
ot = : )
S Ko (L)
rf
Xpo(t.f) = 8,(F)"X,(1.F), ©)

where X, (t,) = [X,(t =1+ 1,f), ... X, (6.1, ... X, (t+T.f)]
€ C" stacks a window of T-F units, g,(f) € C" denotes

an estimated multi-tap linear filter to be described in Eq. (7),
and F (-, -) is a distance metric defined in Sec. IV. Following
the forward convolutive prediction (FCP) algorithm (Wang
et al., 2021), we estimate g,(f) by linearly projecting the

DNN estimate X,(-,f) to pseudo-label XSTSE(-, f) at each

frequency f,

#(/) = argmin SR ) — 8, ()X ()P ()
g, 1

This is a quadratic problem, which has a closed-form solu-
tion. Next, we plug the closed-form solution into Eq. (6),
compute the loss in Eq. (5), and train the DNN.

An alternative way for linear filtering is to estimate the
filter in the time domain, following the ideas behind CI-

SDR (Boeddeker et al., 2021). In detail, we compute a time-

domain multi-tap Wiener filter to align %, to )ESTSE

%, = iSTFT(X,,) is the re-synthesized time-domain signal of

X, obtained via inverse STFT (iSTFT), and similarly

Z§TSE = iSTFT(}?OCTSE). The filter is computed by solving

the following problem:

, Where

};p = argmin Z |)20CTSE (n] — (hy * f(p)[””z’ ®)

hy
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where 7 indexes time-domain samples, * denotes linear con-
volution, and &, € R denotes a (K + 1 + K)-tap lin-
ear filter with K past and K future taps. Equation (8) is also a
quadratic linear regression problem, where a closed-form
solution can be readily computed. After that, we compute
the STFT spectrogram of the filtered time-domain DNN
estimate

X0 = STFT(h, * %,), ©)

which is then plugged into Eq. (5) to compute the loss for
training.

C. Addressing time-synchronization issues
in pre-processiing

In Sec. VB, when performing linear filtering for loss
computation, we assume that far-field and close-talk micro-
phones are reasonably time-synchronized. In practical data
collection, the close-talk microphone and far-field micro-
phone array are usually managed and processed by two dif-
ferent devices. Although the microphones on each device
are typically synchronized, there could be synchronization
errors between the microphones on different devices. Later
in Sec. VIB, we will slightly modify the classic GCC-
PHAT algorithm (DiBiase et al., 2001; Wang et al., 2019)
to roughly synchronize the close-talk microphone and far-
field array. This technique is utilized as a pre-processing
operation prior to training.

D. Co-learning on simulated and real mixtures

In practical application scenarios, the amount of real
data is typically scarce, as it is often effort-consuming to
collect real-recorded close-talk and far-field mixture pairs.
In this case, even if ctPuLSEnet can be trained on real data,
the performance is often limited, simply due to the limited
amount of training data. On the other hand, simulated data
can be easily and massively generated through simulation.
In this case, following the SuperM2M algorithm (Wang,
2024b), which combines supervised learning on simulated
data with unsupervised or weakly supervised learning on
real data, we propose to train ctPuLSEnet on both simulated
and real data. See Fig. 3 for an illustration, where supervised
learning on simulated data is shown in Fig. 3(b).

Specifically, at each training step, we randomly sample
either a mini-batch of real far-field mixtures and their
pseudo-labels computed by CTSEnet or a mini-batch of sim-
ulated far-field mixtures (where the clean speech is avail-
able) to train the same DNN. If the sampled mini-batch is
real, the loss function can be the E;le loss defined in Eq. (5),
while if the sampled mini-batch is simulated, the loss can be
L3 in Eq. (3).

Alternatively, we can train ctPuLSEnet to not only pre-
dict target speech but also non-target signals via multi-task
learning, as is described earlier in Sec. V A. In this case, the
loss on simulated data can be
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i = gy £ g Ly, (10)

where C?}fg” denotes the loss on estimated noise Vq and is

defined, by following L£y7" in Eq. (3), as
ZF(VKI(I’JC)’ Vl]([7f))

,C:/qu = A )

’ PAND]
“f

an

and Ly, is a mixture-constraint loss (Wang er al., 2023)
encouraging the speech and noise estimates to sum up to the
observed mixture

> FX (1) + Vo(t.0), Y(t.1))
_

Ly, = — (12)
ARSI
t/f/
Accordingly, the loss on real data can be modified to
Ly = L5y + Ly, (13)

where [,;(ef:; is defined in Eq. (5).

Notice that in each of the loss functions in Egs. (3), (5),
(11), and (12), a normalization term is used in the denomi-
nator to balance the loss with the others. This is particularly

useful for E;?al in Eq. (5), as the close-talk speech estimated

based on the close-talk mixture (i.e., XSTSE) could have a
gain level very different from far-field mixtures.

We can also add a weighting term o € R between the
loss on simulated data and the loss on real data to balance
their importance. The overall loss is defined as

o o X E;im“, for mini-batches of simulated data,
T E;ea', for mini-batches of real data.

(14)

(a) Supervised training on real
far-field mixtures and estimated
close-talk speech

(b) Supervised training on
simulated mixtures

X§TE XY Xq ¥q Va
\ v v v v
g9 g o n
£ P
Xq Ya Xq Ya
t )
|
Xq Vg

[Yq; Y, forp € {1,...P} where p # q]

FIG. 3. Illustration of co-learning, which trains the same model via super-
vised learning based on (a) real-recorded far-field mixtures and their
pseudo-labels derived from CTSEnet and (b) simulated mixtures.
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VI. EXPERIMENTAL SETUP

Based on real-recorded mixtures, the main objective of
our experiments is to demonstrate whether ctPuLSEnet can
achieve better enhancement on real-recorded far-field mix-
tures than purely supervised learning based approaches,
which can only train enhancement models on simulated
data. Bearing this objective in mind, we validate the pro-
posed algorithms on the CHiME-4 dataset (Barker et al.,
2015; Vincent et al., 2017; Barker et al., 2017), the most
popular benchmark to date in robust ASR and speech
enhancement. It contains both real-recorded and simulated
mixtures for both training and testing. Since, for real mix-
tures, the clean speech is not available for evaluation, we
mainly check whether the enhanced speech can yield better
ASR performance, considering that ASR scores can reflect
speech intelligibility and indicate the degrees of speech dis-
tortion. The ASR evaluation pipeline is shown in Fig. 4,
where enhanced close-talk or far-field speech is directly fed
to a strong pre-trained ASR system for recognition.

The rest of this section describes the CHiME-4 dataset,
synchronization of close-talk and far-field mixtures, setup
for ASR evaluation, miscellaneous system configurations,
baselines for comparison, and evaluation metrics.

A. CHIiME-4 Dataset

CHIiME-4 (Barker et al., 2015; Vincent et al., 2017,
Barker et al., 2017) is a major benchmark for evaluating far-
field speech recognition and enhancement algorithms. The
far-field recording device is a tablet mounted with six micro-
phones, with the second microphone placed on the rear and
the other five facing front. During data collection, the target
speaker hand-holds the tablet and reads text prompts shown
on the screen of the tablet. The target speaker wears a close-
talk microphone so that a monaural close-talk mixture can
be recorded along with each six-channel far-field mixture.

The mixtures are recorded in four representative daily
environments (including buses, cafeteria, pedestrian areas,
and streets), where multiple strong, non-stationary direc-
tional and diffuse noises can naturally co-exist. In CHiME-
4, the room reverberation is weak, and the major challenge
is in how to deal with the multi-source non-stationary noise
signals.

The number of mixtures in CHiME-4 is summarized in
Table I. In addition to real mixtures, CHiME-4 also provides
simulated far-field mixtures for training and testing. We
emphasize that, for each real mixture in the training set, in
total it has seven channels (i.e., one close-talk plus six far-
field microphones), while, for each simulated training mix-
ture, it is far-field, six-channel, and does not have the paired
close-talk mixture.

The sampling rate is 16 kHz.

B. Synchronization of close-talk and far-field mixtures

In CHiME-4, we observe that the far-field mixtures are
reasonably synchronized with each other, while significant
synchronization errors exist between close-talk and far-field
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mixtures. For some utterances, the time delay between the
close-talk and far-field mixtures can be as large as 0.05s,
which, if correct, means that the distance between the close-
talk microphone and far-field array can be as large as
~ 17m (i.e., 0.05 x 340, assuming that the speed of sound
in the air is 340 m per second). This clearly does not make
sense in the CHiME-4 setup, as the speaker hand-holds the
tablet while talking. The root cause of the synchronization
errors is that the close-talk microphone and far-field array in
CHiME-4 are placed on, and processed by, two different
devices.

If the synchronization errors between the close-talk
and far-field mixtures are not properly addressed before
using them to train ctPuLSEnet, the loss functions in Eq.
(5) would be less effective, since the hypothesized filter
taps of g,(f) in Eq. (7) or 4, in Eq. (8), which are hyper-
parameters shared by all the training utterances, may not
be able to compensate the synchronization errors for every
training utterance. To deal with this, we could use a very
long linear filter to cover the maximum synchronization
error of all the training mixtures. This is however problem-
atic, as the longer the filter is, the more likely that the filter
can filter any DNN estimate (even if the estimate is a ran-
dom signal) to accurately fit the estimated close-talk
speech.

To mitigate the synchronization errors, we slightly
modify the classic GCC-PHAT algorithm (DiBiase et al.,
2001; Wang et al., 2019) to approximately align the close-
talk mixture to far-field mixtures. We emphasize that this is
a pre-processing step at the very beginning of our proposed
system (i.e., before training).

In detail, for each of the close-talk and far-field mix-
tures, we consider its magnitude in each frequency as a one-
dimensional sequence, and find an integer frame shift del
(shared by all the frequencies) that can, at every frequency,
best align the magnitude sequence of the close-talk mixture
to those of the far-field mixtures. Specifically, let M,(f)
= 17,(-,f)| € R" denote the magnitude sequence at fre-
quency f for microphone p € {0,1,...,P}, and R,(f)
= FFT(M,(f)) € C" denote the FFT coefficients after
applying a T-point faster Fourier transform (FFT) to the
magnitude sequence. At each frequency f, we first compute
the GCC-PHAT coefficients between the magnitude
sequence of the close-talk microphone and that of a far-field
microphone p by

GCC-PHAT, (1,f, d)

R Ro(t,f) Rp(tvf)** o—ix2n(t/T)d
‘RO(Z7.f)| X |R[7(t7f) |

= cos (LRO(t,f) — LR, (t,f) — 2”%61)7 (15)

where j denotes the imaginary unit, d € 7 a hypothesized
frame delay, and R(-) extracts the real component. We then
enumerate a set of hypothesized frame delays and find a
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Close-talk speech 5 . o
Y,
(a)
) X, Yqg—
[Yy; Y, forp € {1,..., P} where p # q| Far-field speech STFT 2, reinforcement
Monaural case: enhancement model P .
Vy (discarded) (optional)

(b)

Multi-channel case:

Yy

ASR Recognized
model word sequence

Recognized
word sequence

Speaker

FIG. 4. Pipeline of ASR evaluation for (a) close-talk speech enhancement and (b) far-field speech enhancement. Enhanced speech [e.g., Xy = iSTFT()f 0) in
close-talk speech enhancement] is directly fed to a pre-trained backend ASR system for recognition. No joint training between ASR and enhancement mod-
els is performed. In (b), an optional speaker reinforcement module (Zorila and Doddipatla, 2022), which adds a scaled version of input mixture y, to §,, can

be included.

delay that can produce the largest summation of the GCC-
PHAT coefficients at all the far-field microphones and T-F
units

T—1 F-1

GCC-PHAT, (1,f, d), (16)

where Q € {—D,...,0,...,D} is a set of candidate frame
delays with D, a tunable hyper-parameter, denoting a
hypothesized maximum delay on each side. If the result-
ing best time delay d is positive, we advance the close-
talk mixture by d frames (and pad zeros to the right),
and delay it by d frames otherwise (and pad zeros to the
left).

Notice that this algorithm is designed to compute an
integer number of frame shift for each close-talk mixture. In
our experiments, for the STFT configuration of Eqs. (15)
and (16), we set the window size to 16 ms and hop size to
1 ms (please do not confuse this STFT configuration used in
the pre-processing stage with that in the subsequent DNN
training stage). A small STFT hop size is used here, as our
aim is to roughly align close-talk and far-field mixtures in
this pre-processing stage.

We highlight that the alignment is performed at the granu-
larity of 1 ms. Although sample-level synchronization is defi-
nitely desired, it would dramatically increase the amount of
computation, as the enumeration would be conducted at the
granularity of samples and this computation would become
intolerable when the candidate time delay (and time advance)
can be as large as 0.05 s in CHiIME-4. In addition, we may not
really need accurate sample-level synchronization, since the
STFT window size of our enhancement models can be as large
as 32ms and the linear filtering in, e.g., Eq. (6) could account
for slight synchronization errors (that are sufficiently smaller
than the 32 ms window size).

TABLE I. Number of utterances in CHIME-4.

C. Training setup

For CTSEnet, it is trained based on all the 7138 x 6
monaural simulated mixtures. Following Wang (2024b), we
apply an SNR augmentation technique to the simulated
training mixtures of CHiME-4. That is, during training, we
optionally modify the SNR of each simulated mixture, on
the fly, by udB, with u uniformly sampled from the range
[—10, +15] dB. No other data augmentation is used.

For ctPuLSEnet, we use all the 7138 simulated and 1600
real utterances for training. For monaural ctPuL.SEnet, we train
it on all the (7138 + 1600) x 6 monaural mixtures. For 2-
channel ctPuLSEnet, at each training step we sample two
microphones from the front five microphones as input, and
ctPuLSEnet is trained to predict the target speech at the first of
the two selected microphones. For 6-channel ctPuLSEnet, it
stacks all the six microphones in a fixed order as input to pre-
dict the target speech at the fifth microphone. We apply the
same SNR augmentation used in CTSEnet to the simulated
training mixtures when training ctPuLLSEnet. We always train
ctPuLSEnet on the combination of the simulated and real mix-
tures using the co-learning algorithm introduced in Sec. VD,
as there are only 1600 real mixtures (which amount to only
~ 2.7h) in the training set of CHiIME-4.

For simplicity, we did not filter out microphone signals
with any microphone failures in training and inference. We
expect ctPuLSEnet to learn to robustly deal with the fail-
ures, as it is trained on real mixtures.

D. Miscellaneous system configurations

For STFT, the window and hop sizes are, respectively,
32 and 8 ms, and the square root of Hann window is used as
the analysis window.

TF-GridNet (Wang et al., 2023) is employed as the
DNN architecture. It has shown strong separation and

Type Close-talk or far-field? #mics Training set Validation set Test set
SIMU Far-field 6 7138 (~ 15.1 h) 1640 (~ 2.9 h) 1320 (~ 2.3 h)
SIMU Close-talk — N/A N/A N/A
REAL Far-field [§ 1600 (~ 2.7 h) 1640 (~ 2.7 h) 1320 (~ 2.2 h)
REAL Close-talk 1 1600 (~ 2.7 h) 1640 (~ 2.7 h) 1320 (~ 2.2 h)
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enhancement performance recently in several representative
supervised speech separation benchmarks. Following the
symbols defined in Table I of Wang et al. (2023), we set its
hyper-parameters to D =128, B=4, [I=1, J=1,
H =200, L=4, and E =4 (please do not confuse the
symbols with the ones defined in this paper). The model has
~ 5.4 million trainable parameters. This configuration of
TF-GridNet is used for both CTSEnet and ctPuLSEnet.

We train both CTSEnet and ctPuLSEnet on eight-
second segments using a mini-batch size of one. Adam is
used as the optimizer. The learning rate starts from 0.001
and is halved if the loss is not improved in two epochs.

E. ASR model

For both close-talk and far-field speech enhancement,
we check whether they can result in better ASR performance
by directly feeding their enhanced speech to a pre-trained
ASR model for decoding, following the evaluation pipeline
shown in Figs. 4(a) and 4(b).

The ASR model is pre-trained in a multi-conditional
way on the official CHiME-4 simulated and real mixtures
plus the clean speech signals in WSJO by using the script
proposed in (Chang et al., 2022), which is available in the
ESPnet toolkit (Kamo, 2025). It is an encoder-decoder- and
transformer-based system, trained on WavLM features
(Chen et al., 2022) and using a transformer-based language
model for decoding. From the results reported in Chang
et al. (2022) and Masuyama et al. (2023), this model is the
current best ASR model on CHiME-4.

We have successfully reproduced the ASR system in
Chang et al. (2022). The mixture ASR results (shown later
in row O of Table III) are very close to the ones reported in
row 7 of Table I of Chang et al. (2022).

F. Evaluation metrics

For real-recorded mixtures, where the corresponding
clean speech is unavailable for evaluation, we use word
error rates (WER) as the major evaluation metric. WER can
partially reflect the intelligibility of enhanced speech. In
addition to WER, DNSMOS (Reddy et al., 2021) is
employed to evaluate the quality of enhanced speech.

For simulated mixtures, where the clean speech is avail-
able, our evaluation metrics include short-time objective
intelligibility (STOI) (Taal et al., 2011), wideband percep-
tual evaluation of speech quality (WPESQ) (Rix et al.,
2001), signal-to-distortion ratio (SDR) (Le Roux er al.,
2019), and scale-invariant SDR (SISDR) (Vincent et al.,
2006). They are designed to evaluate the intelligibility, qual-
ity, and accuracy of the magnitude and phase of enhanced
speech. They are widely adopted metrics in speech
enhancement.

G. Baselines

A major baseline is purely supervised speech enhance-
ment models trained only on the CHiME-4 simulated data.
That is, we only use Fig. 3(b) for model training, and use
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exactly the same training setup as that in ctPuLSEnet. On
the other hand, since CHiME-4 is a popular public dataset,
we can compare our ASR and enhancement results with the
ones obtained by many earlier studies.

H. Tricks to improve ASR performance

At run time, in default we feed %, produced by
ctPuLSEnet for ASR decoding. Alternatively, following Wang
(2024b) we apply an existing technique named speaker rein-
forcement (Zorila and Doddipatla, 2022) to mitigate speech
distortion incurred by enhancement [see Fig. 4(b) for an illus-
tration]. It adds a scaled version of the mixture signal y, back
to enhanced speech 1, before performing ASR decoding. That
is, the signal sent for ASR is X, + 1 X y,, where 7 is computed

such that 10 x logy,(|[%,1[3/1n % ¥,|[3) = ydB. This tech-
nique has been found effective at improving ASR performance
in Zorila and Doddipatla (2022) and Wang (2024b).

VII. EVALUATION RESULTS
A. Results of close-talk speech enhancement

Table II presents the results of monaural CTSEnet.

Row 0 reports the results of unprocessed close-talk mix-
tures. We observe that the ASR results are very good (e.g.,
1.49% on the real test set), indicating that the close-talk
mixtures already have very high input SNRs and that micro-
phone failures in the close-talk mixtures are minimal. In
comparison, the DNSMOS scores are not good (e.g., 2.50 on
the real test set), indicating that non-speech signals captured
along with close-talk speech are still significant. These non-
speech signals need to be removed in order to derive high-
quality pseudo-labels for far-field mixtures.

Row 1 reports the results of CTSEnet trained via super-
vised learning on the CHiME-4 simulated mixtures (denoted
as S in the “training data” column). Compared with row 0,
the DNSMOS scores are clearly improved (e.g., from 2.50
to 3.22 on the real test set). The ASR performance becomes
worse, possibly because of two reasons: (a) CTSEnet is
trained only on simulated data, which usually mismatches
real data and (b) CTSEnet could introduce some distortion
to target speech while enhancing the mixture. Nonetheless,
the ASR performance degrades rather slightly (e.g., from
1.49% to 1.56% WER on the real test set), meaning that the
estimated close-talk speech is still of high quality and could
be a good pseudo-label for far-field mixtures.

With a grain of salt, the ASR results in row 1 can be
viewed as the upper-bound performance of ctPuL.SEnet.

TABLE II. Results of CTSEnet on CHiME-4 close-talk mixtures.

DNSMOS OVRL T WER (%)|

Val. Test Val.  Test

Row Training data Systems REAL REAL REAL REAL

0 _
1 S

Close-talk mixture — 2.82 2.50 1.14 149
CTSEnet 3.26 3.22 1.15 1.56
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B. Key results of far-field speech enhancement

Tables III and IV, respectively, present the results of
monaural and six-channel ctPuLSEnet on CHiME-4.

Let us first provide the hyper-parameter configurations
of ctPuLSEnet. The frequency-domain linear filter in Eq. (6)
is tuned to 1-tap [i.e., in the text below Eq. (6), / =1 and
J =0]. In Eq. (8), the time-domain filter tap K is tuned
based on the set of {256,128,64,32,16}. In this case, the
linear filter length K + 1+ K € {513,257,129,65,33} is
comparable to or shorter than the STFT window length,
which is 512 samples long in this paper (see the STFT con-
figurations in Sec. VID). The weighting term « in Eq. (14)
is tuned to 5. In both tables, when the filter tap for time-
domain linear filtering (i.e., the “K”’ column) is denoted as
“~ it means that frequency-domain linear filtering in
Eq. (6) is used. Otherwise, time-domain linear filtering in
Eq. (9) is used.

The key results of this paper are presented in row 0, la,
and 3a of Tables III and IV. Comparing row la with 0, we
observe that, on the simulated test data, purely supervised
learning based TF-GridNet trained on simulated data obtains
strong enhancement results' (e.g., 17.3 vs 7.5dB SISDR in
Table IIT and 22.9 vs 7.5 dB SISDR in Table IV), and strong
ASR performance (e.g., 7.63% vs 8.29% WER in Table III
and 1.34% vs 8.29% WER in Table IV). In addition, the
enhancement results on the simulated test data obtained by
TF-GridNet in row la are better than strong existing models
such as iNeuBe (Wang et al., 2020; Lu et al., 2022),
SpatialNet (Quan and Li, 2024), USES (Zhang et al., 2023),
and USES2 (Zhang et al., 2024). However, the performance
on the real test data is limited. For example, the ASR perfor-
mance on the real test data is degraded compared to just
using unprocessed mixtures for ASR decoding (e.g., 4.47%
vs 5.24% WER in Table III). This degradation is much more
severe in multi-channel cases (e.g., 4.47% vs 46.71% WER

in Table IV), possibly because simulated inter-microphone
characteristics are more likely to mismatch those in real-
recorded multi-channel data, compared with monaural cases
where only one microphone needs to be simulated. These
problems are widely observed in earlier robust ASR studies
(Haeb-Umbach et al., 2019; Haeb-Umbach er al., 2021),
largely because (a) on real data, enhancement models
trained on simulated data usually introduce speech distortion
detrimental to ASR and (b) simulated training data is often
mismatched with real-recorded test data. In row 3a, our pro-
posed ctPuLSEnet, trained on simulated and real data com-
bined (denoted as S+ R in the “training data” column),
obtains clearly better ASR performance on the real test set
over row la and O (e.g., 3.23% vs 5.24% and 4.47% in
Table III and 1.65% vs 46.71% and 4.47% in Table IV).
These results indicate that ctPuLSE is an effective mecha-
nism for learning from real-recorded data, and can yield
enhancement models with better generalizability to real data
than purely supervised approaches which train enhancement
models only on simulated data.

C. Ablation results of far-field speech enhancement

Next, we present several ablation results of ctPuLSEnet.

Comparing row 3a with 3b and 3c in Table III, we
observe that configuring ctPuLSEnet to estimate noise
besides target speech and at the same time including both
the loss on the noise estimate and the mixture-constraint
loss (i.e., row 3a) lead to better enhancement and ASR per-
formance. Comparing 3a with la, 3b with 1b, and 3¢ with
lc, we observe that ctPuLSE obtains better ASR perfor-
mance on the real test data for the various loss functions
used for the simulated data.

In 4a—4e of Table III, we switch from frequency-
domain linear filtering to time-domain linear filtering, and
experiment with various filter lengths by tuning K [defined

TABLE III. ctPuLSE vs purely supervised models on CHiME-4 far-field mixtures (single-channel input).

SIMU Test Set (CH5) ~ DNSMOS OVRL | WER (%)
Val. Test Val. Test
Training SISDR SDR

Row Systems data DNN arch. i £ K (dB)] (dB)] wPESQ [ STOIT REAL REAL SIMUREAL SIMU REAL
0  Mixture  — — — — — 75 715 127 0870 152 139 593 4.07 829 447
la Supervised S TF-GridNet 37" + Ly + Ly, —  — 17.3 177 236 0960 3.33 321 349 2.8 7.63 524
Ib Supervised S TF-GridNet — Ly""+ Ly — — 172 176 249 0962 3.32 321 339 209 741 444
lc Supervised S TF-GridNet Ly — — 173 176 243 0963 330 319 337 224 721 5.17
2 Supervised S iNeuBe — — — 151 — — 0.954 — — _ = = =

(Wang

et al., 2020)
3a CctPuLSE  S+R TF-GridNet L37" + Ly + Ly 4 L) + Ly, — 171 176 241 0962  3.36 323 316 200 6.84 3.23
3b  cfPuLSE S+R TF-GridNet — Ly™" 4+ L}™" Ly — 167 173 241 0960 332 3.16 356 2.08 685 3.56
3¢ ctPuLSE S+R TF-GridNet oy Ly — 168 173 239 0959 335 320 372 207 7.64 3.78
4a  ctPuLSE S+R TF-GridNet L37" + Ly + Ly, LY + Ly, 256 167 172 229 0958  3.33 3.19 321 198 7.06 3.41
4b  ctPuLSE  S+R TF-GridNet L35 + Ly3" + Ly Ly + Lr4 128 165 171 237 0960 335 322 341 188 7.08 320
4c ctPuLSE S+R TF-GridNet L3 + Ly + Ly, Ly + Ly, 64 170 175 240 0961  3.38 327 329 187 697 3.13
4d  ctPuLSE S+R TF-GridNet Ly + Ly + Ly g L§Y + Ly, 32 165 17.1 236 0961 335 322 338 199 696 3.55
4e  cPuLSE S+R TF-GridNet L37" + Ly + Ly, LY + Ly, 16 161 169 236 0959  3.36 324 344 197 723 3.4
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TABLE IV. ctPuLSE vs purely supervised models on CHiME-4 far-field mixtures (six-channel input).

SIMU Test Set (CH5) DNSMOS OVRL WER (%) |
Training DNN ) SISDR SDR Val. Test  Val. Test
Row Systems data arch. L™ ce K (dB)] (dB)] wPESQ 1STOIT REAL REAL SIMUREAL SIMUREAL
0 Mixture — — — — 75 75 127 0870 1.52 1.39 593 4.07 829 447
la Supervised S TF-GridNet L}i?;“ + Lf,i_";“ + Ly, — — 229 233 334 0987 212 1.78  0.86 23.16 1.34 46.71
Ib  Supervised S TF-GridNet 53(":;“ + Q}r;” — — 230 233 329 0988 2.06 1.63  0.86 40.27 1.32 64.71
Ic  Supervised S TF-GridNet L}ifgu — — 228 232 322 0987 2.04 1.63  0.83 53.54 1.30 74.22
2a  Supervised S iNeuBe — — — 220 224 - 0.986 — — _ = = =
(Wang et al.,
2020)
2b  Supervised S SpatialNet — — — 221 223 288 0.983 — — —_ = - =
(Quan and Li,
2024)
2¢  Supervised S USES — — — — 206 3.16 0983 — — — — 420 78.10
(Zhang et al.,
2023)
2d  Supervised S USES2 — — — — 188 294 0979 — 2.96 — — 460 12.10
(Zhang et al.,
2024)
3a  ctPuLSE S+R TF-GridNet ﬁ?f‘;“ + Liﬁfﬁl‘“ + Ly, £§f’21' +Ly, — 226 228 3.1 0985 338 328 0.82 1.28 1.39 1.65
3b  ctPuLSE S+R  TF-GridNet Ly + Ly E;f?,l — 228 233 326 0987 3.39 328 0.87 127 135 1.73
3¢ ctPuLSE  S+R  TF-GridNet E;}j‘;‘ C;?‘(‘} — 228 231 329 0987 3.39 330 084 129 1.30 1.56
4a ctPuLSE S+R TF-GridNet L;f;“’ + Q“Z“ + Ly, L;?‘ZI' +Ly,256 226 230 3.11 098  3.37 325 086 131 134 1.77
4b  ctPuLSE S+R  TF-GridNet Ly" + LyP" + Ly, L;f:,' +Ly,128 229 232 322 098 334 325  0.84 132 134 1.70
4c  ctPuLSE S+R  TF-GridNet E}ff;” + ﬁ;'r(“," +Lyy L;f_i‘; +Ly, 64 228 232 320 098  3.39 329 086 125 137 1.70
4d  ctPuLSE S+R  TF-GridNet £§€f‘;” + Ef/ffgu + Ly, ll;fc;l +Ly, 32 227 231 323 098  3.39 330 087 1.28 131 1.67
4e  ctPuLSE S+R  TF-GridNet Ly3" + Ly + Ly, E;fz;l +Ly, 16 226 230 325 0985 3.38 327 0.89 126 142 1.80
in the text below Eq. (8)] based on the set of parameters we use for training, including (a) whether pre-

{256,128, 64,32,16}. We observe that setting K to 64 (in
row 4c) produces the best ASR performance on the real vali-
dation set among various options, and the ASR performance
is also better than row 3a on the real validation set (i.e.,
1.87% vs 2.00% WER in Table III). Similar trend is also
observed in the six-channel-input case in Table IV. We
therefore choose the setup in row 4c for the rest of experi-
ments in this paper.

D. More ablation results of far-field speech
enhancement

This subsection provides more ablation results of
ctPuLSE to show the effectiveness of some key hyper-

training the DNN in ctPuLSE on simulated mixtures, (b)
tuning the batch size used for training ctPuLSE, and (c) tun-
ing the weighting term for the loss on simulated mixtures
[i.e., « in Eq. (14)]. The results are obtained based on the 6-
channel system configuration in row 4c of Table IV.

1. With or without pre-training on simulated mixtures

In default, we train the DNN in ctPuLSE from scratch
via co-learning based on simulated and real mixtures.
Another strategy is to first pre-train the DNN via supervised
learning on simulated mixtures and then fine-tune the DNN
on real mixtures or on both simulated and real mixtures. We
compare their performance in rows 4c, 5a, and 5b of

TABLE V. Results of ctPuLSE with and without supervised pre-training (based on simulated training mixtures) on CHiME-4 far-field mixtures (six-channel

input).
DNSMOS OVRL 1 WER (%) |
Val. Test
Val. Test

Row Systems Training data REAL REAL SIMU REAL SIMU REAL
0 Mixture — 1.52 1.39 5.93 4.07 8.29 4.47

la of Table IV Supervised S 2.12 1.78 0.86 23.16 1.34 46.71
4c of Table IV ctPuLSE S+R 3.39 3.29 0.86 1.25 1.37 1.70

Sa Supervised — ctPuLSE S—S+R 3.37 3.25 1.08 1.28 2.06 1.66

5b Supervised — ctPuLSE S—R 3.35 3.22 0.87 1.28 1.29 1.77
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TABLE VI. Results of ctPuLSE trained with different batch sizes on CHiME-4 far-field mixtures (six-channel input).

DNSMOS OVRL | WER (%)
Val. Test
Val. Test
Row Systems Batch size REAL REAL SIMU REAL SIMU REAL
0 Mixture — 1.52 1.39 5.93 4.07 8.29 447
4c of Table IV ctPuLSE 1 3.39 3.29 0.86 1.25 1.37 1.70
6a ctPuLSE 2 3.39 3.29 0.83 1.28 1.37 1.65
6b ctPuLSE 4 3.37 3.25 0.89 1.26 1.34 1.71
6¢ ctPuLSE 6 3.38 3.25 0.88 1.33 1.40 1.73

Table V. We observe that the fine-tuning approach does not
produce better WER on the REAL validation set than the
default approach.

2. Effects of batch size

In default, the mini-batch size is set to one for model
training. In Table VI, we report the results of ctPuLSE when
the mini-batch size is configured larger than one. From the
results, we do not observe large difference in performance,
and setting the mini-batch size to one yields the best WER
on the REAL validation set.

3. Weighting term between losses on simulated and
real mixtures

In default, this paper sets the weighting term between
the losses on simulated and real mixtures [i.e., « in Eq. (14)]
to 5. In Table VII, we report the results of enumerating o in
the set of {10,5,2.5,1.0,0.5,0.25,0.1}. From the results,
we only observe slight fluctuation in performance and set-
ting « to 5 produces strong performance among all the
values.

Notice that there are 7138 simulated mixtures and 1600
real mixtures in the training set. That is, there are many
more simulated mixtures than real mixtures. In this case, we
however do not observe too much performance difference
even if setting o to a value larger than one. This is possibly
because the loss value on simulated mixtures is much
smaller than that on real mixtures, as the target signal for
real mixtures is much harder to fit.

E. Comparison with other approaches

In Table VIII, we compare the performance of
ctPuLSEnet with IRIS (Chang et al., 2022), multi-channel
IRIS (MultilRIS) (Masuyama et al., 2023), and SuperM2M
(Wang, 2024b) on the 1-, 2-, and 6-channel tasks of
CHiME-4.

IRIS and MultilRIS were the state-of-the-art systems on
CHiME-4 before SuperM2M. Comparing row la with 1b,
4a with 4b, and 7a with 7b, we observe that IRIS and
MultiIRIS need joint frontend-backend training to achieve
strong ASR performance, especially in the one- and two-
channel cases.

SuperM2M (Wang, 2024b), even without joint
frontend-backend training, achieves better ASR perfor-
mance on the real data than IRIS and MultiIRIS. However,
the enhancement results (measured by DNSMOS OVRL) of
SuperM2M on the real data are not strong. Upon listening to
its processed signals [refer to a sound demo in Wang (2025),
which provides a comparison between SuperM2M and
ctPuLSE], we observe that it cannot suppress noises suffi-
ciently and tends to maintain some noise signals in its esti-
mate of target speech, especially in multi-channel cases.
This is reflected by the DNSMOS OVRL scores in rows 2,
5, and 8, and it is quite counter-intuitive that the score
decreases when the number of input microphones increases
(e.g., from 3.03 in the monaural case down to 2.90 in the 2-
channel case and down to 2.75 in the 6-channel case on the
real test data). We think that the mediocre enhancement
score is likely because, in SuperM2M (Wang, 2024b), the

TABLE VII. Results of ctPuLSE trained with different weighting term « [for the loss in Eq. (14)] on CHiME-4 far-field mixtures (six-channel input).

DNSMOS OVRL | WER (%)
Val. Test
Val. Test
Row Systems o in Eq. (14) REAL REAL SIMU REAL SIMU REAL
0 Mixture — 1.52 1.39 5.93 4.07 8.29 4.47
4c of Table IV ctPuLSE 5 3.39 3.29 0.86 1.25 1.37 1.70
Ta ctPuLSE 10 3.40 3.30 0.86 1.26 1.36 1.71
7b ctPuLSE 2.5 341 3.30 0.87 1.28 1.31 1.61
Tc ctPuLSE 1.0 3.40 3.29 0.87 1.25 1.32 1.73
7d ctPuLSE 0.5 3.39 3.29 0.87 1.24 1.38 1.69
Te ctPuLSE 0.25 3.39 3.28 0.89 1.27 1.44 1.71
7f ctPuLSE 0.1 3.37 3.27 0.98 1.36 1.50 1.81
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TABLE VIII. Comparison of ctPuLSE with other approaches on CHiME-4 far-field mixtures. The best scores are highlighted in bold in each of the one-,
two-, and six-channel tasks separately. SuperM2M and ctPuLSE use exactly the same TF-GridNet architecture.

DNSMOS OVRL T WER (%) |
Joint #input Val. Test Val. Test

Row  Systems Frontend training?  mics REAL REAL SIMU REAL SIMU REAL
0 Mixture — — 1 1.52 1.39 5.93 4.07 8.29 447
la IRIS (Chang et al., 2022) Conv-TasNet X 1 — — 5.96 4.37 13.52 12.11
1b IRIS (Chang et al., 2022) Conv-TasNet v 1 — — 3.16 2.03 6.12 3.92
2 SuperM2M (Wang, 2024b) TF-GridNet X 1 3.16 3.03 3.39 1.84 6.57 3.04
3 ctPuLSE (4c of Table III) TF-GridNet X 1 3.38 3.27 3.29 1.87 6.97 3.13
4a MultiIRIS (Masuyama et al., 2023) Neural WPD X 2 — — 2.28 2.06 2.30 3.63
4b MultilRIS (Masuyama et al., 2023) Neural WPD v 2 — — 2.04 1.66 2.04 2.65
5 SuperM2M (Wang, 2024b) TF-GridNet X 2 3.01 2.90 1.50 1.40 2.08 1.94
6 ctPuLSE (4c of Table IV) TF-GridNet X 2 3.40 3.31 1.57 1.45 2.33 2.08
Ta MultiIRIS (Masuyama et al., 2023) Neural WPD X 6 — — 1.19 1.32 1.29 1.85
7b MultiIRIS (Masuyama et al., 2023) Neural WPD v 6 — — 1.22 1.33 1.24 1.77
8 SuperM2M (Wang, 2024b) TF-GridNet X 6 2.84 275 0.83 1.26 1.37 1.61

ctPuLSE (4c of Table IV) TF-GridNet X 6 3.39 3.29 0.86 1.25 1.37 1.70

loss function is defined on observed mixtures (i.e., between
each observed mixture and reconstructed mixture, which is
obtained by summing up linearly filtered source estimates)
rather than on individual source estimates. In this case, the
DNN would only have a weak supervision regarding what
the target sources are. That is, the cues leveraged for train-
ing the SuperM2M enhancement models are (a) there should
be two sources and (b) their estimates, after linear filtering,
should add up to each mixture. Such a supervision could be
too weak for the DNN to achieve good enhancement.

In comparison, in ctPuLSE, the loss function includes a
loss term on the pseudo-target speech provided by CTSEnet
[ie., £§?al in Eq. (5§)]. As long as the pseudo-target is reason-
ably accurate, ctPuLSE is expected to more accurately sup-
press non-target signals. Comparing row 3 with 2, 6 with 5,

and 9 with 8, we observe that ctPuLLSE indeed obtains dramati-
cally better DNSMOS OVRL scores than SuperM2M, and the
enhanced target speech sounds much cleaner (please see the
sound demo mentioned at the end of the Introduction).
Although the ASR performance on the real test data is worse,
it is only slightly worse and is still very strong.

F. Miscellaneous results

Table IX reports the results of applying speaker reinforce-
ment (see the details in Sec. VIH), where the SNR factor 7 is
tuned to 10 dB. We observe that the performance gap between
SuperM2M and ctPuLSE observed in Table VIII is reduced,
especially on the two- and six-channel tasks. Our best perform-
ing system in row 6 b obtains ASR results competitive to using

TABLE IX. Effects of speaker reinforcement Note: Oracle results (i.e., directly using close-talk mixtures for ASR decoding) are marked in gray.

WER (%) |
Val. Test
Speaker
Row Systems #input mics reinforcement y (dB) SIMU REAL SIMU REAL
0 Mixture 1 — 5.93 4.07 8.29 4.47
la SuperM2M (Wang, 2024b) 1 — 3.39 1.84 6.57 3.04
1b SuperM2M (Wang, 2024b) 1 10 2.40 1.64 4.54 2.40
2a ctPuLSE 1 — 3.29 1.87 6.97 3.13
2b ctPuLSE 1 10 2.29 1.67 4.76 2.55
3a SuperM2M (Wang, 2024b) 2 — 1.50 1.40 2.08 1.94
3b SuperM2M (Wang, 2024b) 2 10 1.28 1.33 1.88 1.84
4a ctPuLSE 2 — 1.57 1.45 2.33 2.08
4b ctPuLSE 2 10 1.45 1.36 2.00 1.85
Sa SuperM2M (Wang, 2024b) 6 — 0.83 1.26 1.37 1.61
5b SuperM2M (Wang, 2024b) 6 10 0.83 1.23 1.37 1.58
6a ctPuLSE 6 — 0.86 1.25 1.37 1.70
6b ctPuLSE 6 10 0.86 1.22 1.37 1.56
7 Close-talk Mixture — — — 1.14 — 1.49
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close-talk mixtures for ASR decoding, suggesting the effec-
tiveness of ctPuLSE and the overall robust ASR system.

VIIl. LIMITATIONS

We emphasize that the performance of ctPuLSE
depends on the quality of CTSE. Our study builds upon the
assumption that CTSE can produce reasonably good
enhancement to close-talk mixtures so that reasonably good
pseudo-labels can be derived for far-field mixtures. This
assumption, in many cases, can be satisfied as close-talk
mixtures usually have a very high input SNR already. In
cases when the input SNR is low, one could leverage direc-
tional microphones to record close-talk speech during data
collection. Another strategy is to leverage techniques such
as crosstalk reduction (Wang et al., 2024) to train a DNN to
estimate the close-talk speech based on close-talk mixtures.

IX. CONCLUSION

We have investigated close-talk speech enhancement, and
have proposed a novel approach, ctPuLSE, for far-field speech
enhancement, where estimated close-talk speech produced by
close-talk speech enhancement is utilized as pseudo-labels for
training supervised enhancement models directly on real far-
field mixtures to realize better generalizability to real data.
Evaluation results on the challenging CHiME-4 dataset show
the effectiveness and potential of the proposed algorithms.

Although simple and straightforward, the proposed
approach of exploiting close-talk mixtures for far-field speech
enhancement, we think, could encourage a new stream of
research towards realizing neural speech enhancement models
that can generalize better to real data, as it suggests a promis-
ing way that can derive, for real mixtures, pseudo-labels which
can enable the training of speech enhancement models directly
on real mixtures. Thanks to the innate high input SNR of
close-talk mixtures, the derived pseudo-labels are often reliable
and high-quality. This paper, based on the challenging
CHiME-4 dataset, has shown that the derived pseudo-labels
can be utilized to build far-field speech enhancement models
with better generalizability to real data. Looking forward, we
expect the derived pseudo-labels to be also useful in many
other applications beyond far-field speech enhancement.
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